Dynamic Scientific Method for Predicting Shelf Life of Buffalo Milk Dairy Product

Institute of Advanced Engineering and Science

Sumit Goyal, Gyanendra Kumar Goyal,

International Journal of Advances in Applied Sciences, Vol 1, No 1: March 2012 , pp. 29-34

Abstract

Feedforward multilayer machine learning models were developed to predict the shelf life of burfi stored at 30oC. Experimental data of the product relating to moisture, titratable acidity, free fatty acids, tyrosine, and peroxide value were input variables, and the overall acceptability score was the output. Bayesian regularization algorithm was used for training the network. The transfer function for hidden layers was tangent sigmoid, and for the output layer it was purelinear function. The network was trained with 100 epochs, and neurons in each hidden layers varied from 3:3 to 20:20. Excellent agreement was found between the actual and predicted values establishing that feedforward multilayer machine learning models are efficient in predicting the shelf life of burfi.

Publisher: Institute of Advanced Engineering and Science

Publish Date: 2012-03-01

DOI: 10.11591/ijaas.v1.i1.pp29-34

Publish Year: 2012

ipmuGoDigital Library

Copyright © 2021 IpmuGo Digital Library.

All Right Reserved

Support

Help Center

Privacy Policy

Terms of Service