TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 3, Dece
mbe
r
2
015, pp. 520
~ 530
DOI: 10.115
9
1
/telkomni
ka.
v
16i3.922
3
520
Re
cei
v
ed Se
ptem
ber 10, 2015; Revi
se
d No
vem
ber
24, 2015; Accepted Novem
ber 30, 20
15
Harmonic Reduction in Multilevel Inverter Based on
Super Capacito
r as a S
t
orage
Mohammed Rash
eed*
1
, Rosli
Omar
2
, Mariz
a
n Sul
a
iman
3
Univers
i
ti T
e
knikal Mal
a
ysi
a
Melak
a
, F
a
culty
of Electric
al
Engi
neer
in
g, Industria
l Po
w
e
r,
761
00 H
ang T
uah Ja
ya, D
u
ri
an T
ungga
l, Melak
a
, Mala
ysi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: mohame
d_tc
hno
@
y
ah
oo.co
m
1
, rosliomar@utem.edu.my
2
,
marizan
@
utem
.edu.m
y
3
A
b
st
r
a
ct
Casca
ded
H-B
r
idg
e
mu
ltilev
e
l
invert
erhas
be
come
mor
e
attractive to
ge
ne
rate h
i
gh
p
o
w
e
r in
a
n
electric
al
distribution system
.
This
paper
discusses the c
ontrol of fiv
e
level cascaded H-br
idge m
u
ltilevel
inverter
w
i
th s
uper
cap
a
citor
as
a Dc
e
ner
gy stora
ge.
T
h
e co
ntrol
of th
e
multi
l
ev
el
inv
e
rter us
ing
PI
an
d
space
vector
puls
e
w
i
dth
modu
latio
n
(SV
P
W
M) cont
roll
ers b
a
sed
o
n
the
mode
lli
ng
an
d Si
muli
nk
o
f
cascad
ed H-br
i
dge ca
n obs
er
ve the effectiveness of
the pr
opos
ed co
ntrol
to r
educe har
mo
nic co
ntents
of
the mu
ltilev
e
l i
n
verter out
p
u
t.High
freq
ue
nc
y ripp
le
fro
m
t
he
inverters
c
an
be r
e
mov
e
d fro
m
th
e sys
tem
usin
g l
o
w
v
olta
ge filter. T
o
ta
l
har
mo
nic
disto
r
tion (T
HD) fo
r
both c
u
rrent
an
d volta
ge
is q
u
i
t
e low
to
me
et the
IEEE standard.
Model
lin
g of the system h
a
s b
een d
o
n
e
usin
g MATLAB/Simu
link.
Ke
y
w
ords
:
super
cap
a
cito
r (SC), total
h
a
rmonic
d
i
stortion
(T
H
D
), spa
c
e vector
pu
ls
e w
i
dth
modu
l
a
tio
n
(SVPWM)
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Multilevel inverter h
a
s be
come more attractive to ge
nerate hi
gh p
o
we
r and hig
h
voltage
appli
c
ation. T
he multilevel
inverte
r
req
u
ire
s
a
num
b
e
r of i
s
ol
ated
Dc
suppli
e
s,
ea
ch of
whi
c
h
feeds a p
o
we
r cell,as ha
s
been
discu
ssed [1, 2]. Th
e
modul
ar
stru
cture
for
mult
ilevel inverte
r
is
comp
osed of
multiple unit
s
of identi
c
al
H-b
r
id
g
e
po
wer
cell, whi
c
h is
an effe
ctive mean
s
for
redu
cin
g
the
manufa
c
turi
n
g
cost.
Outp
ut voltage
i
n
verter waveform is form
ed
by seve
ral
small
voltage level
s
, and
dist
ri
buted
sinu
so
idal over tim
e
, re
sulting i
n
a lo
w T
H
D an
d
dv
/d
t
is
descri
bed
in
detail in [3].
Multilevel inv
e
rter
s
have t
h
ree
topol
ogi
es:
Ca
sca
de
d H-bri
dge
(CHB
)
Diod
e–
Clamp
ed (NPC) Flying Capa
citors (F
C)
Ce
ll
s
with sepa
rate
d DC
so
urce
s conventio
n
a
l,
whi
c
h are discu
s
sed in [4, 5]. The powe
r
cell
s
are co
nne
cted in ca
scade
d H-bri
dge to with
stand
high Ac volta
ge, numbe
r o
f
voltage levels in a ca
scad
ed H-B
r
idg
e
inverter,
m,
can be found from
m=
(
2
H+
1
)
,
whe
r
e
H
is th
e numbe
r of H-b
r
id
ge cell
s per p
h
a
s
e. The po
wer
cells in one in
verter
pha
se a
r
e n
o
rmally conn
ected in
ca
scad
ed H-b
r
id
ge on thei
r A
c
outp
u
t side
to achieve
h
i
gh
voltage op
eration an
d lo
w ha
rmo
n
ic
distortio
n
, wh
ich
wa
s di
scussed [6]. In
this p
r
op
osa
l
, th
e
controller used a sy
stemthat comb
i
n
es the controll
er
PI and SVPWM
control. In the PI cont
roller
implementation Super capacitor
energy
storage
system (ESS), the controller has been designed
usin
g MATLA
B
/Simulink.Super
ca
pa
cito
r ha
s matu
re
d sig
n
ificantly
over the la
st
decade
and h
a
s
emerged with the potential
to fa
cilitate m
a
jor
advances
in energy st
orage, which was
developed
in [7, 8]. The
aim of thi
s
p
aper is to
a
c
hieve hig
h
pe
rforma
nce for modellin
g
co
ntrol (SVP
WM)
ca
scade
d H-bridg
e
multilevel inverter fivelevel
to
redu
ce
co
st and total harmonic di
stort
i
on
(THD)
by usi
ng sup
e
r
cap
a
citor stora
g
e
.
Space
vect
o
r
mo
dulatio
n i
s
a
mo
re
attractive
can
d
id
ate
and its adva
n
tage is the
six se
ctor vol
t
age
16
VV
that operate
s
sta
r
tin
g
from ea
ch
swit
chin
g
vector a
s
a p
o
int in com
p
l
e
x (
) spa
c
e a
nd co
nsi
s
ts
o
f
six secto
r
s, with ea
ch h
a
v
ing an an
gle
of 60 d
egree
. Each
se
cto
r
con
s
ist
s
of
2
1
n
triangl
e SVPWM di
agram of an
n-l
e
vel inverter,
whi
c
h
con
s
i
s
ts of 12
5 five-l
evel, as p
r
op
ose
d
in
[9]. T
here
are man
y
types of dc
stora
ge a
ppli
e
d
to multilevel inverters such
as battery, fly w
heel and
anothe
r rel
a
ted dc
sou
r
ce
meet of three
pha
se
s of dc source h
a
ve
their cha
r
ge
and limit
ation in redu
cing
harmo
nic di
stortion in th
e
sele
cted
net
work.Desi
gn
of a dyn
a
mi
c mod
e
l mult
il
evel inverte
r
based
on S
u
per capa
citor, Dc
bus an
d vari
o
u
s l
o
sse
s
h
a
s
b
een
discu
s
sed i
n
[10].
Five level di
o
de
clamp
ed i
n
verter ba
se
d on
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Harm
oni
c Re
ductio
n
in Mu
ltilevel Inverte
r
Base
d on Super
Cap
a
cit
o
r… (Moham
m
ed Rash
ee
d)
521
sup
e
r
ca
pa
citor a
nd b
a
ttery investigatio
n PV ene
rgy
has be
en d
e
velope
d in [
11]. Three le
vel
inverter with Third Harmonic
Injection
P
W
M
(THI
PWM) dynami
c
p
e
rform
a
n
c
e o
f
supe
r capa
citor
and batteryto
gen
erate
d
DC
o
u
tput
voltage or cu
rr
e
n
t of the
DC
side
to solve
the p
r
obl
em
o
f
unbal
an
ced
neutral lin
e voltage of three-level inve
rterwa
s p
r
opo
sed [12]. Th
e novelty of
this
pape
rp
ropo
ses that ha
rm
onic
conte
n
t in a multile
vel
inverter
can
be investig
ated by gen
era
t
ing
SVPWM s
i
gnal bas
e
d on
s
u
per capac
i
tor
(SC) as
s
t
orage
replaced by t
r
adi
tional dc
s
o
urc
e
to
gene
rated
hi
gh ha
rmo
n
ic disto
r
tion.Th
e ci
rcuit
stru
cture
and
switchi
ng
states of a five
-l
evel
ca
scade
d
H-bridg
e
inve
rt
er
are
introd
uce
d
. Th
e p
r
opo
sed
mod
u
lation i
s
a fi
ve-level
ca
scaded
inverter to so
lve problem
high total harmonic di
storti
on, and the co
st co
n
s
ist
s
of four lookup
table 24
swit
chin
g ba
se
d
on supe
r
cap
a
citor sto
r
ag
e so
urce i
n
verter. It can
observed
tha
t
the
voltage an
d current’s T
H
D
for the
supe
r
cap
a
cito
r is
consi
dered lo
w at 5%
a
s
specifie
d by IEEE
519 sta
nda
rd
on redu
ce h
a
rmo
n
ic di
sto
r
tion leve
l. The pro
p
o
s
al
has b
een im
plemente
d
using
MATLAB/SIMULINK.It only c
o
ns
is
ts
of f
our
s
w
it
c
h
ing c
e
ll
c
a
s
c
a
ded H-B
r
idge and four
s
u
per
cap
a
cito
r en
ergy sto
r
a
g
e
s
are a
c
hiev
ed to five le
vel inverter
with R-L lo
a
d
. It provide
s
a
measure of t
he the
r
mal
in
fluence of th
e ha
rmo
n
ic,
or it i
s
th
e
ratio of the
RMS value
of
the
harm
oni
cs to
the fundame
n
t
al.
2. Space Vec
t
or Algori
t
h
m
Based on
Super Ca
pac
i
tor Storag
e
The g
ene
ral
spa
c
e
vecto
r
modul
ation i
s
a
pplied
in t
he p
r
e
s
ente
d
three
-
p
hase
n-level
CHB i
n
v
e
rte
r
.
0.
86
(6
3
/
2
)
h
[13] is the
he
ight of a
se
ctor Si, which i
s
an
eq
uilateral trian
g
le of
unity
side
as
sh
own in Figu
re
4. Space
vecto
r
select
io
n an
d switchi
ng
state se
que
nce
of the invert
er
are
discu
s
se
d. The
line
-
to-line
voltage
,
, ,
VV
V
RST
ca
n b
e
o
b
t
ained th
rou
g
h the i
n
verte
r
ph
ase
voltage:
sin(
2
9
0
)
Vm
f
s
R
(1)
2
si
n(
2
9
0
)
3
Vm
f
s
S
(2)
2
si
n(
2
9
0
)
3
Vm
f
s
T
(3)
Acco
rdi
ng th
e thre
e-pha
se to two
-
p
h
a
s
e frame
t
r
an
sform
a
tion, t
he out
put vol
t
age of the
th
ree-
level N-level
cascaded H-bridge inverter can
b
e
re
prese
n
ted by a spa
c
e ve
ctor
in the
frame:
24
1c
o
s
c
o
s
2
33
24
3
0s
i
n
s
i
n
33
V
V
R
V
S
V
V
T
(4)
Whe
r
e
V
and
V
are the re
al and imag
inary co
mpo
nents of the
spa
c
e vect
or
r
e
spec
tively.
//
V
is the magnit
ude an
d
is the pha
se an
gle of the sp
ace ve
ctor. T
he sp
ace
vec
t
or,
referenc
e vec
t
or, tw
o-l
e
vel inve
rter, on
-time
calcul
ation
within a
se
cto
r
,
1
,
2
,
.
.
,
6
.
Si
i
for a
two-level inv
e
rter volt-second eq
uation is discussed in [14]: To
a
pply SVPWM technique, first,
the angle (
) a
nd se
ctor
(
S
i
) of
Vr
e
f
need to be
determi
ned b
y
using:
/3
re
m
(5)
1
/3
Si
n
t
i
(6)
In Equation
(6) a
nd
(7
),
0(
0
0
3
6
0
)
is the
an
gle
o
f
the refe
re
nce vecto
r
with
re
spe
c
t to
axis,
(0
6
0
)
is the
angle
within t
he secto
r
a
n
d
(1
6
)
SS
ii
is
its se
cto
r
operation,
a
n
d
int
an
d
rem
are
stan
dard
mathe
m
atical fun
c
tio
n
s of i
n
tege
r and
remin
d
e
r, re
sp
ectiv
e
ly [8]. On-times
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 520 – 530
522
()
,
(
)
,
tt
A
t
t
A
aa
b
b
and
()
tt
A
oo
are
calculated usi
ng Equation (8
)-(1
0
)
, where t
he requi
red
operation i
s
only (8)-(9). Identify triangl
e in a se
ctor
and the on
-times a
r
e calculated u
s
ing:
2
Z
VT
S
Z
TT
V
aS
X
h
(7)
Z
V
TT
bS
h
(8)
TT
T
T
os
a
b
(9)
Figure 1
sh
o
w
s th
e
spa
c
e vecto
r
dia
g
ram fo
r fi
ve
-level inve
rte
r
.The
swit
chi
ng in
stant of
a
SVPWM pulse waveform is
s
h
own in Figure 2.
Figure 1. The
spa
c
e vecto
r
diagra
m
for five-level inverter [8]
Figure 2. Switc
h
ing ins
t
ant
of a SVPWM pulse waveform
A supe
r cap
a
citor
ca
n b
e
model
ed touseci
r
cuit st
anda
rd
comp
onent
s as
shown in
Figure 3. T
h
is d
e
sig
n
circuit u
s
e
s
a
si
milar
ci
rcuit
as
pre
s
e
n
ted
in the
data
sh
eet for the
sup
e
rcap
acit
or from EPCOS and the recom
m
en
dati
ons fro
m
the proje
c
t su
pe
rvisor in [15].
0
0.
01
0.
0
2
0.
03
0.
04
0.
05
0.
0
6
0.
07
0.
08
0.
09
-0
.
8
-0
.
6
-0
.
4
-0
.
2
0
0.
2
0.
4
0.
6
0.
8
Ti
m
e
(
S
)
P
h
as
e
V
o
l
t
age
(
V
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Harm
oni
c Re
ductio
n
in Mu
ltilevel Inverte
r
Base
d on Super
Cap
a
cit
o
r… (Moham
m
ed Rash
ee
d)
523
Figure 3.
The
Basic
Circuit Model of the Super
Cap
a
ci
tor (EPOCS
)
The de
sig
n
use
s
sup
e
rcapa
citor in
st
ead of batte
ry beca
u
se b
a
ttery is in
su
fficient to
sup
p
ly real
p
o
we
r cha
r
ge
and di
scha
rg
e co
ndition
s. Superca
pa
citor
u
s
e
s
circui
t
RC con
n
e
c
ted
seri
es fo
rme
d
by a ca
pa
citor
con
s
tant a
nd a resi
stan
ce con
s
tant. The capa
cita
nce and
th
e
serial
resi
stan
ce
of
the sup
e
r capa
citor are depe
ndent
o
n
freq
uen
cy,
temperature
and volta
ge.
The
simulatio
n
s
h
a
ve bee
n de
sign
ed, the ti
me for
simul
a
tion is
sh
ort
and thu
s
th
e effect of th
e
temperature
and
volta
ge differen
c
e ca
n
be
ne
glec
t
ed b
e
cau
s
e t
hey are al
mo
st con
s
tant.
The
self-di
s
cha
r
g
e
ha
s b
een
negle
c
ted
du
e to the
sa
m
e
re
ason. Th
e freq
uen
cy
variation
s
of
the
sup
e
rcap
acit
or cu
rrent are low eno
ug
h to assume
that the capacitor valu
e is also con
s
t
ant,
sup
e
r
cap
a
cit
o
rs
ca
n ope
rate even at l
o
w temp
erat
ure
(e.g. -2
0
°
C). Su
per
capa
citor
can
be
sup
p
lied
to hi
gh voltag
e
ch
arge
an
d
discharg
e
i
s
negl
ected
be
ca
use the f
r
eq
uen
cy, tempe
r
atu
r
e
and voltag
e
are
co
nsta
nt, high pe
rf
orma
nce SC apply mod
e
ling
can
re
duce T
HD.
The
cap
a
cita
nce
C is
re
spo
n
si
ble for the
m
o
st im
po
rtant
phen
omen
o
n
in the mo
d
e
l. It determi
nes
how
cha
r
ge i
s
han
dled in
the circuit. Th
e amou
nt
of energy store
d
and the
rate of energy level
variation
s
are both dete
r
mined mai
n
ly by the cap
a
c
itan
ce value
.
The re
sista
n
ce
R2 that
is
con
n
e
c
ted i
n
parallel
with
the
cap
a
cito
r is me
ant to
rep
r
e
s
e
n
t th
e self-di
s
cha
r
ge effe
ct. The
seri
es re
si
st
a
n
ce R1 rep
r
e
s
ent
s
t
he
lo
s
s
e
s
du
ring
charg
e
an
d di
scharge. Th
e
s
e lo
sse
s
o
c
cur
becau
se the
con
d
u
c
ting el
ement in the
sup
e
r
cap
a
cit
o
r ha
s a r
e
si
st
an
ce,
so t
h
e con
n
e
c
t
i
on
is
not ideal. T
h
e
over voltag
e
prote
c
tion p
r
o
v
ided by
R3 a
nd the
swit
ch
controlling it
s
con
n
e
c
tion to
the ci
rcuit i
s
necessa
ry to
prevent
dam
age to
th
e
ca
pacito
r
eleme
n
ts by
bal
ancing the
voltag
e
level. The vol
t
age bal
an
cin
g
is
need
ed
becau
se
oth
e
r
wi
se th
e voltage in
one
separate
cell
can
increa
se
high
er tha
n
the
o
t
hers,
re
sultin
g in g
a
ssing
or expl
osi
on.
This volta
g
e
differen
c
e
can
occur if one
cell ha
s a lo
wer
cap
a
cita
nce than t
he
others, sin
c
e
those re
sult
s in more e
n
e
rgy
being
sto
r
ed.
The
re
sista
n
c
e
Rp
and
th
e capa
citan
c
e Cp
a
r
e in
cl
uded i
n
the
circuit to m
o
de
l
some of the f
a
st dynami
cs
in the
behavi
o
r of the su
pe
r cap
a
cito
r.
1
∆
∆
(10
)
3
∆
°
(11
)
(12
)
The
creation
of a first Sim
u
link
mod
e
l t
o
u
s
e the
su
percap
a
cito
r
according
to t
he b
a
si
c
circuit is d
e
scrib
ed in Fig
u
re 3. A sim
p
le ci
rcuit initial model te
sting is
done
con
s
istin
g
o
f
a
cap
a
cita
nce and re
si
stan
ce in parall
e
l with a re
si
sta
n
ce in
se
ries.
This ba
se
circuit mana
ge
s to
sho
w
the
basic fun
c
tion of
the su
per
ca
p
a
citor
[1
5]. By adding m
o
re com
pon
ent
s until the
circuit
descri
bed
in
Figure 3
is a
c
hieve
d
, the
accuracy
of t
he mo
del i
s
i
m
prove
d
. Thi
s
bl
ock
diag
ram
that is u
s
e
d
con
s
id
ere
d
t
he ba
si
c mo
del of
the
superca
pa
citor as
sh
own i
n
Figu
re
4. The
controls
blo
c
k rel
a
y the switch th
at
co
nne
ct
s t
he
re
sist
a
n
c
e
bala
n
cin
g
R3
to t
he c
i
rcuit [16]. To
cal
c
ulate
R1, R3
, loo
k
up ta
ble to be dete
r
mine
d by usi
ng:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 520 – 530
524
Figure 4. Block
Diag
ram o
f
super
cap
a
citor (SC)
Whe
n
hi
gh
currents are u
s
ed,
other effects t
han
the
ca
pa
citan
c
e
can
affect th
e
voltage
level. These
effects can cause the cal
c
ulat
ed capa
ci
tance valu
e to be incorre
c
t [7].
Qi
t
dt
(14
)
Whe
r
e; Q =
stands fo
r cha
r
ge,
The charge i
n
a cap
a
cito
r ca
n be cal
c
ulate
d
us
i
n
g the integra
l
of the current durin
g o
n
e
cha
r
gin
g
cycl
e [17]. The ca
pacita
n
ce value ca
n then b
e
cal
c
ulate
d
usin
g:
C
∆
∆
(15
)
Whe
r
e; Q an
d u = The diff
eren
ce
s in ch
arge a
nd voltage [17][18].
3. The Propo
sed Co
ntrol
Metho
d
of a
Ca
scaded H-Bridge Multil
ev
el
In
v
e
rter
The propo
sal
of this mode
l to design th
ree p
h
a
s
e ca
scade
d H-Bri
dge (CHB) five level
inverter
control space vector pulse width
modulation (SVPWM)
based
on super capacitor as
stora
ge
(SC)
wa
s develo
p
e
d
as
sh
own i
n
Figure 5.
Sp
ace ve
ctor
m
odulatio
n (SV
M
) for five-l
eve
l
inverter con
s
i
s
ts
of 1
6
tria
ngle
s
, in
whi
c
h t
r
ian
g
le
o
ne h
a
s 13
switching
state
s
vecto
r
s, t
r
ia
ngle
tw
o
-
fo
ur
h
a
v
e 1
0
s
w
itc
h
ing s
t
a
t
es
ve
c
t
ors
,
wh
ile
tri
a
n
g
le three
has 11
swit
chin
g
state
s
vecto
r
s.
Trian
g
le five-seven
-nin
e h
a
ve 7 switchi
ng state
s
ve
ctors, trian
g
l
e
six-ei
ght h
a
ve 8 switchi
ng
states vecto
r
s, tria
ngle
ten
-
twelve
-fourte
en- sixteen
h
a
ve 4
switchi
ng
states vectors an
d tria
n
g
le
eleven-thi
r
tee
n
-fifteen h
a
ve 5
swit
chin
g
state
s
ve
cto
r
s [1
9]. Thi
s
prop
osed
sim
u
lation di
ag
ra
m
for five level inverter
us
ing
algorithm SVPWM tec
hnique to generat
e
c
a
sc
aded H-Bridge
inverter
con
s
i
s
ts of
2
4
switch
IGB
T
and fo
ur
super capa
cit
o
r
sou
r
ce a
s
sho
w
n
in Fi
gure
6. Algo
rith
m
SVPWM can
generate any
level to extend three-five
level. The harm
onic and THD profiles of the
output voltag
e and
cu
rrent
of the CHB i
n
verter
ar
e in
vestigated. T
h
ree
pha
se
R-L loa
d
contai
ns
a bal
an
ce, in
whi
c
h th
e val
ues of the
resistan
ce
R=3.
69 a
nd i
ndu
ct
ive L=2mH.
T
he fun
dame
n
tal
freque
ncy
f
i
s
50Hz a
nd th
e
inverter swit
chin
g fre
que
n
c
y is
3
kHz. F
i
gure
7 p
r
e
s
e
n
ts three
pha
se
swit
chin
g IG
BT five level inverter
pha
se A, B
and
C. The pa
ram
e
ters
of the m
u
ltilevel invert
ers
us
ed MATLA
B
/SIMULINK.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Harm
oni
c Re
ductio
n
in Mu
ltilevel Inverte
r
Base
d on Super
Cap
a
cit
o
r… (Moham
m
ed Rash
ee
d)
525
Figure 5. Block di
agram of
the propo
se
d
techniq
u
e
Figure 6.
Design SimulinkModel SVPWM five level CHB
Inverter
with Super capacitor
(SC)
sou
r
c
e
Phase A
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 520 – 530
526
Phase B
Phase C
Figure 7.
Three phase Swi
t
ching IGBT
Five le
vel (SVPWM) Invert
erPhase A, B and C
4. Simulation Resul
t
Figure 8. Three pha
se o
u
tput voltage Five level SC inverterPha
s
e
A, B and C
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
3
5
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(
S
)
I
n
v
ert
er
V
o
lt
a
g
e
(
V
)
0
0.
05
0.
1
0.1
5
0.2
0.
25
0.
3
0.
3
5
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(
S
)
I
n
vert
erV
ol
t
a
g
e
(
V
)
0
0.05
0.1
0.
1
5
0.2
0.
2
5
0.
3
0.35
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(
S
)
I
n
v
ert
erV
o
l
ta
g
e
(
V
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Harm
oni
c Re
ductio
n
in Mu
ltilevel Inverte
r
Base
d on Super
Cap
a
cit
o
r… (Moham
m
ed Rash
ee
d)
527
Figure 9. Three pha
se o
u
tput Five leve
l SC inverter
current Phase A, B and C
Figure 10. Th
ree ph
ase out
put Five level SC
Filtered v
o
ltage inverte
r
Phase A, B
and C
0
0.05
0.1
0.15
0.2
0.
2
5
0.
3
0.
35
-1
.
5
-1
-0
.
5
0
0.5
1
1.5
Ti
m
e
(
S
)
I
n
v
e
rt
er C
u
rren
t
(
A
)
0
0.
05
0.1
0.
1
5
0.
2
0.2
5
0.
3
0.
3
5
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
Ti
m
e
(
A
)
In
v
e
rt
er
C
u
r
r
e
n
t
(
A
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
Tim
e
(
S
)
In
v
e
rt
e
r
C
u
rren
t
(
A
)
0
0.
05
0.
1
0.
1
5
0.
2
0.2
5
0.
3
0.
35
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(S
)
F
i
l
t
ered
V
o
l
t
a
g
e(
V
)
0
0.
0
5
0.
1
0.
1
5
0.2
0.25
0.3
0.35
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
me(
S
)
F
i
lt
ere
d V
o
l
t
a
g
e
(
V
)
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
3
5
-2
0
-1
5
-1
0
-5
0
5
10
15
20
Ti
m
e
(S
)
F
i
l
t
er
ed
V
o
l
t
a
g
e
(
V
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 520 – 530
528
It can ob
se
rv
ed that the to
tal harm
oni
c
distor
tio
n
(THD)
of su
per capa
citor volta
ge an
d
current isconsidered
low
at 5%, as
specified
by the
IEEE
519 standard on harmonic
di
storti
on
level a
s
sho
w
n i
n
Fig
u
re
11. THDv e
q
uals to 1
8
.69
%
, and T
H
D
A
equals to 1.
14%as sho
w
n in
Figure 12. Th
ree
-
ph
ase THD
A
load filtere
d
voltage eq
u
a
ls to 0.
56% as sho
w
n
in Figure
13.
To
tal
harm
oni
c dist
ortion (T
HD)
of supe
r ca
pa
citor Dc volta
ge impleme
n
tation after the
time (Ts) is
se
t
from 0.5 to 0.6s eq
ual to 80.41% as sho
w
n
in Fi
gure 1
4
. Mo
del for supe
r capa
citor
(S
C)
prod
uces a fi
xed value of voltage equal
s to 5.2 V
as sho
w
n in Fig
u
re 15. Outp
ut current eq
uals
to 0.89 A as shown in Figu
re 16.
Figure 11. THDv of SC inverter voltage
Figure 12. THD
A
of SC inverter current
Figure 13. THDv of SC inverter filtered vo
ltage
0
2
4
6
8
10
12
14
16
18
20
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
H
a
r
m
oni
c
o
r
d
e
r
F
unda
m
e
nt
a
l
(
5
0
H
z
)
=
1
8
.
0
2
,
TH
D
=
1
8
.
6
9
%
Ma
g
0
2
4
6
8
10
12
14
16
18
20
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
Ha
r
m
o
n
i
c
o
r
d
e
r
F
u
n
d
a
men
t
al
(
50Hz
)
=
0.
8803 ,
T
H
D=
1
.
1
4
%
Ma
g
0
2
4
6
8
10
12
14
16
18
20
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
H
a
r
m
on
i
c
or
d
e
r
Fu
nda
m
e
nt
a
l
(
5
0
H
z
)
=
1
0
.
3
6
, TH
D
=
0
.
5
6
%
Ma
g
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Harm
oni
c Re
ductio
n
in Mu
ltilevel Inverte
r
Base
d on Super
Cap
a
cit
o
r… (Moham
m
ed Rash
ee
d)
529
Figure 14. THDv of SC Dc
Voltage (T
s=
0.5 to 0.6)
Figure 15. Super Capa
cito
r DC Voltage
Figure 16. Super Capa
cito
r DC Current
5. Conclusio
n
In this
pap
er,
total ha
rmo
n
i
c di
stortio
n
(THD)
of thre
e ph
ase
spa
c
e ve
cto
r
p
u
lse
width
modulation (SVPWM) cascaded H-Br
idge five level inverter base
d on super
capacitor (S
C)dc
source as st
orage is reduced
.It can observed that the Voltage
and current THD
for the super
capacitor i
s
considered low at
5% as
spec
ifiedby IEEE 519
standard
on harmonic
di
storti
on
level. The
proposedm
odel
has inve
stigated better harmonic distor
tion for voltage
and current.In
the next
step
, the p
r
ototyp
e will
be
deve
l
oped
ba
se
d on
the
inve
rter of
casca
d
ed H-B
r
idge
with
sup
e
r capa
cit
o
r. This
simu
lation will be
validat
ed through exp
e
ri
ments in o
r
d
e
r to en
sure the
effectivene
ss
of using Sup
e
r
cap
a
cito
r a
s
a stora
ge co
mpared to other d
c
so
urce
.
Ackn
o
w
l
e
dg
ements
The a
u
thors
wish to than
k UniversitiTe
kni
k
alMal
a
ysi
a
Melaka
(UTeM). Thi
s
work was
sup
porte
d pri
m
arily by the MTUN-CoE Pr
oje
c
t cod
e
MTUN/2
012/
UTEM-FKE/4 M00012, an
d
fellowship UT
eM.
0
2
4
6
8
10
12
14
16
18
20
0
50
10
0
15
0
20
0
Funda
m
e
nt
a
l
(
5
0
H
z
)
=
0
.
0
0084
53 ,
T
HD=
80
.
7
0%
Ma
g
0
0.
05
0.1
0.15
0.2
0.2
5
0.3
0.35
1.5
2
2.5
3
3.5
4
4.5
5
Ti
m
e
(
S
)
S
u
p
e
r
c
ap
a
c
i
t
or
Vo
l
t
a
g
e
(
V)
0
0.
01
0.
02
0.0
3
0.0
4
0.
05
0.
0
6
0.
0
7
0.
08
0.
09
0.
1
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
S
e
l
e
ct
ed s
i
gnal
:
5 cy
c
l
es
. F
F
T
win
d
ow not
s
h
own (
i
nvali
d
s
e
t
t
ings
)
Ti
m
e
(
s
)
Evaluation Warning : The document was created with Spire.PDF for Python.