TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.5, May 2014, pp
. 3586 ~ 35
9
4
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i5.4918
3586
Re
cei
v
ed O
c
t
ober 2
4
, 201
3; Revi
se
d Decem
b
e
r
15, 2013; Accept
ed Ja
nua
ry 6,
2014
A Reference Compensation Current Control Strategy
for Grid-Connected Inverter of Three-Phase Distributed
Generators
Yunqing Zha
ng
1
, Shaoru Zhang
1
*, Pingjun Wang
1
, Lijun
Wang
2
,
Ruiy
e Zhan
g
1
,
Xiaobo Liu
1
, Lingling
Liu
1
, Yuan
y
u
an Wu
1
1
Hebe
i Norma
l Univers
i
t
y
,
2
Shijiaz
h
u
a
n
g
Mana
geme
n
t Dep
a
rtment for Road a
nd Bri
d
ge,
NO.20 Roa
d
East of 2nd Ri
ng
S
outh, Shiji
az
hua
ng, 03
11-8
078
73
00
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: shaoruz
ha
ng
@hotmai
l
.com
A
b
st
r
a
ct
Ren
e
w
able
e
n
e
rgy res
ourc
e
s
(RES) are
b
e
i
ng i
n
cre
a
sin
g
ly
conn
ected
in
distrib
u
tion
sys
tems
by
utili
z
i
n
g
pow
er
electro
n
ic co
n
v
erters. How
e
v
e
r, the
exte
nsi
v
e use
of pow
er el
ectronics
has res
u
lted
in
a
rise in p
o
w
e
r qua
lity (PQ) concer
ns faced
by the ut
ility. A novel co
ntro
l strat
egy impl
ementi
ng refer
enc
e
compe
n
satio
n
current w
a
s pr
opos
ed i
n
this
pap
er. So
that these gri
d
-c
onn
ect
ed i
n
ver
t
ers can ach
i
e
v
e
max
i
mu
m
ben
efits w
hen th
e
y
w
e
re insta
l
l
ed i
n
3-
ph
ase
4-w
i
re d
i
strib
u
tion syst
ems.
The i
n
verter
is
control
l
ed
to p
e
rform as
a
mu
lti-f
uncti
on devic
e
by inc
o
rpor
ating
acti
ve
pow
er fi
lter
functio
nal
ity. T
h
e
inverter c
a
n
th
us b
e
uti
l
i
z
e
d
as: 1) p
o
w
e
r c
onverter
to
tra
n
sfer activ
e
p
o
w
er from
RES
to the
grid,
an
d 2)
loa
d
reactive
pow
er de
ma
n
d
supp
ort; 3) current
har
monics co
mpen
sation at PC
C; and 4) cu
rrent
unb
ala
n
ce
a
n
d
ne
utral
curre
n
t
co
mpe
n
sati
o
n
i
n
c
a
se
of 3-
phas
e
4-w
i
re s
ystem. M
o
reov
er, w
i
th a
deq
u
a
te
control of gr
id
-interfaci
ng i
n
v
e
rter
, all the f
our ob
jectiv
es
can be
acco
mp
lish
ed
eithe
r
indiv
i
du
al
ly or
simulta
neo
usly
. Simu
latio
n
an
d exper
i
m
e
n
tal
results show
the val
i
dity a
nd
capa
bil
i
ty of the nove
l
pro
pos
e
d
control strategy.
Ke
y
w
ords
: gri
d
-con
necte
d in
verter, referen
c
e co
mp
ens
ati
on curr
ent, po
w
e
r qual
ity (PQ), active pow
e
r
filter (APF
), distributed g
e
n
e
ra
tors
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
With the con
s
umptio
n of e
nergy, ai
r poll
u
tion,
global
warming
con
c
erns, it is
ne
ce
ssary
to exploit and utilize the renewabl
e energy resources (R
ES), such as solar
po
wer, tidal power,
and geoth
e
rmal
po
we
r a
nd so on
[1
-3].
The market
liberalization a
nd
gov
ernment’s in
ce
ntives
have furthe
r accele
rated t
he re
n
e
wable
energy secto
r
gro
w
th.
Ren
e
wable
energy re
so
urce (RES)
integrate
d
at
distrib
u
tion
level is termed a
s
distrib
u
ted g
enerators
(DG). The
utility is con
c
ern
ed du
e to t
he hig
h
pe
n
e
tration l
e
vel of
intermittent RES in distribution system
s
as it may
pose a threat to network
i
n
terms of stability,
voltage re
gul
ation an
d po
wer-q
uality (PQ) issu
es
.
Therefore, th
e DG
sy
stem
s are requi
re
d to
comply with
stri
ct techni
cal and re
gul
atory frame
w
orks to en
su
re safe, relia
ble and effici
ent
operation of overall net
wo
rk. With the
advan
ceme
nt in powe
r
el
ectro
n
ics an
d digital cont
rol
techn
o
logy, the DG
syste
m
s can no
w
be actively
controlle
d to e
nhan
ce the
system ope
rati
on
with imp
r
ove
d
PQ at
the p
o
int-of-com
m
on-cou
p
lin
g (PC
C
)
.
However
,
the
extensive use of
po
we
r
electroni
cs
b
a
se
d eq
uipm
ent and
non
-linea
r lo
ads
at PCC
re
sults i
n
ha
rmonic
cu
rre
n
ts,
unbal
an
ced v
o
ltage, poo
r
power fa
ctor,
powe
r
lo
sse
s
and oth
e
r p
o
we
r quality
disturban
ce
s
[1
-
2].
Gene
rally, current contro
lled voltage
sou
r
ce inv
e
rters a
r
e u
s
ed to inte
rf
ace th
e
intermittent RES in distrib
u
ted syste
m
. Recently
, a few co
ntrol strategie
s
for
grid conn
ect
ed
inverters in
co
rpo
r
ating PQ
solution h
a
ve been p
r
o
p
o
se
d. In [3]
an inverte
r
o
perate
s
a
s
a
c
tive
indu
ctor at a
certain freq
uen
cy
to absorb the ha
rm
onic
curre
n
t. But the exa
c
t cal
c
ulatio
n
of
netwo
rk i
ndu
ctan
ce in
re
al-time is
difficult
and
ma
y deteriorate
the cont
rol
perfo
rman
ce.
A
simila
r ap
pro
a
ch
in
whi
c
h
a shunt
acti
ve filter
a
c
ts as
active
condu
ctan
ce t
o
dam
p o
u
t the
harm
oni
cs in
distrib
u
tion n
e
twork is p
r
o
posed in [4].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Refere
nce Com
pen
satio
n
Curre
n
t Co
ntrol Strateg
y
for Grid
-Con
necte
d… (Yu
nqing Zh
ang
)
3587
The
non
-line
a
r lo
ad
cu
rre
n
t ha
rmoni
cs
may re
sult i
n
voltage
harmonics
and
can
cre
a
te
a se
rio
u
s PQ
pro
b
lem in
the po
we
r
system netwo
rk. Active po
we
r filters (APF) are
extensiv
ely
use
d
to com
pen
sate the load current h
a
rmo
n
ics
and
load unbal
a
n
ce at di
strib
u
tion level. This
results in an
addition
al hardwa
r
e cost.
The featu
r
e
s
of APF was inco
rpo
r
ate
d
i
n
t
he co
nvent
ional
i
n
verter interfaci
ng re
newable
with the
gri
d
, witho
u
t any
addition
al ha
rdwa
re
co
st in
this
pap
er.
And a
novel
control
strate
gy
impleme
n
ting
referen
c
e compen
satio
n
curre
n
t wa
s prop
osed.
Here, the m
a
in idea i
s
t
h
e
maximum util
ization
of inverter
ratin
g
which i
s
m
o
st
of the time u
nderutilize
d
d
ue to inte
rmit
tent
nature
of RE
S. It is shown in this pa
p
e
r that
the g
r
id-co
nne
cted
inverter
can
effectively be
utilized to perform followi
ng import
ant
functions: 1) as
a power converter
t
o
transfer active
power from
RES to the grid, and 2) a
s
a shu
n
t APF to compen
sate current unbal
an
ce, load
curre
n
t ha
rm
onics, lo
ad
re
active p
o
wer
deman
d a
n
d
load
neutral
current. All of t
hese fun
c
tion
s
may be a
c
co
mplish
ed eith
er individ
ually
or
simultan
e
ously. With
such
a control,
the co
mbinat
ion
of grid
- co
nn
ected i
n
verte
r
and th
e 3-p
hase 4-
wire l
i
near/n
on
-line
a
r un
bala
n
ce
d load at P
C
C
appe
ars a
s
b
a
lan
c
ed li
nea
r loa
d
to the
grid. Th
e
sim
u
lation a
nd e
x
perime
n
tal result
s confirme
d
the validity a
nd capability of the
novel proposed co
ntrol strategy
for grid
- connected
invert
er
whe
n
they installed in 3-p
h
a
se 4
-
wi
re di
stribute
d
gen
erato
r
s.
2. Rese
arch
Metho
d
2.1. Sy
stem
Des
c
ription
The pro
p
o
s
e
d
sy
stem co
nsi
s
ts of RES
interfa
c
ed
to
the dc-lin
k
of
a
gri
d
-co
nne
cted
inverter a
s
shown in Figu
re 1. A set of 3-pha
se a
n
d
1-pha
se lo
a
d
s are co
nne
cted to the grid.
The voltage
sou
r
ce invert
er is
a key e
l
ement of
a
DG
system a
s
it interfa
c
e
s
the rene
wa
ble
energy sou
r
ce to the grid and, it delivers the
ge
nera
t
ed powe
r
by
DG system t
o
the grid. The
grid
-conn
ecte
d inverte
r
i
s
con
n
e
c
ted to
the g
r
id
at
PCC via filter inductor,
which can
reduce
swit
chin
g fre
quen
cy ri
pple
of the i
n
vert
er
cu
rre
nts.
The
RES ma
y be a
DC
source
or an
AC
sou
r
ce with rectifier co
upl
ed
to dc-lin
k.
Usua
lly, the
fuel
cell a
n
d
photovoltai
c
ene
rgy
sou
r
ce
s
gene
rate po
wer
at variab
le low d
c
vol
t
age, while t
he varia
b
le speed
wind tu
rbine
s
g
ene
rate
power at va
ri
able a
c
volta
ge. Thu
s
, the
power
g
ene
rated from th
e
s
e
rene
wa
ble
sou
r
ces nee
ds
power
conditi
oning
(i.e., dc/dc o
r
a
c
/dc) before
con
nectin
g
on d
c
-lin
k [5-7]. The dc-cap
acit
or
decoupl
es th
e RES from
grid a
nd al
so
allows ind
e
p
ende
nt co
ntrol of inverte
r
s on eithe
r
si
d
e
of
dc-li
n
k.
Figure 1. Sch
e
matic of Pro
posed Rene
wabl
e Based Distribute
d
Ge
neratio
n System
2.2. Propose
d
Control Ari
t
hmetic
2.2.1. DC-Lin
k Voltage an
d Po
w
e
r Con
t
rol Oper
atio
n
Due
to the
in
termittent nat
ure
of
RES, the
g
ene
rated
po
we
r i
s
of
variable
natu
r
e. T
h
e
dc-li
n
k pl
ays
an impo
rtant role in tra
n
sfe
rrin
g
this vari
able po
we
r from ren
e
wabl
e energy sou
r
ce
to
the
grid. RES
are rep
r
esented as curre
n
t
so
u
r
ces conn
ecte
d to the dc-l
ink of a gri
d
-
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3586 – 35
94
3588
interfaci
ng in
verter. Fig
u
re
2 sh
ows th
e
system
at
ic
repre
s
e
n
tation
of power t
r
a
n
sfer from th
e
rene
wa
ble e
nergy resou
r
ce
s to the g
r
id via t
he d
c
-lin
k. The
current inje
cte
d
by rene
wa
ble
energy re
sou
r
ce
s into d
c
-li
n
k at voltage
level can b
e
given as:
dc
RES
dc
V
P
I
1
(1)
Whe
r
e
RES
P
is the power ge
ne
ra
ted from RES
.
Figure 1. DC-Link Equival
e
nt Diagram
The cu
rrent flow on the oth
e
r sid
e
of dc-l
ink can be re
pre
s
ente
d
as:
dc
Loss
G
dc
inv
dc
V
P
P
V
P
I
2
(2)
Whe
r
e
inv
P
,
G
P
and
Loss
P
are total p
o
we
r availabl
e at grid
-inte
r
facin
g
invert
er si
de, activ
e
power su
ppli
ed to th
e
grid
and i
n
verte
r
l
o
sse
s
, resp
e
c
tively. If inverter l
o
sse
s
are ne
gligibl
e
, then
G
RES
P
P
.
In additional,
based o
n
the energy co
nse
r
vati
on la
w, as for as the whole system in
Figure 1 is co
nce
r
ne
d, (3)
must hold:
0
L
Loss
s
RES
P
P
P
P
(3)
Whe
r
e
s
P
and
L
P
are
total p
o
we
r avail
a
b
l
e at PCC
b
y
grid
gen
erated, an
d to
tal po
wer
con
s
um
ed by
load, respe
c
tively.
2.2.2. Proposed Co
ntrol
Arithme
t
ic
a) The g
r
id
-conne
cted inv
e
rter p
e
rfo
r
m
s
the functio
n
as a sh
unt APF
The p
r
opo
se
d cont
rolle
r i
s
ba
sed
on t
he re
quireme
nt that the so
urce current
s need to
be bala
n
ced,
undisto
r
ted,
and in pha
se with the
source voltag
es. The fun
c
tions of the grid
-
con
n
e
c
ted in
verter
are:
1) to unitize
su
pply po
we
r f
a
ctor;
2) to
minimize ave
r
age
real p
o
w
er
con
s
um
ed o
r
sup
p
lied by the grid
-con
n
e
cted inve
rter; 3) to comp
e
n
sate h
a
rm
o
n
ics and
rea
c
tive
curre
n
ts. To
carry out th
e
function
s, the
de
sire
d thre
e-ph
ase
sou
r
ce
cu
rre
nts
o
f
(4)
mu
st be
in
pha
se with th
e sou
r
ce voltage
s of (5):
)
120
sin(
)
120
sin(
)
sin(
t
I
i
t
I
i
t
I
i
m
sc
m
sb
m
sa
(4)
)
120
sin(
)
120
sin(
)
sin(
t
V
v
t
V
v
t
V
v
m
sc
m
sb
m
sa
(5)
Lo
s
s
G
in
v
P
P
P
G
P
RE
S
P
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Refere
nce Com
pen
satio
n
Curre
n
t Co
ntrol Strateg
y
for Grid
-Con
necte
d… (Yu
nqing Zh
ang
)
3589
Whe
r
e V
m
a
nd
are the
voltage mag
n
itude a
nd the ph
as
e an
gle of the
source voltag
es
respe
c
tively. Und
e
r the
co
ndition
s that the loa
d
activ
e
po
wer i
s
su
pplied by the
sou
r
ce an
d the
grid
-conn
ecte
d inverte
r
do
es n
o
t provid
e or
co
nsum
e
any re
al po
wer, it is
req
u
ired to d
e
termi
n
e
the current
m
agnitud
e
Im from the
sequ
e
n
tial
in
stanta
neou
s volta
g
e
an
d
real
po
wer
comp
one
nts
sup
p
lied
to t
he lo
ad. A
c
cordin
g to
the
symmet
r
ical
-co
m
po
nent t
r
an
sform
a
tion
for th
e th
re
e-
pha
se ro
ot mean squa
re (rms)
curre
n
ts
at each
h
a
rm
onic o
r
de
r, the three
-
ph
ase instanta
neo
us
load current
s can b
e
expre
s
sed by:
K
k
i
i
i
i
n
lkn
n
lkn
n
lkn
lk
,
1
0
1
1
(6)
In (6), K = {
a
, b, c}; 0, +, and -
stand f
o
r zero
-, po
si
tive-, and ne
gative-sequ
e
n
ce
com
pon
e
n
ts,
respe
c
tively,
and n re
pre
s
ents the fun
damental (i.e
., n = 1) and the harmo
nic compo
n
e
n
ts.
Since th
e ave
r
age
real p
o
wer
con
s
u
m
ed
by the lo
a
d
ove
r
o
n
e
pe
r
i
od
o
f
time
T
mu
s
t
be
s
u
pp
lied
by the source
and it requi
res that th
e gri
d
-conn
ecte
d i
n
verter
co
nsu
m
es or su
ppli
e
s
n
u
ll
ave
r
a
ge
real po
we
r, (7
)–(11) m
u
st h
o
ld:
f
l
s
p
p
p
(7)
T
K
k
sk
sk
s
dt
i
v
T
p
0
1
(8)
T
K
k
lk
sk
l
dt
i
v
T
p
0
1
(9)
0
f
p
(10)
l
s
p
p
(11)
Substituting
(6) into
(9
) yie
l
ds the
su
m o
f
t
he fundam
ental an
d the
harm
oni
c po
wer term
s at
the
three sequ
ent
ial comp
one
n
t
s, as given in
(12):
0
0
1
1
1
lh
lh
lh
l
l
l
l
p
p
p
p
p
p
p
(12)
Whe
r
e:
2
3
1
1
0
1
0
1
m
m
sk
T
K
k
sk
lk
T
K
k
sk
l
I
V
dt
i
v
T
dt
i
v
T
p
(13)
And,
0
0
0
1
1
lh
lh
lh
l
l
p
p
p
p
p
(14)
Each p
o
wer term in (1
4
)
is dete
r
mi
ned ba
se
d
on the orth
o
gonal the
o
re
m for a pe
ri
odic
sinu
soi
dal fun
c
tion. Then, (9) be
com
e
s:
T
K
k
sk
sk
l
s
dt
i
v
T
p
p
p
l
0
1
1
(15)
By (11), (13
)
, and (15
)
, the desi
r
ed so
urce cu
rr
ent magnitud
e
at each ph
ase is determi
ned
to
be:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3586 – 35
94
3590
m
T
K
k
lk
sk
m
l
m
TV
dt
i
v
V
p
I
3
2
3
2
0
(16)
and the source curre
n
ts of (4)
can b
e
expre
s
sed by:
K
k
v
V
p
V
v
I
i
sk
m
l
m
sk
m
sk
,
)
(
3
2
2
(17)
The req
u
ired curre
n
t
comp
ensation at
e
a
ch
ph
ase by
the
grid
-conn
ected
inve
rter is the
n
obtaine
d by subtra
cting the
desired sou
r
ce curr
ent fro
m
the load cu
rre
nt as given
in (18):
K
k
v
V
p
i
i
i
i
sk
m
l
lk
sk
lk
fk
,
)
(
3
2
2
(18)
The ave
r
age
real p
o
we
r con
s
um
ed
or suppl
i
ed
by the grid
-con
ne
cted in
verter i
s
expre
s
sed a
s
:
dt
i
v
T
p
fk
T
K
k
sk
f
0
1
(19)
Substituting (18) into (19)
yields:
0
2
)
(
3
)
(
3
2
1
)
(
3
2
1
2
2
2
0
2
0
l
l
m
m
l
l
T
K
k
sk
m
l
lk
T
K
k
sk
f
p
p
V
V
p
p
dt
v
T
V
p
dt
i
v
T
p
(20
)
Therefore, th
e grid
-co
nne
cted inverter d
oes
n
o
t con
s
ume or suppl
y average re
al powe
r
whe
n
it performs the fun
c
tion as a
shu
n
t APF.
b) th
e g
r
id
-conne
cted
inv
e
rter pe
rform
s
the
fun
c
tio
n
a
s
a p
o
we
r
conve
r
ter to tra
n
sfe
r
active po
wer
from RES to the grid.
Whe
n
the ge
nerate
d
po
we
r by RES is not equal
to zero, the inverter will start i
n
jectin
g
active po
wer
from RES. And wh
en the
gene
rated
p
o
w
er i
s
mo
re than the loa
d
power de
man
d
,
the additional
powe
r
will feed ba
ck to the grid. The
active powe
r
sup
p
lied by
the inverter is
determi
ned b
y
the dc bu
s voltage. The
differen
c
e of
the actu
al dc-l
ink voltage a
nd refe
ren
c
e
dc-
link voltage i
s
given to a PI controller to main
tain a con
s
tant d
c
-lin
k voltage
under varyi
n
g
gene
ration
a
nd loa
d
con
d
itions. T
h
e
PI cont
rolle
r then
gen
e
r
ates the
re
feren
c
e
cu
rrent
magnitud
e
co
rre
sp
ondi
ng to the output a
c
tive power o
f
RES.
2.2.3. Av
era
g
e Models of Four-Le
g
Voltage
-
Sourc
e
In
v
e
rter
The
avera
g
e
model
of
4-leg inve
rter
can
be
obtai
ned
by the f
o
llowin
g
stat
e spa
c
e
equatio
ns:
sh
sa
Inva
Inva
L
v
v
dt
di
(21)
sh
sb
Invb
Invb
L
v
v
dt
di
(22)
sh
sc
Invc
Invc
L
v
v
dt
di
(23)
sh
sn
Invn
Invn
L
v
v
dt
di
(24)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Refere
nce Com
pen
satio
n
Curre
n
t Co
ntrol Strateg
y
for Grid
-Con
necte
d… (Yu
nqing Zh
ang
)
3591
dc
Invnd
Invcd
Invbd
Invad
dc
C
i
i
i
i
dt
dV
(25)
Whe
r
e
Inva
v
,
Invb
v
,
Invc
v
an
d
Invn
v
are th
e thre
e-ph
ase a
c
switchi
ng volta
ges
gene
rate
d on th
e
output te
rmi
nal of i
n
vert
er. Th
ese in
verter
output
voltage
s
ca
n be
mo
del
ed in
term
s of
instanta
neo
u
s
dc b
u
s volta
ge and
swit
ch
ing pul
se
s of the inverter a
s
:
dc
Inva
V
P
P
v
2
4
1
(26)
dc
Invb
V
P
P
v
2
6
3
(27)
dc
Invc
V
P
P
v
2
2
5
(28)
dc
Invn
V
P
P
v
2
8
7
(29)
Similarly the cha
r
gin
g
cu
rrents
Invad
i
,
Invbd
i
,
Invcd
i
, and
Invnd
i
on dc bu
s du
e to the each
leg of inverter can be exp
r
e
s
sed a
s
:
)
(
4
1
P
P
i
i
Inva
Invad
(30)
)
(
6
3
P
P
i
i
Invb
Invbd
(31)
)
(
2
5
P
P
i
i
Invc
Invcd
(32)
)
(
8
7
P
P
i
i
Invn
Invnd
(33)
The
swit
chin
g pattern of
each IGBT i
n
sid
e
inve
rte
r
can
be fo
rmulated
on t
he b
a
si
s
of
error
betwe
en a
c
tu
al and refe
re
nce
curre
n
t of inverter, whi
c
h can be ex
plaine
d as:
If
b
Inva
Inva
h
i
i
*
, then S
1
u
pper
swit
ch
will be OFF (P
1
= 0) and lowe
r switch
S
4
will
be ON
(P4 =
1) in the pha
se “a” le
g of inverter.
If
b
Inva
Inva
h
i
i
*
, then S
1
u
pper switch
will b
e
O
N
(P
1
=
1)
and
lo
wer
switch S
4
will
be OFF (P4
= 0) in the pha
se “a
” leg of i
n
verter.
Whe
r
e h
b
is the width of hystere
s
is b
a
n
d
. On
the sa
me prin
ciple,
the switchi
n
g pulse
s
for the other
remainin
g thre
e legs
can b
e
derived.
4. Results a
nd Discu
ssi
on
4.1. Block Di
agram of the
Proposed Controller
Figure 3 de
picts the
blo
ck di
ag
ram
of the
control circuit ba
sed o
n
the
prop
osed
approa
ch to fulfill the fun
c
tion of the referen
c
e
co
mpen
sation
current cal
c
ul
ator. The so
urce
voltages a
r
e
input to a ph
ase
-
lo
cked
-lo
op
(PLL
), wh
ere the p
e
a
k
voltage mag
n
itude V
m
, the
unity voltage
s
(i.e.,
m
sk
V
v
)
and
the p
e
rio
d
T
are
ge
ne
rate
d.
The
avera
ge real
po
we
r of th
e
load
con
s
u
m
ed is calculat
ed by u
s
in
g the Equ
a
tion
(15
)
an
d i
s
in
put to a divid
e
r to o
b
tain t
he
desi
r
ed
so
urce cu
rrent am
plitude I
m
in (16). DI
denot
es the
cal
c
ul
at
ion of defini
t
e integral
(DI).
The
d
e
si
red
source cu
rrent
s
in (1
7) and referen
c
e
co
mpen
sation
currents of the
grid
-conn
ect
e
d
inverter in
(18
)
are
co
mput
ed by usi
ng the vo
ltage m
agnitud
e
and
the unity voltage
s (b
ecau
se of
the po
we
r lo
ss a
nd the
po
wer ge
nerate
d
by RES,
th
e a
c
tual
sou
r
ce
cu
rrent m
agnitud
e
sho
u
ld
be equ
al to I’’
m
+I
m
). These referen
c
e
compen
satio
n
curre
n
ts a
r
e
given to HCC. The hystere
s
is
controlle
r the
n
ge
ne
rate
s t
he
swit
chin
g
pulses (P
1
to P
8
) fo
r the
g
a
te d
r
ives of
the bidi
re
ctio
nal
swit
che
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3586 – 35
94
3592
3
2
t
si
n
1
12
0
t
si
n
1
120
t
si
n
1
a
p
l
p
b
p
c
p
m
I
m
V
T
la
i
lb
i
lc
i
sa
v
sb
v
sc
v
m
I
m
I
*
sa
i
*
sb
i
*
sc
i
sa
i
sb
i
sc
i
*
sn
i
sn
i
Figure 3. The
Propo
sed
Co
ntrol Strategy
4.2. Simulati
on Results
In ord
e
r to
verify the p
r
o
posed
cont
ro
l app
roa
c
h t
o
a
c
hieve
m
u
lti-obje
c
tives for g
r
id
interfaced DG
system
s co
nne
cted
to
a
3-ph
ase 4-wire netwo
rk, an
extensive si
mulation
stud
y is
carrie
d out u
s
ing MA
TLA
B
/SIMULINK. A 4-leg
cu
rrent
controlle
d voltage
so
urce inve
rter is
actively co
ntrolled to a
c
hi
eve bala
n
ce
d sin
u
soidal
grid
cu
rre
nts at unity po
wer facto
r
(UPF)
despite of highly unbala
n
c
ed no
nline
a
r
load at
PCC un
de
r varying re
ne
wable gen
erating
con
d
ition
s
. A RES with v
a
riabl
e outp
u
t
powe
r
i
s
conne
cted
on
the dc-lin
k
of grid
-interfa
cing
inverter. An
unbal
an
ced
3-ph
ase 4
-
wi
re n
online
a
r
load, who
s
e
unbal
an
ce,
harm
oni
cs, a
n
d
rea
c
tive po
wer n
eed to
be
com
pen
sate
d, is
con
n
e
c
ted at P
CC. T
he waveform
s of g
r
id volt
ag
e
(
v
sa
,
v
sb
, and
v
sc
), unbala
n
ce
d load cu
rre
nts(
i
la
,
i
lb
, and
i
lc
), grid
cur
r
e
n
ts (
i
sa
,
i
sb
, and
i
sc
) a
nd
inverter c
u
rrents
(
i
Inva
,
i
Invb
, and
i
Invc
) are
sho
w
n in Fig
u
re 4.
(a) g
r
id v
o
ltag
e
(b) u
nbal
an
ce
d load current
s
(c
) grid
cu
rre
nts
(d) inv
e
rter
c
u
rr
ents
Figure 4. Simulation Results
Initially, the grid-connected in
verte
r
i
s
n
o
t
con
n
e
c
ted t
o
the
network (i.e., the l
oad
po
wer
deman
d is to
tally supplie
d
by the grid
alone
). Th
e
r
e
f
ore, befo
r
e t
i
me 0.56
s, the grid
cu
rren
t
profile in
Figu
re 4
(
c) is i
d
e
n
tical to the l
oad
curr
e
n
t p
r
ofile of Fig
u
re 4(b
)
. At t =
0.56s, the
gri
d
-
con
n
e
c
ted in
verter is con
necte
d to the network. At
this instant the invert
er starts injecting the
curre
n
t in su
ch a way that the profile of
grid
current starts changi
n
g
from unb
al
anced no
n linear
to balan
ced
sinu
soi
dal cu
rre
nt as
sho
w
n in Fi
gure
4(c). As the i
n
verter
also
sup
p
lie
s the l
oad
neutral
cu
rre
nt demand, th
e grid ne
utral
curre
n
t beco
m
es zero aft
e
r 0.56
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Refere
nce Com
pen
satio
n
Curre
n
t Co
ntrol Strateg
y
for Grid
-Con
necte
d… (Yu
nqing Zh
ang
)
3593
At t = 0.5
6
s,
the inverte
r
starts i
n
je
cting
active
po
we
r gen
erate
d
from
RES. Since th
e
gene
rated
po
wer is mo
re t
han th
e lo
ad
power
dem
an
d, the a
dditio
nal p
o
wer i
s
f
ed b
a
ck to
th
e
grid. Mo
reov
er, the g
r
id-i
nterfaci
ng in
verter al
so
supplie
s the l
oad rea
c
tive power d
e
m
a
n
d
locally. Thu
s
, once the in
verter is in o
peratio
n, the grid only su
pplie
s/re
ceive
s
fundam
ent
al
active po
wer.
At t = 0.73s,
the active p
o
we
r from
RES is
increa
sed to evaluat
e the pe
rformance of
system un
de
r variable p
o
w
er g
ene
rati
on from RE
S. This resul
t
s in incre
a
sed magnitu
d
e
o
f
inverter curre
n
t. As the
lo
ad p
o
wer
de
mand i
s
c
o
n
s
ide
r
ed
a
s
consta
nt, this
addition
al po
wer
gene
rated
fro
m
RES flows
towards gri
d
,
whi
c
h
c
an
be
notice
d
fro
m
the in
cre
a
se
d mag
n
itude
of
grid current a
s
indi
cated by
its profile.
Thus fro
m
th
e si
mulation
results, it i
s
evi
dent that t
he g
r
id
-
con
n
e
cted
inverte
r
can
be
effectively used to co
m
pen
sate the
load
rea
c
tive powe
r
, current unbal
ance and current
harm
oni
cs in
additio
n
to
active p
o
wer inje
ction
fro
m
RES. Thi
s
ena
ble
s
the
grid
to
sup
p
ly/
receive sin
u
soidal an
d bal
anced po
we
r at UPF.
4.3. Experimental Results
To demo
n
st
rate the fast d
y
namic respo
n
se of the g
r
i
d
-conn
ecte
d inverter b
a
se
d on the
prop
osed
co
ntrol st
rategy
, an experi
m
ental
setup i
s
devel
ope
d
whe
r
e the
6170
3 Chro
ma
Programma
bl
e AC sou
r
ce
is used a
s
the three ph
ase sup
p
ly. The sen
s
o
r
unit
con
s
ist
s
of LEM
LA 55
-P Hal
l
-effect
cu
rre
nt se
nsors a
nd LE
M
LV
20-P
Hall
-effect voltag
e
sen
s
o
r
s for
the
measurement
of the sou
r
ce
an
d loa
d
cu
rr
ents, and
the so
urce
a
nd
d
c
-lin
k
voltag
es,
respectively.
The digital si
gnal processi
ng
board
dSPACE DS1103 im
plements the proposed
control algo
ri
thm in MATLAB/SIMULINK environm
e
n
t with the sampling freq
uen
cy of 50kHz.
The ADCs an
d DA
Cs
of DS1103 p
r
ovid
e the di
sc
reti
zed
mea
s
u
r
e
m
ent si
gnal
s
for the dSPA
CE-
MATLAB/SIMULINK
platfo
rm a
nd th
e
analo
g
refe
rence curre
n
ts
for
the hystere
s
i
s
cu
rrent
controlle
r, re
spe
c
tively. Base
d on th
e
differen
c
e
b
e
twee
n the
referen
c
e
and
actual
so
urce
curre
n
ts, the
analog hy
stere
s
is
cu
rre
n
t
controlle
r d
e
cid
e
s the
switchi
ng stat
e for the gri
d
-
con
n
e
c
ted in
verter.
Two differen
t
loads are
con
s
ide
r
ed
for
this experim
ental st
udy, Load-1: 6-pul
se
uncontroll
ed rectifier with a
n
R-L loa
d
of (60+j
ω
0.1)H, and Load-II:
combi
nation
of 3-phase R-L
load of (60
+
j
ω
0.1)H in p
a
rallel
with a 6-pul
se u
n
co
ntrolle
d rectifier with
an R-L load
of
(60
+
j
ω
0.1)H. The
pe
rforma
nce of
t
he de
veloped g
r
id
- con
necte
d in
verter
system
for these two
different lo
ad
co
ndition
s i
s
eval
uated
for th
e
stead
y state a
nd t
he dyn
a
mic
con
d
ition
s
. T
h
e
measurement
s are orde
rly sho
w
n in
th
e
four o
scill
oscop
e
su
b-sc
reen
s as
(a
) source voltag
e
s
,
(b)
sou
r
ce cu
rre
nts, (c) loa
d
curre
n
ts,
(d
) injecte
d
cu
rrents an
d dc-li
n
k voltage.
Figure 5. The
Performa
nce
of Grid-con
n
e
cted
Inverter with
Load
-I
Figure 6. The
Performa
nce
of Grid-con
n
e
cted
Inverter with
Load
-II
The experi
m
ental re
sults for the grid- conne
cted i
n
verter
with the prop
osed
control
scheme
with
Load
-I an
d L
oad-II a
r
e
re
spe
c
tively sh
own i
n
Fig
u
res
5-6. T
he
sou
r
ce voltag
e i
s
sinu
soi
dal wit
h
the pea
k a
m
plitude of 7
0
V and fr
eq
u
ency of 50
Hz. With Load-I,
the load cu
rrent
is hig
h
ly di
storted
with a
total ha
rmoni
c dist
o
r
tion
(T
HD) of
25.7
%
and the
p
eak
amplitu
d
e
of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3586 – 35
94
3594
2.2A. Where
a
s, with Lo
ad
-II the load current TH
D is 18% with the pea
k amplit
ude of 3.25A
as
the linea
r loa
d
is in pa
rall
e
l
with the dio
de re
ct
ifier.
With gri
d
-
co
nne
cted inve
rter, the so
urce is
relieved
of the harm
oni
cs
and rea
c
tive curre
n
ts,
and
is req
u
ired to sup
p
ly only
the fundame
n
tal
active cu
rrent
s. Hen
c
e, the
source
curre
n
ts ar
e
sinu
soidal with the
THD of 2.9
%
and 2.6% for
Load-I
and Load-II, respectively.
T
he source
current
THD will be wi
thin the
permissi
ble limit
of
5%. This pre
v
ents the introdu
ction of harmo
nics in
the grid an
d there
b
y impro
v
es the qualit
y of
the power bei
ng delivered.
5. Conclusio
n
This
pap
er
h
a
s p
r
e
s
e
n
ted
a novel
co
n
t
rol for
an e
x
isting g
r
id-conne
cted i
n
verter to
improve the
quality of power
at
PCC for a 3-pha
se
4-wi
re DG system. It has been sho
w
n
that
the grid-connected i
n
verter can
be effectively utilized f
o
r
power conditioning wi
thout affecting i
t
s
norm
a
l ope
ration of real
powe
r
tran
sfer. The g
r
i
d
-conn
ecte
d
inverter wit
h
the prop
o
s
ed
approa
ch can
be utilized to
:
a)
inject re
al po
wer g
ene
rate
d from RES to the grid, an
d/or,
b)
operate as a
shu
n
t Active Powe
r Filter (APF).
This ap
pro
a
ch thu
s
eli
m
in
ates th
e n
e
e
d
for ad
dition
al po
we
r
co
n
d
itioning
eq
ui
pment to
improve the
quality of powe
r
at PCC. Ex
tensive MATLA
B
/SIMULINK simulation
and
experim
ental
re
sults
hav
e validated t
he p
r
opo
s
e
d
app
roa
c
h a
nd have
sh
o
w
n that the
grid-
connected inverter can be
utilized
as a
multi-function device.
It is furth
e
r
demon
strated
that the
cu
rre
nt un
bala
n
ce,
cu
rrent
harmoni
cs
and l
oad
rea
c
tive power, due to un
balan
ce
d and
non-lin
ea
r lo
ad co
nne
cted
to the PCC, are
comp
en
sated
effectively su
ch that th
e g
r
id sid
e
curren
ts are al
ways maintain
ed a
s
bal
an
ced
a
nd si
nu
soid
al
at
unity po
wer f
a
ctor.
Mo
reov
er, the
loa
d
n
eutral
current
is prevented
from flo
w
ing
i
n
to the
gri
d
si
de
by comp
en
sa
ting it locally from the fourt
h
leg
of inverter. Whe
n
the
powe
r
ge
nerated from
RES
is more than t
he total load
power de
man
d
, the grid
-interfaci
ng inve
rter with the p
r
opo
sed
cont
rol
approa
ch not
only fulfills
the total load active and
reactive po
wer d
e
man
d
(with harm
o
nic
comp
en
satio
n
) but also d
e
livers the e
x
cess ge
ner
a
t
ed sinu
soid
a
l
active powe
r
to the grid at
unity powe
r
factor.
Ackn
o
w
l
e
dg
ements
This
wo
rk was fin
a
n
c
ially su
ppo
rted
by
the Natural Scie
nce
Found
ation
of He
be
i
Province (E2
0132
0517
3),
Educatio
nal
Commi
ssion
of Heb
e
i Province
(20
0
9
141), a
nd P
h
D
Found
ation of
Hebei
Norm
al University (L200
8B04
) .
Referen
ces
[1]
Guerrero JM, De Vicu
na LG, Ma
tas J, Castilla M, Miret J. A
w
i
re
less co
ntroll
er to enh
ance d
y
n
a
mi
c
performa
nce
o
f
paral
lel
inv
e
r
t
ers in
distrib
u
t
ed g
ener
atio
n
s
y
stems.
IEEE Trans. Power Electron.
200
4; 19(5): 12
05-1
213.
[2]
Enslin JHR, Heskes PJM. Harm
onic int
e
racti
on bet
w
e
e
n
a large n
u
m
ber of
distribute
d
po
w
e
r inverter
s
and the
distrib
u
tion n
e
t
w
ork.
IEEE Trans. Power Electron.
2004; 19(
6): 158
6-15
93.
[3]
Borup U, Bl
a
abj
erg F
,
Enj
e
ti PN. Shari
ng of no
nl
ine
a
r loa
d
in
pa
ralle
l-co
nnecte
d three-
phas
e
converters.
IEEE Trans. Ind.
Appl.
20
01; 37(
6): 1817-
18
23.
[4]
Jintakos
on
w
i
t
P, F
u
jita H, Akagi H, Og
asa
w
a
r
a S. Impl
e
m
entatio
n a
n
d
per
forma
nce of
coop
erativ
e
control
of shu
n
t active fi
lters
for harmo
nic
dam
p
i
ng
throu
gho
ut a p
o
w
e
r
distrib
u
tion
s
ystem.
IEEE
T
r
ans. Ind. Appl.
200
3; 39(2):
556-5
64.
[5]
Blaa
bjer
g F
,
T
eod
orescu R,
Liserre M, T
i
mbus
A V. Overvie
w
of contro
l
and gri
d
s
y
nc
hron
izatio
n for
distrib
u
ted p
o
w
e
r gen
erati
on s
y
stems.
IEEE Trans. Ind. Electron
. 2006; 5
3
(
5): 1398-
14
09
.
[6]
Carrasco
JM, F
r
anqu
elo
LG, Bial
asie
w
i
cz J
T
, Galv
án E, Guisa
do R
C
P, P
r
ats MÁM, Leó
n JI, Alfon
s
o
N M. Po
w
e
re
le
ctronic s
y
stem
s for the grid
i
n
tegr
ati
on of r
ene
w
a
b
l
e e
ner
g
y
s
ourc
e
s: A surve
y
.
IEEE
T
r
ans. Ind. Electron.
2006; 5
3
(
4): 1002-
10
16
.
[7]
Renders B, De Gusseme K,
R
y
ck
aert W
R
, Stockman K, Vand
ev
el
de
L, Boll
en MHJ
.
Distribute
d
gen
eratio
n for
mitigati
ng vo
lta
ge d
i
ps
i
n
lo
w
-
voltag
e distri
bu
tion gri
d
s.
IEEE Trans. Power. Del.
20
08;
23(3): 15
81-
15
88.
Evaluation Warning : The document was created with Spire.PDF for Python.