TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 2, Februa
ry 20
15, pp. 203 ~ 208
DOI: 10.115
9
1
/telkomni
ka.
v
13i2.697
6
203
Re
cei
v
ed
No
vem
ber 5, 20
14; Re
vised
De
cem
ber 2
6
,
2014; Accep
t
ed Jan
uary 1
4
, 2015
A Compact Multiple Band-Notc
hed Planer Antenna with
Enhanced Bandwidth Using Parasitic Strip Lumped
Capacitors and DGS-Technique
Ahmed Boutejdar*
1
, Ahm
e
d A. Ibrahim
2
, Edmund
Burte
3
1
Micro
w
ave E
n
gin
eeri
ng D
epa
rtment, Univers
i
t
y
of Mag
deb
u
r
g, 3910
6 Mag
deb
urg, Germa
n
y
,
2
Electronic an
d commun
i
cati
on Eng
i
n
eeri
n
g
Dep, El-Min
i
a
Univers
i
t
y
, Min
i
a Eg
ypt,
3
Institute of Micro and Se
nsor
S
y
stems, Univ
ersit
y
of Ma
gd
ebur
g, 391
06
Magd
ebur
g, German
y
,
Corresp
on
din
g
author, e-mai
l
: ahmed.b
oute
j
dar@ov
gu.d
e
*1
, ahmeda
bd
el_
m
onem@m
u.e
du.eg
2
,
edmu
nd.b
u
rte
@
ovg
u
.de
3
A
b
st
r
a
ct
UW
B antenn
a
w
i
th dual n
o
tch
ed char
acteristi
cs fed
by micr
o
s
trip transmissi
on li
ne is pres
e
n
ted in
this p
a
p
e
r. T
h
e
taper
ed
con
n
e
c
tion
betw
een
the recta
n
g
u
lar
patch
a
n
d
the
feed
li
ne
is
us
ed to
pr
oduc
e
a
goo
d i
m
p
eda
n
c
e matchin
g
from
2.3 to 11.5
GH
z
.
A d
u
a
l
ban
d frequ
enc
y notches ar
e achi
eved
usin
g
U
-
DGS loa
ded w
i
t
h lu
mp
ed ca
p
a
citors. T
he fir
s
t notch frequ
e
n
cy ba
nd is
ac
hiev
ed us
in
g D
G
S to reduce t
h
e
interfere
n
ce w
i
th W
I
MAX from 3.3 to 3.7 Gh
z
.
T
he second n
o
tch freque
ncy
band is a
l
so a
c
hiev
ed usi
ng
U-
paras
itic strip plac
ed in th
e grou
nd p
l
an to
eli
m
i
nate
the
interfere
n
ce w
i
th W
L
AN from 5.2 to 5.9 GH
z
.
Lu
mp
ed c
a
p
a
ci
tors are c
o
mb
i
ned
w
i
th the
sl
ot du
e to
mini
a
t
uri
z
e
th
e sl
ot s
i
z
e
.
T
h
e
si
z
e
of
the r
e
son
a
tor
i
s
reduc
ed
by more
than 40% w
hen
lu
mp
ed capac
itor
s are
used. T
he pr
opos
ed a
n
ten
n
a
hasVSW
R <
2
except the n
o
tched b
a
n
d
s. T
he simul
a
ted res
u
lts conf
ir
m tha
t
the antenn
a i
s
suitabl
e for UW
B applic
ation
s
.
Ke
y
w
ords
: ultr
a w
i
de ba
nd an
tenna, p
a
rasitic
stri
p lumpe
d
capac
itors, DGS-T
e
chni
que
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The
comm
ercial
ope
ratio
n
of UWB
within the
ra
nge
3.1-1
0
.6
GHz i
s
rele
ase
d
by
Fede
ral Com
m
unication
Commissio
n (F
CC) [1]. Si
nce then, the d
e
sig
n
and i
m
plementatio
n
o
f
UWB
system
s have
bee
n
attracte
d m
u
ch
att
e
n
t
io
n fo
r
co
mmunic
a
tio
n
s
y
s
t
ems
.
T
h
e UWB
system
s h
a
ve several
ad
vantage
s
su
ch a
s
hig
h
d
a
ta rate
s, lo
w
power
co
nsu
m
ption, lo
w
cost
and simpl
e
hard
w
a
r
e co
nfiguratio
n
i
n
practi
cal appli
c
ation
s
[2].
Printed monop
ole UWB
antenn
as h
a
s
attra
c
ted n
o
wa
days b
e
cause pri
n
ted
antenn
as h
a
v
e advantag
es such a
s
e
a
sy
fabrication,
small si
ze, lo
w co
st and
the
y
can b
e
ma
d
e
co
mpatible
to the RF
co
mpone
nts
an
d be
impleme
n
ted
on the sam
e
PCB circui
try [3-7].H
owever, There exist some n
a
rrow b
and
s for
ot
her co
mmu
nicat
i
o
n
sy
st
e
m
s su
ch as
WiMA
X
(
3
.
3
t
o
3.7
GHz) a
nd
WLAN (5.
15 to 5.8
25
G
H
z)
over the
de
si
gnated
UWB
frequ
en
cy b
and that
c
a
u
s
e
s
ele
c
trom
agneti
c
inte
rferen
ce
with t
h
e
UWB
syste
m
s. In orde
r to
red
u
ce the i
n
terfer
en
ce,
the
ante
nna h
a
s
to exhibit freque
ncy ba
nd
notch
in th
ose fre
quen
cy
band
s.
Re
se
arche
r
s have
pro
p
o
s
ed
se
veral te
chni
q
ues to d
e
si
gn
the
band
notched
antenn
a. Th
e co
nvention
a
l metho
d
to
achi
eve a n
o
tche
d ba
nd
ca
n be
reali
z
e
d
by
etchin
g a
suitable
stru
ctu
r
e
in a
UWB a
n
tenna
[8-1
3]. Another wa
y is to
put p
a
r
asiti
c
el
eme
n
ts
near th
e prin
ted mono
pol
e, playing a role as filt
ers
to reje
ct the limited band [
14, 15]. In this
pape
r, UWB
antenn
a with dual not
ched
cha
r
a
c
teri
st
ics is presente
d
. First, a referen
c
e a
n
ten
n
a
is de
signe
d, which exhib
i
ts radiatin
g cha
r
a
c
teri
stics in the fre
quen
cy band
2.3-11.5 G
H
z.
Secon
d
, pa
ra
sitic
strip in
a
ddition to d
e
fected
gr
o
und
stru
cture loa
ded
with lum
ped
cap
a
cito
r is
use
d
to
achie
v
e the b
and
-notch
ed
ch
aracteri
stics. T
he first n
o
tch
is a
c
hi
eved
a
t
frequ
en
cy b
and
(3.3-3.7 GHz). The se
co
n
d
notch i
s
a
c
hieve
d
at freque
ncy ba
n
d
(5.2-5.9 G
H
z). The det
ail
desi
gn of the antenn
a is int
r
odu
ce
d.
2. UWB An
te
nna De
sign and Con
f
igu
r
ations
The 2-D layout of the propos
ed antenna is illustrat
ed in Fi
gure
1. The antenna is fed
with a
50
-mi
c
ro
stri
p fee
d
line. Th
e rectan
gula
r
m
onop
ole a
n
te
nna i
s
p
r
inte
d on
su
bst
r
a
t
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 203 – 208
204
RO4
003
with
relative pe
rmittivity = 3.38, a diel
e
c
tri
c
loss tang
ent
= 0.00
27 a
n
d
thickne
s
s (h) =
0.813 mm. T
o
improve th
e band
width
of the ant
en
na, the tapered co
nne
ctio
n betwe
en the
recta
ngul
ar
p
a
tch a
nd the
feed line i
s
use
d
a
s
sho
w
n in
Figu
re
1(a
)
. The
di
mensi
o
n
s
of
the
patch an
d the
antenna a
r
e optimize
d
to achi
eve maxi
mum band
wi
dth. Also from Figure 1
(
b
)
it is
obviou
s
that, the du
al ba
nd fre
que
ncy
notch
es ar
e
achi
eved
by usin
g first, p
a
ra
sitic
U-sh
ape
strip
which
i
s
pla
c
ed
ab
ove the
re
so
nat
or
at a
dista
n
c
e
d1. Se
co
n
d
, two
DGS slots lo
ade
d
with
lumped
ca
pa
citors which they act a
s
a
half wave
re
sonator
co
uple
d
to mono
pol
e antenn
a. T
h
e
simulate
d
ret
u
rn l
o
ss
of th
e ante
nna
wit
hout u
s
in
g p
a
r
asiti
c
strip
a
nd the
DGS slots i
s
illu
strat
e
d
in Figure 2. From Fig
u
re 2 it is clea
r
that, the UWB monopol
e antenn
a ha
s a good m
a
tche
d
band
width fro
m
2.3 GHz to 11.5 GHz wh
ic
h is
suitabl
e
for UWB ap
p
lication
s
.
Figure 1. Geo
m
etry of prop
ose
d
UW
B antenna (a) To
p view (b
)ba
c
k view
Figure 2. Simulated retu
rn l
o
ss of UWB a
n
t
enna
witho
u
t using p
a
ra
sitic st
rip and
DGS sl
ots
3. Parametri
c
Resul
t
s
The U-shap
e
d
parasiti
c
strip is de
sig
n
e
d
to
provide
notch
ed ba
nd
at 5.4 GHz for WLAN
system. Th
e U-sha
ped
stri
p behave
s
a
s
a filter to eliminate t
he de
sire
d ba
nd. T
he notched
b
and
freque
ncy
is
adju
s
table
by
varying
the
length
and
lo
cation of
the
p
a
ra
sitic stri
p
above th
e
gro
und
plane d
1
. In orde
r to kno
w
the effect
of t
he U-sha
p
ed st
rip on
the antenn
a
perfo
rman
ce,
a
para
m
etri
c st
udy of the UWB anten
na
with U-shape
d
parasiti
c
strip only is con
d
ucte
d. Basi
cally,
the len
g
th of
the resonato
r
act
s
as the i
ndu
ctan
ce. T
h
erefo
r
e,
wh
en the
len
g
th
of the
reso
n
a
tor
increa
se
s the
re
sona
nce freque
ncy of th
e notch de
cr
e
a
se
s. First, the length
of U-sha
ped
strip i
s
optimize
d
to
operate at cente
r
ed fre
quen
cy of 5.4 GHz a
s
d
e
mon
s
trate
d
on Figu
re 1
(
b).
Secon
d
, the
effect of the
p
o
siti
on
of the
resonato
r
a
b
o
ve the g
r
ou
n
d
plan
e o
n
th
e anten
na
ret
u
rn
loss is stu
d
ie
d as sho
w
n i
n
Figure 3. From Figu
re
3
it is obvious that, when the dista
n
ce d
1
is
increa
sed a
b
o
ve the gro
u
nd plan
e the
effect of
the U-sha
ped
strip on the
ret
u
rn lo
ss wa
sn’t
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Com
pact M
u
ltiple Band
-Notched Plan
er An
tenn
a wi
th Enhanced
… (Ahm
ed Boutejda
r)
205
appe
ar. The
r
efore, the opt
imized pl
ace to the
U-shap
ed strip
wa
s 1 mm above
the grou
nd pl
an
to achieve th
e requi
red
no
tched
fre
quen
cy ba
nd. T
he
two DGS slot
s
al
so
play
s role
of a
filter as
U-sha
ped
st
ri
p. The
two
DGS sl
ots
dim
ensi
o
n
s
a
r
e
o
p
timized
to
o
perate
at
ce
n
t
er fre
q
ue
ncy
o
f
5.2 GHz as shown in Figure 1(b
)
. Several param
etri
c analyses a
r
e
carrie
d out on the DGS sl
ots
positio
n. First
,
the effe
ct of
the
dista
n
ce
of t
he t
w
o
DGS sl
ots
belo
w
the
top
of
grou
nd
plan
e
d2
on the ante
n
na retu
rn lo
ss is
con
d
u
c
te
d as illu
stra
te
d in Figu
re 4.
It is clear th
at, when the
two
slots
are
mov
ed a
w
ay from
the top of th
e gro
und
pla
ne the n
o
tch
ed freq
uen
cy
is vani
she
d
. So,
the distan
ce
d2 is o
p
timized to be at th
e distan
ce
eq
ual to 1 mm
belo
w
the top
of groun
d pl
ane.
Secon
d
, the
effect of the d
i
stan
ce b
e
twe
en the tw
o sl
ots d3
on the
antenn
a retu
rn loss i
s
carri
e
d
out as shown in Figure
5 .It is noticed that, w
hen the
distance
between two ante
nna i
s
increased
from 3m
m th
e not
ch l
e
vel
is d
e
crea
se
a
nd the
ba
nd
width of the
not
ch i
s
also d
e
crea
sed
.So th
e
distan
ce d
3
is optimized to
be 3 mm to achieve the b
e
s
t perfo
rman
ce.
Figure 3. Simulated retu
rn l
o
ss of UWB
antenn
a at different dista
n
ces ab
ove gro
und
plane (d1
)
Figure 4. Simulated retu
rn l
o
ss of UWB
antenn
a
at different dista
n
ces (d
2)
Figure 5. Simulated retu
rn l
o
ss of UWB
antenn
a at different dista
n
ces bet
wee
n
sl
ots
(d3
)
Figure 6. Simulated retu
rn l
o
ss of UWB
antenn
a at different value o
f
lumped
cap
a
cit
o
rs (C
)
Finally, the e
ffect of the
capa
citan
c
e
of t
he
lumped c
a
pac
i
tor C
on
the antenna
return
loss is studied as illust
rat
ed in Figure 6. The
lumped capacitors
are inserted in the two DGS
slots at the p
l
ace
whi
c
h h
a
s maximu
m
electri
c
field.
The maximu
m electri
c
fiel
d in the slot
s is
con
c
e
n
trated
arou
nd the
arm o
ppo
site
to the ope
n
end a
s
sho
w
n in Fi
gu
re
1(b
)
. So, when
lumped
ca
pa
citor i
s
in
se
rted in thi
s
pla
c
e the total
capa
citan
c
e of
the re
so
nato
r
in
cre
a
ses
which
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 203 – 208
206
lead
s to decreases in the
resona
nce freque
ncy of the notch. Fro
m
Figure 6 it
is clea
r that, th
e
resona
nce fre
quen
cy of the notch
is d
e
creased from 5.
2 GHz witho
u
t
capa
citor to 2.8 GHz wh
e
n
the lump
ed
capa
citor
with
C
equ
al to
0.5 pF
is
use
d
.
T
h
is
me
an
s
,
th
e lu
mpe
d
c
a
pa
c
i
tor
c
a
n
use
d
to mini
a
t
urize
the le
n
g
th of the t
w
o
slot
s by
mo
re than
40%.
So, the value
of C i
s
optimi
z
ed
to be equal to
0.3 pF.
4. UWB An
te
nna
w
i
th
Du
al Band Notc
hed Filter
The p
e
rfo
r
mance of t
he de
sig
n
e
d
anten
na
has be
en
validated
usin
g the
electroma
gne
tic
full
wave
simulatio
n
s. The co
mm
ercial
softwa
r
e
CST mi
crowave studi
o
was
employed i
n
the full wave
simulatio
n
s.
The di
stan
ces d
1
, d2, d
3
and the
ca
pacita
nce of the
lumped
capacitors are opti
m
ized dep
end on the previous di
scussi
on in Section III to achieve the
requi
re
d two
notch
es
at the de
sire
d fre
quen
cy ba
nd.
The
simulate
d retu
rn lo
ss
of the propo
sed
antenn
a i
s
ill
ustrate
d
i
n
F
i
gure
7. It i
s
obviou
s
th
a
t, there
are
two n
o
tch
e
s
at the d
e
si
re
d
freque
ncy
ba
nd. The
first
notch
i
s
cau
s
ed
by
the t
w
o DGS sl
ots l
o
ade
d
with lu
mped
ca
pa
citors
whi
c
h i
s
u
s
e
d
for
reje
ctin
g freq
uen
cy
band
of WIM
AX from (3.3
GHz -3.7 G
H
z). A
s
well a
s
the
para
s
itic
strip
that is used
for
rej
e
cting f
r
equ
en
cy ban
d of WLA
N
from (5.2
GHz
-5.9 G
H
z). T
h
e
VSWR
of the
antenn
a i
s
d
e
mon
s
trate
d
i
n
Figu
re
8. It is noti
c
ed
tha
t, the pro
p
osed ante
nna
h
a
s
VSWR
< 2.
Ho
wever,
the
anten
na
sh
o
w
s an
imp
e
d
ance mi
smat
ch i
n
the
fre
q
uen
cy ba
nd
s
3.3
GHz-3.
7 GHz and from 5.2
GHz-5.9 G
H
z as the VSWR > 2 in the
s
e band
s.
Figure 7. Simulated retu
rn l
o
ss of the
prop
osed UWB antenn
a
Figure 8. Simulated VSWR of the propo
sed
UWB a
n
tenn
a
Figure 9. Simulated surfa
c
e curre
n
t distribution
s
of propo
sed UWB (a) at f=3.4
G
Hz (b
) at
f=5.4G
Hz
In ord
e
r to
u
nderstan
d th
e beh
avior
of the
ba
nd-not
che
d
cha
r
a
c
teristi
cs, th
e
simulated
curre
n
t dist
rib
u
tions
at 3.4
and 5.4
GHz
for the
p
r
op
o
s
ed
anten
na
are inve
stigat
ed a
s
sho
w
n
in
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Com
pact M
u
ltiple Band
-Notched Plan
er An
tenn
a wi
th Enhanced
… (Ahm
ed Boutejda
r)
207
Figure 9. It i
s
noticed th
at
from Fi
gure 9
(
a) t
he
su
rface current i
s
concentrate
d
arou
nd th
e t
w
o
slots with
lu
mped cap
a
cit
o
rs at
3.4
G
H
z whi
c
h
i
s
t
he center
of WIMAX frequ
ency b
and. A
l
so
from Figure 9
(
b) it is obvio
us
that the surface cu
rren
t is conc
entra
t
ed arou
nd the para
sitic st
rip
at 5.4
GHz
which
is the
ce
nter
of the
WLAN fr
equ
en
cy ba
nd. F
r
o
m
two
figu
re
s it is con
c
lud
e
d
that the ante
nna di
dn’t ra
diate at the
s
e freq
uen
cy
band
s. Th
e E
-
plan
e (x
-z
pl
ane) an
d H-p
l
ane
(y-z pla
n
e
)
ra
diation patterns are pre
s
e
n
ted at
three freque
nci
e
s;
3 GHz, 7 GHz, and 9 GHz as
sho
w
n in Fi
g
u
re 1
0
. The p
a
tterns
obtain
ed The E-pattern
seem
s to
be bi-dire
c
tio
nal whil
e the
H-
pattern seem
s to be omni
-dire
c
tional. T
he reali
z
e
d
g
a
in of the pro
posed with freque
ncy is
sh
own
in Figure 11.
From Fig
u
re 11 it is obvio
us tha
t, The
averag
e pea
k
gain of the p
r
opo
se
d ante
nna
is a
r
oun
d 3.3
dB over th
e
all ope
rating f
r
equ
en
cy ban
d exce
pt the
two fre
quen
cy band n
o
tch
e
s
whi
c
h ha
s re
ductio
n
on its gain.
Figure 10. Simulated di
re
ctive gai
n of the prop
osed a
n
tenna at different fre
que
n
c
ie
s (a
) E-pla
n
at 3GHz (b
) H-pl
an at 3G
Hz
(c)E-pl
an
at7GHz
(d) H-plan at 7G
Hz(e
) E-pl
an at
9GHz (f) H-p
l
an
at 9GHz
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 203 – 208
208
Figure 11. Simulated gai
n of the propo
sed UWB a
n
tenna
with not
c
he
d ban
ds.
5. Conclusio
n
Ultra
wid
e
ba
nd ante
nna
with du
al b
a
n
d
not
ch
cha
r
acteri
stics
ha
s b
een i
n
trod
uce
d
. A
dual b
and freque
ncy n
o
tche
s h
a
ve b
een a
c
hi
eve
d
by usi
n
g
U-sha
ped
pa
rasiti
c st
rip
and
defecte
d gro
und structu
r
e
loaded with
lumped
cap
a
c
itors. The first notch fre
q
u
en
cy band
has
been a
c
hi
eve
d
usin
g defe
c
ted g
r
ou
nd
stru
cture loa
ded with lu
m
p
ed capa
citors to redu
ce
the
interferen
ce
with WIMAX from 3.3 G
H
z to3.7 GH
z. T
he se
co
nd no
tch freq
uen
c
y
band ha
s be
en
achi
eved usi
ng U-sh
aped
pa
ra
sitic stri
p
whi
c
h
i
s
placed
ab
ove the
groun
d
plan
to
elimi
n
ate
the interferen
ce with
WLA
N
from 5.2 G
H
z to
5.9 GHz. The propo
s
ed a
n
tenna
operated at the
rang
e from
2
.
3 GHz to11.
5 G
H
z
with
VSWR
< 2
e
x
cept the
n
o
tche
d b
a
nd
s.
The
simul
a
te
d
results
confirm that the propo
sed a
n
te
n
na is suitable
for UWB appl
ication
s
.
Referen
ces
[1]
F
i
rst Rep
o
rt a
nd
order.
Rev
i
sion
of p
a
rt 1
5
of th
e c
o
m
m
ission'
s
Ru
le
Re
gard
i
n
g
U
l
tra-W
i
deb
and
T
r
ansmission
S
y
stem F
CC 0
2
-48.
F
eder
al Co
mmun
icati
o
ns
Co
mmissi
o
n
.
2002.
[2]
F
ontana
RJ.
Rece
nt s
y
ste
m
app
licati
ons
of
short-p
u
lse
ultra-
w
i
d
eba
nd (UW
B
) tec
hno
log
y
.
IEEE
Tra
n
s
. MTT.
2004
;
52(
9): 208
7-21
04.
[3]
T
aheri MMS, Hassa
ni
HR,
Nezh
ad SMA.
UW
B print
ed s
l
ot a
n
ten
na
w
i
t
h
Bl
ueto
o
th a
n
d
d
ual
n
o
tc
h
ban
ds.
IEEE Antennas Wireless Propag. Lett.,
2011; 10: 25
5-25
8.
[4]
Z
han K, G
u
o Q
,
Hua
ng K.
A
miniat
ure
pla
n
a
r a
n
ten
na for
Blueto
o
th
and
UW
B ap
plic
ati
ons.
Jo
urn
a
l of
Electro
m
a
gneti
c
W
a
ves and A
pplic
atio
ns.
20
10; 24(1
6
): 229
9-23
08
.
[5]
Azim R, Islam
MT
, Misran
N. G
r
ound
mo
difi
e
d
d
oub
le-
side
d pri
n
ted
compact UW
B
ante
nna.
IET
Electron
ics Let
ters.
2011
;
47(
1): 9-11.
[6]
Z
hang
X,
Xi
a
YY, Che
n
J,
L
i
W
T
. Compac
t mi
crostrip-fe
d
ante
n
n
a
for
u
l
tra-
w
i
d
e
b
and
app
licati
ons.
Progress In El
ectromag
netics
Researc
h
Letters.
2009; 6: 1
1
-16.
[7]
Su M, L
i
u
YA,
Li S
L
, Yu
CP.
A comp
act o
p
en s
l
ot
anten
n
a
for
UW
B a
p
p
licati
ons
w
i
th
ban
d-notc
hed
character
i
stic.
Journ
a
l of Elec
troma
g
n
e
tic W
a
ves an
d App
l
i
c
ations.
20
10; 24(1
4
-15):
2
0
0
1
-20
10.
[8]
Hon
g
CY, Li
ng
CW
,
T
a
rnand
IY, Chung SJ.
Desig
n
of a
p
l
an
ar ultra-
w
i
d
eba
nd a
n
ten
n
a
w
i
t
h
a n
e
w
ban
d-notc
h
structure.
IEEE Transactions on Ant
ennas and Pr
opagation.
2
007; 55(
12): 33
91-3
396.
[9]
T
homas KG
,
Sreen
ivasa
n
M. A simple ultra-
w
i
d
e
b
a
n
d
pl
anar recta
ngu
l
a
r printe
d ante
nna
w
i
t
h
ban
d
disp
ensati
on.
IEEE T
r
ansacti
ons on Ant
enn
as and Pro
p
a
g
a
tion.
20
10; 58
(1): 27-34.
[10]
Abbos
h AM, Bialko
w
s
k
i
ME. Desig
n
of UW
B pl
an
ar ban
d-
notche
d
ante
n
na us
i
ng par
as
itic Elements.
IEEE Trans. A
n
tenna Propag
. 2009; 57(
3): 796-7
99.
[11]
Boutej
dar A, Batmanov A, A
w
i
da MH, Burte
EP. O
m
ar A. D
e
sig
n
of a ne
w band
pass filte
r
w
i
th sh
ar
p
transitio
n b
a
n
d
usi
ng m
u
ltil
a
y
er-tech
n
iq
ue
and
U-d
e
fec
t
ed gr
oun
d st
ructure.
IET
micr
ow
aves
,
anten
nas & pro
pag
atio
n.
201
0
;
4(9): 1415-1
4
20.
[12]
Boutej
dar A, Rama
dan A, Makke
y
M, O
m
ar A.
Design
of comp
act Microstrip low
pas
s filters using
a
U-sha
ped d
e
fe
cted grou
nd structure an
d compe
n
sate
d micr
ostrip li
ne
.
36th Europ
e
a
n
Micro
w
av
e
Confer
ence. 2
006: 26
7-2
70.
[13]
Z
hang P, Li A
.
A Novel Co
mpact Microstrip
Lo
w
p
ass F
i
lter
w
i
t
h
Shar
p T
r
ansition a
nd Improve
d
Stopba
nd.
T
E
L
K
O
M
NIKA Indones
ian J
ourn
a
l of
Electrica
l
Engi
neer
in
g.
2015; 13(
1).
[14]
Kim KH, Park
SO
. Anal
ysis
o
f
the smal
l b
a
n
d
rej
e
cted
ante
nna
w
i
th th
e p
a
rasitic stri
p fo
r UW
B.
IEEE
T
r
ans. Antenn
a Propa
g
. 200
6; 54(6): 16
88-
169
2.
[15]
Rafiq
ue U, Ali SA
.
Ultra-W
i
de
ban
d Patch An
tenna for K-Ba
nd App
licati
ons
.
T
E
LKO
M
NIKA Indones
ia
n
Journ
a
l of Elec
trical Eng
i
ne
eri
ng.
201
4; 12(1
2
).
Evaluation Warning : The document was created with Spire.PDF for Python.