TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 3, June 20
15, pp. 446 ~ 4
5
4
DOI: 10.115
9
1
/telkomni
ka.
v
14i3.785
4
446
Re
cei
v
ed Fe
brua
ry 21, 20
15; Re
vised
April 18, 201
5; Acce
pted
May 8, 201
5
A Novel Topology for Controlling a Four Port DC-DC
Boost Converter for a Hybrid PV/PV/Battery Power
System
Dharani. M*, P Usha
Dep
a
rtment of Electrical
and
Electron
ics En
gin
eeri
ng, Da
yana
nd
a Sagar
Coll
eg
e of Engi
neer
ing,
Bang
alor
e, Indi
a.
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: m.dharan
i80
7
@gma
il.com
A
b
st
r
a
ct
T
h
is pa
per
pro
poses
a fo
ur p
o
rt three
in
put-
d
c-dc
b
oost c
o
nverter for
hyb
r
idisi
ng tw
o p
h
o
tovolta
i
c
systems
and
a
storage
med
i
u
m
. Thre
e un
idi
r
ection
al p
o
rts
are uti
lise
d
to i
n
terface th
e co
nverter w
i
th th
e
tw
o input sourc
e
s and th
e out
put loa
d
. A bidi
rection
a
l por
t i
n
terfaces the c
onverter w
i
th the storag
e system.
T
he tw
o sourc
e
s in
divi
du
ally
or si
multan
eo
usly su
pp
ly th
e lo
ad
an
d ch
arge t
he
batte
ry. T
he pro
p
o
s
e
d
techni
qu
e e
m
p
l
oys
only
four
i
nde
pe
nde
ntly
control
l
ed
sw
itches w
i
th
differ
ent d
u
ty rati
os. T
he r
egu
late
d
dc
output can
be
obtai
ne
d by co
ntrolli
ng thes
e four sw
itches and tracki
ng the maxi
mum
pow
er of the tw
o
photov
olta
ic sy
stems. T
h
re
e d
i
fferent
mo
des of
op
eratio
n
of converter infl
u
ence
d
by
the st
ate of
battery a
r
e
presented. The proposed system
is
validated and verified
by sim
u
lation perfo
r
m
ed in MATLAB under
vario
u
s oper
ati
ng con
d
iti
ons.
Ke
y
w
ords
:
ph
otovolta
ic (PV)
cell,
hybr
id
alt
e
rnativ
e e
ner
g
y
sourc
e
s, dc-
d
c b
oost c
onv
erter, pertur
b
an
d
observ
e
alg
o
rit
h
m
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introdutio
n
As pe
r the p
r
esent sce
n
a
r
io, po
we
r fro
m
t
he fossil fuels
(coal, lig
nite, oil, gases)
are
depletin
g an
d
the tre
nd i
s
t
o
develo
p
g
r
e
en o
r
rene
wa
ble ba
se
d e
n
ergie
s
whi
c
h
doe
s not
ca
u
s
e
any pollution
to the environment. In this pap
er
Ph
otovoltaic (P
V) energy is use
d
whi
c
h finds
much
attra
c
tive owing to
its noisele
ss
and cl
ean
el
ectri
c
po
we
r
gene
ration.
But this maj
o
rly
depe
nd
s on t
he environm
ental a
s
pe
cts su
ch a
s
su
n
’
s irradiatio
n l
e
vel and tem
peratu
r
e,
whi
c
h
can
not be
su
ffice thro
ugh
out the d
a
y for p
o
we
r gen
eration, hen
ce
ene
rgy storage
m
edium
is
employed an
d hybridi
s
ed
to form a p
r
omi
s
ing
e
ner
g
y
s
u
pp
lyin
g s
y
s
t
e
m
s
.
Ba
tte
r
i
e
s
ar
e
th
e
stora
ge m
e
chani
sm which improv
es t
he sy
stem
capa
city by
smoothing t
h
e
output po
wer,
increa
sing th
e start
-
up transitio
ns a
n
d
dynami
c
chara
c
te
risti
c
s to incre
a
se
the pea
k p
o
we
r
c
a
pac
i
ty [1, 2]. When compared
with the s
i
ngl
e
sourced
sy
stem,
hybrid
syste
m
s provid
e
a
hig
h
quality, reliable, and efficient power thi
s
is beca
use
of the bi
directional
capability of the storage
element. Va
ri
ous traditio
n
a
l metho
d
s h
a
ve bee
n u
s
ed to inte
gra
t
e different
p
o
we
r
sou
r
ces to
form a hyb
r
id
system
whi
c
h ca
n be
cla
ssifie
d
into a
c
-cou
pled
sy
stem
s [3, 4]. The maj
o
r
sh
ort
comin
g
s of th
ese
sy
stem
s
are
complex
system
topol
ogy, po
we
r lo
sses,
co
st
expen
sive a
nd
bul
k
in size. No
wa
days tra
d
ition
a
l topology systems a
r
e repla
c
ed
with multi input co
nverters. Wh
en
comp
ari
ng the single p
o
rt
system, integrated mu
lti
-
port syste
m
can inte
rface
several po
wer
sou
r
ces a
nd
stora
ge devi
c
es, multi port
converte
rs h
a
ve an adva
n
tage of lowe
r co
st, comp
act
size, and b
e
tter dynami
c
p
e
rform
a
n
c
e,
centralised
c
ontrol, bidi
re
ctional po
wer f
l
ow capa
city for
the storage element and higher reli
ability. Sy
ste
m
atic approach of
generating MICs is
introdu
ce
d in
[5], where the pul
sating
voltage so
urce and pul
sati
ng cu
rrent source cells a
r
e
prop
osed for
deriving MI
Cs. Che
n
et al
[6] deals wit
h
the hybridi
s
ation of PV and wi
nd po
wer
sou
r
ces in
a unified struct
ure. Anothe
r
basi
c
re
se
arch on MICs de
als with two types of MICs [7]:
first type in which o
n
ly one
powe
r
source is allo
wed t
o
tran
sfer en
ergy to the lo
ad at a time, and
in se
co
nd typ
e
all the
so
urce
s supply e
nergy to
th
e l
oad eith
er i
n
d
i
vidually or
si
multaneo
usly
. In
[8] a three po
rt bidire
ctiona
l converte
r wi
th three
activ
e
full bridge
s,
two resona
nt tanks an
d hi
gh
freque
ncy tra
n
sformers a
r
e pro
p
o
s
ed
whe
r
e hi
g
h
e
r
system gai
n and
switching lo
sses
are
redu
ce
d due
to soft switch
ing behavio
ur. MICs ar
e p
r
opo
se
d ba
sed on the structure of dc-dc
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel T
opo
logy for
Cont
rolling a Fou
r
Port
DC-DC
Boost Co
nverter for… (Dh
a
r
ani. M)
447
conve
r
ters [9]
,
the dc-d
c co
nverters in [1
0] is
u
s
eful fo
r co
mbini
ng v
a
riou
s in
put source
s which
is
of different powe
r
ca
pa
city. When ope
ra
ting DC-DC
converte
rs for
sola
r appli
c
ati
ons un
de
r ha
rd
swit
chin
g increa
se
s the switchi
ng lo
sses an
d
de
creases the
efficien
cy, hen
ce soft switchi
n
g
method i
s
u
s
ed a
s
in [11].
The three in
put dc-d
c co
nverter
whi
c
h
is propo
se
d
in [12] ha
s the
cap
ability of configu
r
ing
variou
s topol
ogie
s
(bu
c
k, boost, buck- boo
st) alo
ng with the
bi-
dire
ctionality of battery. Power
swit
che
s
with lower vol
t
age rating a
n
d
lowe
r turn o
n
resi
stan
ce i
s
use
d
to red
u
c
e the
con
d
u
c
tion lo
sses [
13]. A novel singl
e-stage
MPPT contro
ller is u
s
e
d
for
rapid tracking
of the PV array’s maximu
m powe
r
poin
t. The propo
sed algo
rithm in this pap
er [14]
redu
ce
s
oscil
l
ation, re
sulti
ng in
sig
n
ificantly improve
d
tra
cki
ng.
Suntio
et al
[
15]
f
o
cu
se
s on
t
h
e
control sy
ste
m
of the mu
ltiple-inp
ut p
o
we
r el
e
c
tro
n
ic
conve
r
ter. Two p
o
we
rful and p
r
a
c
tical
method
s for
maximum po
wer p
o
int tra
c
king of PV system
s are inv
e
stigate
d
and
compa
r
e
d
in [8],
the optimal
M
PPT method
ology st
ron
g
l
y
depen
ds on
matchi
ng lo
a
d
and
tra
c
ker ch
ara
c
te
risti
cs.
Control st
rate
gy of variou
s
rene
wa
ble re
sou
r
ces
with
digital co
ntrol
techni
que
s a
r
e em
ployed i
n
[16]. Figure
1 shows th
e
prop
osed i
n
tegrate
d
fo
u
r
port
conve
r
te
rs
whi
c
h
are
co
ntrolle
d b
y
a
singl
e conve
r
ter. This topo
logy redu
ce
s the volu
me and syst
em co
st of
the central controll
er.
The p
r
op
ose
d
switchi
ng
strategy of th
e co
nverte
r
allows the
co
nverter
co
ntrol by duty ra
tios
unde
r vario
u
s operatin
g mo
des.
Figure 1. Fun
c
tional
Diag
ra
m of the Prop
ose
d
Method
ology
The
org
ani
sa
tion of thi
s
p
aper is a
s
fol
l
ow
s: Th
e p
r
i
n
cip
a
l of
ope
ration
are di
scu
s
sed
under
section II. The
operation modes
of the converters
are detail
ed i
n
section III. The
simulatio
n
s p
e
rform
e
d
for
validating th
e
propo
se
d
m
e
thodol
ogy a
r
e explai
ned
i
n
sectio
n IV
and
se
ction V pro
v
ides the con
c
lu
sion
s an
d future sco
p
e
s
of the propo
sed wo
rk.
2. Principle
of Oper
ation
This section
introduces a
nove
l technique for
a three
port bo
ost converter utilisi
ng a t
w
o
PV source
a
nd a sto
r
a
g
e
element. Fig
u
re 1
sh
ows
the co
ntrol m
e
thodol
ogy o
f
the prop
osed
techni
que. It
has th
re
e uni
dire
ctional
po
rts, two
po
rts cou
p
ling
the
input
sou
r
ce
s PV
1
and
PV
2
with the b
o
o
s
t co
nverte
r
and o
ne
cou
p
ling the
co
n
v
erter
with the loa
d
. A bidire
ctional
p
o
rt
couples the
converter
with the storage element.
The current source
conv
erter is utilised for
steppi
ng
up
both the
PV
sou
r
ces volta
ge. Fo
ur MO
SFET switch
es
are em
plo
y
ed he
re
an
d
are
controlled
wit
h
four differe
nt duty ratio
s
, en
ablin
g t
o
control
the
po
wer bet
ween th
e hyb
r
id
system
and
the loa
d
. An
intere
sting
feature
in thi
s
meth
odol
o
g
y is th
at th
e po
we
r
can
be
delivere
d
si
multaneo
usly
to the
loa
d
by the
two
PV sy
stem
s, a
s
well
a
s
cha
r
gi
ng
and
discha
rgin
g of the battery through th
e sou
r
ce
s
can be do
ne.
The major
advantag
e of this
method is th
a
t
the four swit
che
s
are ope
rated at
different duty cycl
es, t
hereby the summ
ation
of
duty cycle
re
stri
ction i
s
eli
m
inated a
nd
it resu
lts in
h
i
gh outp
u
t voltage gai
n. T
he presen
ce
of
indu
ctor L
1
a
nd
L
2
ma
ke
s
the input
sou
r
ce
s to
be two cu
rr
ent sou
r
ce
s
whi
c
h
re
sults i
n
d
r
a
w
i
ng
smooth
cu
rre
nts from the
i
nput so
urce
s. Diode
s D
1
a
nd D
2
act
s
in a compl
e
men
t
ary manne
r with
t
he swit
che
s
S
1
and S
2
, Similarly diode
s D
3
and
D
4
acts in a
co
mpleme
ntary
manne
r with
the
swit
che
s
S
3
and S
4
. Dep
e
nding o
n
the
exploitation state of
the battery three o
peratin
g mod
e
s
are state
d
for the propo
se
d conve
r
ter a
nd all t
he three mode
s a
r
e operated with four different
duty ratio
s
o
f
the swit
che
s
who
s
e
su
mmation giv
e
s
stable
du
ty ratio ran
g
e
und
er va
ri
ous
cir
c
um
st
an
ce
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 3, June 20
15 : 446 – 45
4
448
3. Opera
t
ion Modes o
f
th
e Conv
erter
The
pro
p
o
s
e
d
three i
nput
boo
st
conve
r
ter i
n
terfa
c
in
g two
PV
system
s i
s
a
s
sho
w
n
in
Figure 2.
Figure 2. Circuit topology
o
f
the propo
se
d system
The t
w
o PV
source
s a
r
e
gi
ven by v
1
a
nd v
2
. The lo
ad
resi
stan
ce
is
R
L
. S
1
, S
2
, S
3
and
S
4
are the fou
r
MOSFET swi
t
che
s
. The
s
e
switche
s
are cont
rolle
d for chan
ging
the power flo
w
dire
ction by
changi
ng the
duty
cycle
s
o
f
the swit
che
s
d
1
, d
2
, d
3
and d
4
re
sp
ect
i
vely. It has to be
noted that the duty cycle
s
are complete
ly indepen
de
nt. The two di
ode
s D
1
and
D
2
act
s
opp
o
s
ite
with the two switch
es S
1
an
d S
2
. When the switch
es
S
3
and S
4
are ON, the diod
es D
3
an
d D
4
are
blocke
d as th
ey are reve
rse
biased by the battery voltage.
Dep
endin
g
u
pon the p
o
wer utilisation
from
the b
a
ttery thre
e mo
des
of ope
ra
tion are
defined:
1)
Both the sou
r
ce
s are
sup
p
l
y
ing load with
out battery
2)
Both the sou
r
ce
s and the b
a
ttery is su
pp
lying load
3)
Both the sou
r
ce
s are
sup
p
l
y
i
ng the load
and charging
the battery
Before
perfo
rming
the a
nalysi
s
of di
fferent mo
de
s of th
e co
nverter som
e
of the
assumptio
n
s are
ma
de:
1)
Switche
s
a
r
e
assume
d to be ideal.
2)
Magneti
z
ing i
ndu
ctan
ce is kept la
rge
so
as m
a
intai
n
the cu
rrent
flow acro
ss the
indu
ctan
ce consta
nt.
3)
Cap
a
cito
rs a
r
e large e
nou
g
h
to maintain the voltage a
c
ro
ss it con
s
t
ant.
4)
Con
d
u
c
tor is
assume
d to be operated in
CCM m
ode.
3.1. First Mo
de of Ope
r
ation
In this
mode,
only the
v
1
and v
2
sup
p
l
y
the loa
d
. T
he b
a
ttery is neithe
r
cha
r
ged
nor
discha
rge
d
.
Whe
n
batte
ry is n
o
t co
nsi
d
ered
the in
du
ctor
cu
rrents
of PV
1
and P
V
2
can p
a
ss
only
throug
h t
w
o
path of
cond
uction, S
4
-D
3
and
S
3
-D
4
res
p
ec
tively.
The firs
t
p
a
t
h is co
ns
id
er
ed
fo
r
this op
eratin
g mode.
Hen
c
e the
switch S
3
is OFF
and S
4
is m
ade O
N
. Thu
s
thre
e different
swit
chin
g stat
es can be o
b
tained a
c
cordi
ng to the req
u
irem
ent and
are tabul
ated
in Table 1.
Table 1. Swit
chin
g States of mode 1
S
w
itching
Sta
t
e
Dut
y
C
y
cle
S1
S2 S3 S4
State 1
0 < t < d
1
T
ON
ON
OF
F
ON
State 2
d
1
T < t < d
2
T O
FF
O
N
O
FF
O
N
State 3
d
2
T
< t
< T
O
FF
O
FF
O
FF
O
FF
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel T
opo
logy for
Cont
rolling a Fou
r
Port
DC-DC
Boost Co
nverter for… (Dh
a
r
ani. M)
449
Figure 3. First operating m
ode
The
voltag
e and cu
rrent balan
ce
theo
ry
[17]
i
s
a
p
p
lied
and
the
followi
ng
expre
ssi
on
s
are obtai
ned f
o
r the convert
e
r.
L
:v
(
1
)
L
:
v
(
2
)
C∶
1d
Ti
1d
Ti
T
(
3
)
I
batt
=0;
P
batt
=
0
(
4
)
It can be se
e
n
that the battery cu
rre
nt and po
we
r d
e
li
vered by the battery is zero. Thus
it can be said
that only the
two so
urce
s are delive
r
ing
powe
r
to the load.
3.2. Second Mode of O
p
e
r
ation
In this op
era
t
ing mode th
e po
wer to l
oad i
s
delive
r
ed by b
o
th
the so
urce
s
and the
battery. If the battery h
a
s t
o
delive
r
po
wer to th
e loa
d
both th
e
switch
es S
3
a
nd
S
4
ha
s to
be
turned
ON. T
hus the
po
wer di
scharge
fr
om the batt
e
ry dep
end
s
on switch
es
S
1
and S
2
, wit
h
spe
c
if
ic d
u
t
y
cy
cle
s
d
1
and
d
2
. Mathematically it can b
e
rep
r
e
s
ente
d
as follo
ws:
P
.
v
d
i
d
i
(
5
)
In one
switchi
ng pe
rio
d
fou
r
switching
st
ates
ca
n be
o
b
tained i
n
thi
s
mo
de
of op
eration,
given in Tabl
e 2.
Table 2. Swit
chin
g States of mode 2
S
w
itching
Sta
t
e
Dut
y
C
y
cle
S1
S2 S3 S4
State 1
0 < t < d
4
T
ON
ON
OF
F
ON
State 2
d
4
T < t < d
1
T O
N
O
N
O
FF
O
FF
State 3
d
1
T < t < d
2
T O
FF
O
N
O
FF
O
FF
State 4
d
2
T
< t
< T
O
FF
O
FF
O
FF
O
FF
The
voltag
e and cu
rrent balan
ce
th
eo
ry
is
appli
ed
and th
e follo
wing
expressions are
obtaine
d for the co
nverte
r.
L
:v
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 3, June 20
15 : 446 – 45
4
450
L
:
v
(
7
)
C∶
1d
Ti
1d
Ti
T
(
8
)
i
d
i
i
(
9
)
P
v
d
i
i
(
1
0
)
The d
4
is u
s
ed to regul
ate the output
powe
r
volt
age by the ba
ttery disch
arge, whe
r
ea
s
the
sou
r
ces a
r
e
made to deliv
er the refe
ren
c
e po
we
r by d
1
and d
2
.
3.3. Third Mode of Op
er
ation
In this mode the power to the load is
su
pplied
by the two so
urce
s as well the ch
argin
g
of
the battery is accompli
sh
ed
. The conditio
n
for cha
r
gin
g
the battery can be given whe
n
S
3
and S
4
are OF
F, turn
ing ON S
1
an
d S
2
will charge the battery through
D
4
and D
3
. He
nce, the maximum
cha
r
gin
g
po
wer of the battery must
be
consi
dered an
d it is given by:
P
.
v
d
i
d
i
(
1
1
)
Four
swit
chin
g states a
r
e p
o
ssible in o
n
e
switching p
e
riod, and are g
i
ven in Table
3.
Figure 4. Second op
eratin
g
mode
Table 3. Swit
chin
g States of mode 3
S
w
itching
Sta
t
e
Dut
y
C
y
cle
S1
S2 S3 S4
State 1
0 < t < d
3
T
ON
ON
ON
OF
F
State 2
d
3
T < t < d
1
T O
N
O
N
O
FF
O
FF
State 3
d
1
T < t < d
2
T O
FF
O
N
O
FF
O
FF
State 4
d
2
T
< t
< T
O
FF
O
FF
O
FF
O
FF
The
voltag
e and cu
rrent balan
ce
th
eo
ry
is
appli
ed
and th
e follo
wing
expressions are
obtaine
d for the co
nverte
r:
L
:v
(
1
2
)
L
:
v
(
1
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel T
opo
logy for
Cont
rolling a Fou
r
Port
DC-DC
Boos
t Converter for… (Dharani. M)
451
C∶
1d
Ti
1d
Ti
T
(
1
4
)
i
d
d
i
d
d
i
(
1
5
)
P
v
d
i
i
d
i
d
i
(
1
6
)
This mo
de o
f
operation
can be a
c
co
mplish
e
d onl
y when the two source
s
gene
rate
power in
excess tha
n
th
e
load
po
we
r.
Also
the
ch
argin
g
can
b
e
a
c
compli
sh
ed o
n
ly whe
n
d
3
regul
ates the
output voltag
e. Thu
s
d
1
and
d
2
are
u
s
ed
to regul
a
te th
e po
we
r from
sou
r
ces a
nd
d
3
cha
r
ge
s the b
a
ttery throug
h the pow
er that is gen
erat
ed in exce
ss.
Figure 5. Third operating m
o
de
4. Simulation Resul
t
s
The p
r
op
ose
d
method
olo
g
y is verifie
d
by
simul
a
ting the co
n
v
erters in M
A
TLAB
environ
ment.
All the thre
e mode
s of
operation a
r
e
perfo
rmed i
n
the sim
u
lat
i
on pa
ckage.
A
resi
stive load
of powe
r
2.5 kW i
s
cho
s
en at
the DC link. The re
gulated o
u
tp
ut voltage of the
conve
r
ter is 3
50V. Two PV
syste
m
s of p
eak po
we
r
2.5 kW are
cho
s
en
to a
s
su
re
reli
able
supp
ly
to the load. The di
scharg
e
power of the batte
ry is sele
cted at
1 kW. Th
e two PV cell
s are
modelle
d to provide the
pea
k power.
In the si
mula
tion, the PV
system is m
o
delle
d and the
output
cha
r
a
c
teri
stics a
r
e
depi
cted fo
r the PV so
u
r
ce
s a
r
e
as shown in th
e
Figure 6
and
7
r
e
sp
ec
tive
ly. T
o
e
x
tr
ac
t a ma
ximu
m po
w
e
r
fro
m
the
PV so
ur
ce p
e
r
t
u
r
b a
nd o
b
s
e
r
v
e MPPT
algorith
m
h
a
s bee
n u
s
e
d
, the o
u
tput
cha
r
acte
ri
stic
of
PV sou
r
ce i
s
obtaine
d u
n
d
e
r th
e irradi
ation
level of 100
0
w/m
2
re
spe
c
t
i
vely. Determi
nation of max
i
mum op
erati
ng poi
nt of PV sou
r
ce un
d
e
r
MPPT is achi
eved by perio
dic control m
e
thod.
Figure 6. P-V Characte
ri
stics of Sola
r Panel
Fi
gure 7. I-V Cha
r
a
c
teri
stics of Solar Pa
nel
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 3, June 20
15 : 446 – 45
4
452
The maximu
m power tracked
by MPPT algorith
m
is f
ound to
be 4
7
KW. The P
-
V and I-V
curve
a
r
e
a
s
sho
w
n
in th
e
Figure 6
an
d
Figure 7,
it
is
noted th
at th
e sola
r
cell
a
c
ts as a
con
s
tant
curre
n
t sou
r
ce at low ope
rating voltag
es an
d act
s
as a con
s
tan
t
voltage sou
r
ce u
nde
r lo
w
operating current.
The si
mulati
on is m
ade
to run for
6
se
cond
s to
evaluate th
e perfo
rma
n
c
e of the
conve
r
ter un
der all
the
th
ree
m
ode
s. Simulation re
sult
s
of
d
c
-li
n
k v
o
lt
ag
e w
h
ich i
s
ef
f
i
cie
n
t
l
y
regul
ated i
n
all the th
re
e
stage
s
are a
s
d
epi
cted
i
n
the Fi
gu
re
9
and
10.
Fu
rtherm
o
re
the
duty
ratios
whi
c
h regulate PV source, battery
powe
r
are illustrate
d in the Figure 8.
Figure 8. Switchin
g Pattern
The si
mulatio
n
in pe
rform
e
d in thre
e sta
ges
and
all the sta
g
e
s
are discu
s
sed i
n
detail
belo
w
. The o
u
tput re
sult
s
obtaine
d for
the over
all
p
e
rform
a
n
c
e o
f
the conve
r
t
e
r un
de
r thre
e
stage
s re
mai
n
s same an
d it is as sh
own
in the Figure
9 and 10
First simulation s
t
age
:
This
stage is made to
run fo
r i
n
itial two seco
nd
s
(0<t
<2
s).d
uri
ng this
stag
e
of operation
there
i
s
no
need fo
r batt
e
ry sin
c
e th
e
load po
we
r
is
sha
r
ed
by b
o
t
h PV so
urce
s. Th
e
contro
l is
obtain
ed
by adju
sting
the d
u
ty ratio
of the
swit
ch
es
d
3
=0 an
d d
4
=1 which allows the battery cont
ributi
on
to be ze
ro. This mod
e
of operatio
n is
conducted during peak peri
ods for m
a
ximum utilisation of solar power.
Figure 9. Output Voltage Plot
Fi
gure 10. Ou
tput Current
Plot
Second sim
u
lation s
t
ag
e
: This
s
t
age is
made to run for time
period
(2s<
t<
4s
).during
this
stage
of
ope
ration
th
ere i
s
a n
e
e
d
of
b
a
ttery contri
bution
sin
c
e po
wer delivere
d
by PV
sources will
be low enough to
contri
bute the lo
ad requirement. The power
shortage exi
s
ted in
the system wi
ll be contri
but
ed by battery. The cont
rolli
ng mechani
sm which assi
sts this mo
de
of
operation
s
de
picts the d
u
ty ratio as
sho
w
n in Figu
re
8. The duty ratio set for thi
s
co
rrespon
di
ng
mode in MAT
L
AB environ
ment is a
s
sh
ow bel
ow:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel T
opo
logy for
Cont
rolling a Fou
r
Port
DC-DC
Boos
t Converter for… (Dharani. M)
453
D
1
=7
1%
D
2
=7
3%
D
3
=7
0%
D
4
=6
9%
Figure 11. Battery Voltage
Figure 12. Battery Current
Third simulation sta
g
e
: This sta
ge is made to run
for time peri
od (4
s<t
<
6
s
).
Durin
g
this stage
of operation bat
tery
ch
arging
is ma
de to
be
perfo
rme
d
a
n
d thi
s
i
s
d
o
n
e
by the
exce
ss
PV powe
r
a
v
ailable du
ri
ng the op
eration of
the
conve
r
ter
without up
se
tting the act
u
al
perfo
rman
ce.
This mode i
s
advisable to
be perfo
rme
d
durin
g exce
ss
sunli
ght.
The efficie
n
cy obtained by
the conve
r
te
r in all
the m
o
de
s is de
picted as in fig
13. It is
found that the
converte
r un
der vari
ou
s ci
rcu
m
st
a
n
ces
attains the efficien
cy of 80
%.
Figure 13. Efficien
cy Curv
e
5. Conclusio
n
and Futu
r
e
Work
A four po
rt dc-dc
co
nverte
r
for a hybri
d
PV/PV/
battery system i
s
propo
sed in thi
s
pap
e
r.
The po
we
r flow is co
ntroll
e
d
by the four indep
ende
ntly operate
d
swi
t
che
s
. Based
on the state of
the battery, three m
ode
s of operatio
n of the c
onve
r
ter are ob
se
rved. Applyin
g
the voltage-
se
con
d
curre
n
t-se
co
nd b
a
l
ance theo
ry, the mathem
at
ical mo
del
of the co
nverters i
s
reali
s
ed.
The propo
se
d model
wa
s validated by the MA
TLAB simulation.
The propo
sed syste
m
was
found to
be
more
e
c
on
o
m
ical,
sin
c
e
the n
u
mbe
r
of indu
cto
r
s u
s
ed i
s
con
s
id
e
r
ably
red
u
ced
and
low voltage
batterie
s
and
supe
r cap
a
c
itors ca
n
be effectively
impleme
n
ted.
The prop
osed
methodol
ogy
is inve
stigate
d
und
er th
e
PV system,
it
can
al
so b
e
utilised
for
o
t
her alte
rnati
v
e
energy sou
r
ces.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 3, June 20
15 : 446 – 45
4
454
Referen
ces
[1]
RJ W
a
i, Ch Y Lin, JJ Li
a
w
, Y
R
Cha
ng.
Ne
wl
y
desi
g
n
ed Z
VS multi-in
put c
onverter
.
IEEE
T
r
ans. Ind.
Electron.
20
11;
58(2): 555
–5
6
6
.
[2]
JL D
uarte, M
Hen
d
ri
x, MG
Simoes. T
h
ree
-
port b
i
dir
e
ctio
nal
conv
erter f
o
r h
y
b
r
id
fuel
cell s
y
st
ems.
IEEE Trans. P
o
wer Electron.
200
7; 22(2): 48
0-48
7.
[3]
N Kato, K Kurozumi,
N Sus
u
ld, S Muro
yam
a
.
Hybrid
pow
e
r
supply syste
m
co
mpose
d
o
f
photovo
l
tai
c
and fue
l
-cel
l systems.
In Proc. Int.
T
e
lecommun. Energ
y
C
o
nf. 2001: 63
1-6
35.
[4]
K Rajas
hekar
a
.
H
y
bri
d
fuel-c
ell strateg
i
es for clea
n po
w
e
r
gener
atio
n.
IEEE Trans. Ind. Appl.
200
5;
41(3): 68
2-6
8
9
.
[5]
Y Ch Liu, YM Chen. A s
y
st
ematic ap
proa
ch
to s
y
nth
e
si
zing multi i
n
p
u
t
DC–DC conv
erters.
IEEE
T
r
ans. Pow
e
r Electron.
20
09;
24(1): 116-
12
7.
[6]
YM Chen, Y
Ch Li
u, SC Hung, CS C
hen
g. Mult
i-in
put i
n
verter for gri
d
-con
necte
d h
y
br
id PV/W
i
n
d
po
w
e
r s
y
stem.
IEEE Trans. P
o
wer
Electron.
200
7; 22(3): 10
70-1
077.
[7]
L Yan, R
Xinb
o, Y Don
g
she
n
g
, L F
u
xin, CK
T
s
e. Sy
nth
e
sis
of multipl
e
-i
np
ut DC/DC co
nv
erters.
IEEE
T
r
ans. Pow
e
r Electron.
20
10;
25(9): 237
2-2
385.
[8]
H Krishn
as
w
a
mi, N Mohan,
T
h
ree-port s
e
ries-res
o
n
ant
DC–DC co
nv
erter to interfa
c
e rene
w
a
b
l
e
ener
g
y
s
ource
s
w
i
th b
i
dir
e
cti
ona
l loa
d
an
d ener
g
y
stor
age
ports.
IEEE
Tr
ans. Power Electron.
2
0
09;
24(1
0
): 228
9-2
297.
[9]
Yang
Ha
n. A
Ped
a
g
ogic
a
l
Appr
oach
for
Mod
e
li
ng
an
d Sim
u
lati
on
of S
w
itch
ing
Mode
DC-D
C
Conv
erters for Po
w
e
r El
ectron
ics Course.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electric
al
Engin
eeri
n
g
.
201
2; 10(6): 13
19-1
326.
[10]
L Sol
e
ro, A
Li
dozzi, JA P
o
m
ilio.
Desi
gn
of
multipl
e
-i
nput
po
w
e
r co
nvert
e
r for h
y
b
r
id
v
ehicl
es.
IEEE
T
r
ans. Pow
e
r Electron.
20
05;
20(5): 100
7-1
016.
[11]
Alireza
Kav
i
an
i
-
Arani, A
lirez
a
Gheiratma
nd.
Soft
S
w
itchi
ng
Boost C
onvert
e
r So
lutio
n
for
Increase
th
e
Efficienc
y
of S
o
lar E
ner
g
y
S
ystems
. T
E
LKOMNIKA Indo
ne
sian J
our
nal
of Electrical
En
gi
neer
ing.
20
15
13(3): 44
9-4
5
7
.
[12]
Khal
igh, J
Ca
o, YJ Le
e. A
mu
ltipl
e
-i
nput
DC–D
C
co
nve
r
ter topol
og
y.
I
EEE Trans. P
o
wer Electron.
200
9; 24(3): 86
2-86
8.
[13]
SH Hosseini, S Dany
ali, F
Nejabatkhah,
SAK Mozafari Niapour.
Multi-
inp
u
t DC boos
t converter fo
r
grid connected hybrid
PV/FC/battery power system
. In Proc. IEEE Elect.
Po
w
e
r Energy
Conf. 2010: 1-
6.
[14]
JL D
uarte, M
Hen
d
ri
x, MG
Simoes. T
h
ree
-
port b
i
di
r
e
ctio
nal
conv
erter f
o
r h
y
b
r
id
fuel
cell s
y
st
ems.
IEEE
T
r
ans. P
o
w
e
r Electron.
2007; 22(2): 480-487.
[15]
T
Suntio, J Le
p
p
¨aa
ho, J
Huu
s
ar
i, L
No
usia
i
nen. Issu
es o
n
solar
g
ener
ato
r
interfaci
n
g
w
i
t
h
curre
nt-fed
MPP-tracking c
onverters.
IEEE Trans. Power Electron.
201
0; 25(9): 24
09-
241
9.
[16] H T
ao, A Kotsopo
ulos, J
L
D
u
arte, MAM He
ndri
x
.
Fa
mi
ly o
f
mu
ltiport
bid
i
r
e
ction
a
l D
C
–
D
C conv
erters.
In Proc. IEE El
ect. Po
w
e
r App
l
. 2006: 4
51-4
5
8
.
[17] Shan
gg
uan,
X
uanfe
ng,
Huim
in Y
ang,
Yon
g
l
i
an
g W
a
n
g
, Be
nlo
ng S
h
i. T
h
e
Desi
gn
a
nd S
i
mulati
on
o
f
Improved a
nd
Multipl
e
x Boost
Converter.
T
E
LKOMNIKA Indon
esia
n Jour
nal of El
ectrica
l
Engi
ne
erin
g
.
201
4; 12(4): 25
99-2
605.
Evaluation Warning : The document was created with Spire.PDF for Python.