TELKOM
NIKA
, Vol.11, No
.1, Janua
ry 2013, pp. 187
~19
4
ISSN: 2302-4
046
187
Re
cei
v
ed O
c
t
3, 2012; Re
vised
No
vem
ber 28, 201
2; Acce
pted De
cem
ber 4, 20
12
Application of Fractal Dimensions and Fuzzy Clustering
to Tool Wear Monitoring
Weilin Li*, P
a
n Fu, Erqin Zhang
Schoo
l of Mechan
ical En
gi
ne
erin
g, South
w
e
s
t Jiaotong U
n
i
v
ersit
y
, Ch
en
d
u
610
03
1, Chin
a
*corres
pon
di
ng
author, e-mai
l
: hi
w
e
i
l
i
n
@gm
a
i
l
.com*
A
b
st
r
a
ct
Monitori
ng
of meta
l cuttin
g
tool w
ear state
s
is
a key tec
hno
logy for
au
tomatic, u
n
m
a
nne
d a
n
d
ada
ptive
mac
h
inin
g. As tool
w
ear
increas
e
s
, the vibratio
n
signa
ls of cutting too
l
bec
o
m
e mor
e
an
d more
irregu
lar
in the
turnin
g proc
es
ses. T
he de
gre
e
of tool
w
e
ar
can b
e
in
dir
e
ctly monit
o
red
a
ccordi
ng to th
e
s
e
chan
ges of vib
r
ation sig
n
a
l
s. In
order to qu
antitative
l
y
des
cribe thes
e ch
ang
es, fractal theory an
d fu
z
z
y
clusteri
ng
met
hod w
e
re intr
o
duce
d
into the
cutting tool
w
ear mon
i
torin
g
area. F
i
rstly,
w
a
velet de-n
o
i
s
in
g
meth
od w
a
s
u
s
ed to re
duc
e
the no
ise
of origi
n
a
l
sig
n
a
l
s, and e
l
i
m
i
n
a
t
e the effect o
f
noise
on fra
c
tal
di
me
nsio
ns. Secon
d
ly, the fr
actal di
mens
io
ns bas
ed o
n
fr
actal the
o
ry w
e
re got fro
m
the
de-no
ise
d
sig
nals
,
inclu
d
i
ng
box
di
me
nsio
n, i
n
formatio
n
d
i
me
nsio
n, an
d c
o
rrelatio
n
di
me
nsio
n. F
i
na
lly,
the r
e
lati
ons
hi
p
between the fractal dim
ens
io
ns and tool wear states was
studied
; the
affinities be
tween the k
nown and
unkn
o
w
n
state
s
can
be
obta
i
ne
d thro
ug
h fu
zz
y
c-
mea
n
clusteri
ng
alg
o
r
ithm; to
ol w
e
ar states ca
n
b
e
recog
n
i
z
e
d
by
those affinitie
s
based o
n
fractal di
mensi
o
ns. T
he exper
iment re
su
lts de
mo
nstrate that
w
a
velet d
e
-n
oi
sing
meth
od c
a
n effici
ently
el
i
m
i
nate
the
effe
ct of n
o
ise
o
n
f
r
actal
di
me
nsi
o
ns, an
d to
ol
w
ear
states can
be
real-ti
m
e
l
y a
nd acc
u
rately
recog
n
i
z
e
d
thr
oug
h the fu
zzy clusteri
ng a
nalysis
on fra
c
ta
l
di
me
nsio
ns.
Key
w
ords
:
Wav
e
let De-nois
i
ng; Frac
tal Dimens
ion;
Tool Wear Monitoring; Fuzz
y
Clus
tering;
Copyrig
h
t
©
2013
Univer
sitas Ahmad
Dahlan. All rights res
e
rv
ed.
1. Introduc
tion
As ma
rket co
mpetition inte
nsifie
s an
d the im
p
r
oving
of pro
duct
q
uality, the au
tomatic
and intelli
gen
ce level
of m
odern ma
chi
n
ing eq
uipme
n
t
s is
gre
a
tly improve
d
. In
orde
r to
en
su
re
the relia
bility and
safety of machi
n
ing
pro
c
e
s
ses,
i
t
is ne
ce
ssary to monitor the ma
chini
n
g
system
s real
-timely and
accurately
, espe
cially to
cutting tool
s
[1]. The we
a
r
of cutting tool
dire
ctly affects the quality, efficiency a
nd safe
ty of prod
uctio
n
. Many schola
r
s, at home a
n
d
abro
ad, have
been doi
ng
many re
sea
r
ches into tool
wea
r
state
s
monitori
ng te
chn
o
logy. R. Teti
[2], Roth,
J.
T. [3] an
d Ab
ellan-Ne
bot
[4]
analyz
e th
e developme
n
t status, tre
nds an
d exist
i
ng
issue
s
of tool wear
con
d
ition monitori
n
g
techn
o
logy
from the angles of se
nsi
ng sign
als, si
gnal
pro
c
e
ssi
ng a
nd pattern
re
cog
n
ition.
Duri
ng
actu
al
machinin
g, the tool
we
ar
wa
s mo
nitore
d by indi
re
ct
monitor inste
ad of by
stoppi
ng the
machi
ne. So
me common
i
ndire
ct mo
nito
ring sig
nal
s inclu
de cuttin
g
force,
a
c
ou
stic
emission,
cutting vibratio
n
sign
al, an
d
so on. A
m
ong
them, vib
r
ation
sign
al i
s
v
e
ry
sen
s
itive
to
tool wea
r
, an
d free from th
e influence of chip
s and co
olant [1, 2]. So the cutting vibration si
gn
al
wa
s widely u
s
ed
to
m
onit
o
r
to
ol wea
r
indire
ctly
. Be
cau
s
e
the
proce
s
s of
tool
we
ar is quit
e
compl
e
x and
affected by
many factors, there
a
r
e
high rando
m
ness an
d no
nlinea
rity in the
vibration sig
n
a
ls of
tool we
ar
[5]. Ho
wev
e
r,
furt
h
e
r re
search i
ndi
cat
e
s th
at the
se
emingly
cha
o
t
ic
phen
omen
on
refle
c
ts the
dynamical be
havior
of
me
tal cutting
op
eration
sy
ste
m
. In ord
e
r t
o
reveal the pot
ential inform
a
t
ion of chaoti
c
vibrat
ion
sig
nal and mo
nitor the tool we
ar, the wavel
e
t
and fra
c
tal th
eory were i
n
trodu
ce
d into
the cutting to
ol wea
r
mo
nitoring
are
a
. Fractal dim
e
n
s
i
o
n
based o
n
fractal theory i
s
a
n
impo
rtant p
a
ram
e
ter
to
q
uantitatively describ
e
sing
ul
arity deg
ree
o
f
the c
h
aotic
attrac
tors
. It is widely us
ed to desc
r
ib
e
the nume
r
ica
l
cha
r
a
c
teri
stic in no
nlinea
r
system. It ca
n qualitatively
and
qua
ntitatively analyz
e
the sy
stem ru
nning
state [6
], [7]. Rece
ntly,
fractal dim
e
n
s
ion i
s
appli
ed in me
cha
n
ical d
e
vice
fault diagno
si
s area, som
e
achi
eveme
n
ts
repo
rted
[8],
[9]. In this pa
per, f
r
act
a
l di
mensi
o
n
s
are
used
a
s
tool
we
ar mo
nito
ring, i
n
cl
udin
g
box dimen
s
io
n, informatio
n dimen
s
io
n, and corr
elati
on dime
nsi
o
n
.
Consi
d
e
r
ing
the exce
ssiv
e
noise in the o
r
iginal vib
r
ati
on sig
nal
s an
d the effect o
f
noise o
n
fra
c
tal dime
nsio
ns which wo
u
l
d
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 187 – 1
9
4
188
be used to re
cog
n
ize tool
wea
r
state
s
, i
t
is necessa
ry to remove
noise from th
e origi
nal si
g
nals
.
Wavelet the
o
r
y has
bee
n
a topic of
rese
arch in
a
pplication ma
th and en
gin
eerin
g scie
nce
.
Wavelet de
-n
oisin
g
ha
s be
come a
n
imp
o
rtant tool
to sup
p
re
ss the
noise due to i
t
s effectivene
ss
and p
r
od
uci
n
g better
re
sul
t
s [10], [11]. In this
pape
r,
the wavel
e
t d
e
-noi
sin
g
met
hod i
s
u
s
ed
to
eliminate the
effect of noise on fra
c
tal
dimensi
on i
n
origin
al sig
nals; the fra
c
tal dimen
s
io
ns
based on fra
c
tal theory we
re got from the de-n
o
ised signal
s.
Cutting to
ol
grad
ually
we
ar
out u
n
til it is fa
il
ure, th
e fra
c
tal
dim
ensi
o
n
s
of to
ol wear
states have
fuzzine
s
s in
many
cases.
Fuzzy mat
h
e
m
atics ju
st p
r
ovides a
ne
w method
to
solve
the pro
b
lem
s
of fuzzine
ss. Fu
zzy cl
usteri
ng a
n
a
l
ysis ba
se
d
on fuzzy m
a
thematics
can
categ
o
ri
ze
an
d ide
n
tify fuzzine
s
s
sam
p
l
e
s
by
cal
c
ula
t
ing the
affinities b
e
twe
en
those
sampl
e
s
[12], [13]. Nowad
a
ys, neu
ral netwo
rk techn
o
logy is
alway
s
used
to reco
gni
ze
tool con
d
ition,
whi
c
h
ha
s a
very go
od fa
ult toleran
c
e
and
str
ong
a
daptive a
b
ility to the
envi
r
onm
ent. But
it
need
s a
larg
e num
ber of
feature
s
a
n
d
sa
mple
s a
s
the t
r
ainin
g
input of the
netwo
rk. So
the
appli
c
ation
of the n
eural n
e
tworks i
s
lim
ited in i
ndu
stry. Fuzzy clu
s
t
e
ring
do
es no
t rely on
expe
rt
experie
nce a
nd oth
e
r su
bjective
eval
uation,
a
n
d
also
can
re
solve the
am
biguity p
r
obl
em.
Therefore,
it
can
imp
r
ove t
he effici
en
cy
of patte
rn
re
cognition. In
th
is p
ape
r, the
FCM
(Fu
z
zy
C
-
mean
s)
clu
s
t
e
ring
algo
rith
m is u
s
ed to
reco
gni
ze
tool
wea
r
state
s
.
The expe
rim
ent re
sults
sh
ow
that
the
tool wea
r
states m
onitori
ng
system b
a
sed
on fra
c
tal di
mensi
o
n
s
an
d FCM
cl
ust
e
rin
g
can a
c
curatel
y
recog
n
ize tool we
ar stat
es, and h
a
s
compa
r
atively highe
r relia
bil
i
ty.
2. Rese
arch
Metho
d
The tool
wea
r
monito
ring
system i
s
co
mpos
ed of a
n
accele
rom
e
ter, data
-
a
c
quisitio
n
device
s
an
d
a micro-com
p
uter. The flan
k we
ar va
lu
e
of the cutting
tool is the mo
nitoring
obje
c
t.
Multi-chan
nel
vibratio
n
sig
nals a
r
e
coll
ected
an
d
co
nverted
to di
gital si
gnal
s t
o
feed
into
the
computer whi
c
h will
accom
p
lish data
processi
ng.
Fi
gure1 i
s
the bl
ock
diag
ram
of the cutting tool
wea
r
state
s
monitori
ng sy
stem.
Figure 1. The
block diag
ra
m of tool wea
r
monitori
ng system
2.1. Wav
e
let De-noising
Wavelet de
-n
oisin
g
ca
n b
e
viewed
as
an estim
a
tion
probl
em trying to re
cove
r a true
sign
al co
mp
onent
f(n)
from an o
b
se
rvation
X(n)
whe
r
e the
sign
al co
mp
onent ha
s b
een
degrade
d by
a noi
se
co
mpone
nt
W(n)
:
X(
n)=
f
(
n
)+
W(
n)
. The
estimation
is com
puted
with a
thresholdi
ng
estimato
r in a
n
orthon
orm
a
l basi
s
z
m
J
j
L
m
j
Z
m
m
J
n
n
B
,
,
,
)
(
,
)
(
as
[10]:
J
L
jm
m
m
J
m
J
T
m
j
m
j
T
X
X
F
1
,
,
,
,
,
,
~
(1)
Vibration
Sens
or
Wo
rkpi
ec
e
Cha
r
ge
am
plifier
Analog Filter
A/D Con
v
e
r
te
rs
Wavelet Denoising
Fra
c
tal Featu
r
e Extraction:
1. Box Dimen
s
ion;
2. Information
Dimen
s
ion;
3. Correlatio
n
Dimen
s
ion;
Preprocessin
g
Fuzz
y C
-
means
C
l
us
ter
i
ng
Tool Wear St
ates
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Application of Fractal
Dim
ensio
ns and F
u
zzy
Clusteri
ng to Tool Wear Monitoring (Weilin Li)
189
Whe
r
e,
T
is a threshol
d
function tha
t
aims at eliminating noi
se co
mpo
n
e
n
ts (via
attenuating
o
f
decrea
s
in
g
some
coeffici
ent sets)
in
the tra
n
sfo
r
m
domain
while
pre
s
e
r
ving
the
true
sign
al
coefficient
s. If the fun
c
tion
is m
odifi
ed
to rathe
r
pre
s
erve
o
r
in
crease
coeffici
ent
values in th
e
transfo
rm d
o
m
ain, it is po
ssi
ble to
en
h
ance so
me f
eature
s
of int
e
re
st in the tru
e
sign
al com
p
o
nent.
2.2. Fractal
Dimensions
The
re
sea
r
ch
obje
c
t of fractal theory i
s
t
he compl
e
x
p
henom
eno
n whi
c
h has
irregula
r
ity
and self-simi
l
arity stru
cture, such a
s
coa
s
t
line,
si
e
rra, chan
gef
ulne
ss clou
d
s
,
and so
o
n
.
Acco
rdi
ng to
these p
r
op
e
r
ties, fractal
theory h
a
s b
e
com
e
a
po
werful
tool i
n
the
areas of
monitori
ng a
nd diagn
osti
c for mecha
n
i
s
m equi
pme
n
t. A lot of r
e
lated re
se
arche
s
have b
een
done at hom
e
and abroad.
In this pape
r, it was u
s
ed in
the study of tool we
ar stat
es monito
rin
g
.
(1) Th
e Calc
ulation of
Bo
x Dimension
The Box Dim
ensi
o
n
D
B
is t
he simpl
e
st a
nd most o
b
vious fractal di
mensi
on. For the unit
hypervolu
me attracto
r,
D
B
can b
e
got by:
)
/
1
ln(
ln
lim
0
N
D
B
(2)
Whe
r
e,
N i
s
t
he n
u
mbe
r
of
hypercu
be
which
is used t
o
cover th
e a
ttractor who
s
e si
de
length is
.
Use the Box who
s
e si
de
length is
to cover attracto
r in the cal
c
ulation
of Box
Dimen
s
io
n. If the num
ber
of full Boxes
is
N
, th
e curve of
{ln(N
)-
ln(1/
)}
can
be d
r
a
w
n in t
he
biloga
rithmic
diagram. The
Box Dimensi
on is det
e
r
mi
ned a
c
cordi
n
g to the slope
of the curve.
(2) Th
e Calc
ulation of Information Di
mension
If assign me
n
t
ioned box nu
mbers an
d the prob
ability is
P
i
when the
attractor fills
into the
i-box, the box can be exp
r
e
s
sed by Shan
non eq
uation:
i
N
i
i
P
P
I
ln
)
(
1
(3)
If us
ing
(
)
instead of
N(
)
in Box Dimen
s
ion, Inform
ation Dime
nsi
o
n
D
I
ca
n be g
o
t by:
ln
ln
lim
ln
)
(
lim
1
0
0
N
i
i
i
I
P
P
I
D
(4)
(3) Th
e Calc
ulation of
Co
rrelation
Dimension
There i
s
a
tim
e
-seri
e
s
x
i
in t
he exp
e
rim
e
n
t. The first
n
points was a
dopted
to
re
construct
m-dime
nsi
o
n
a
l phase sp
a
c
e, the dista
n
ce b
e
twee
n
these nod
es can be got.
The co
rrel
a
tion
func
tion is
as
follows
[13]:
N
i
N
j
N
u
H
N
r
C
)
(
1
lim
)
(
2
;
j
i
.Where,
j
i
x
x
r
u
;
0
0
)
(
0
1
)
(
u
u
H
u
u
H
(5)
C(
r)
rep
r
e
s
e
n
t
s the
ratio of
the no
de
s whose di
stan
ce is l
e
ss tha
n
r
in th
e reco
nstru
c
ted
pha
se spa
c
e.
When
cho
o
si
ng a suita
b
le
value for
r
, the followin
g
rel
a
tion ca
n be
got:
C
)
(
lim
0
D
r
r
r
C
So
r
r
C
D
r
ln
)
(
ln
lim
0
C
(6)
D
C
is the co
rrelation dime
n
s
ion.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 187 – 1
9
4
190
2.3. Fuzzy
C-means
Clus
tering Algorithm
The b
a
si
c id
e
a
of cl
uste
r a
nalysi
s
is u
s
i
ng the
simila
rity metrics to
judge th
e rela
tionshi
p
of obje
c
ts wh
ich i
s
clo
s
e
o
r
di
stant. Accordin
g to thi
s
idea, th
e
cla
ssifi
cation
ca
n be
a
c
hieve
d
.
This
pap
er fo
cu
se
s o
n
the
fuzzy c-mea
n
s
algo
rithm
whi
c
h u
s
e
s
cluster cente
r
s and E
u
cli
d
e
a
n
distan
ce fun
c
tion [9], [10].
First of all, in
this
method,
a numbe
r of
cluste
r cente
r
s a
r
e sele
cted
rand
omly and
the fuzzy membe
r
ship to certain
cl
ust
e
r ce
nter is a
ssi
gne
d for all the dates. And
then the clu
s
t
e
r center i
s
revised
con
s
t
antly by it
erative methods.
In the pr
o
c
e
s
s of iterative, th
e
weig
hted su
ms of minimi
zing di
stan
ce
betwee
n
all
the points to
each
clu
s
te
r cente
r
an
d the
membe
r
ship
values is
used a
s
th
e o
p
timization
o
b
jective. Iterative pro
c
e
s
s i
s
e
nd
wh
en
rea
c
hin
g
the
maximum iteration num
be
r or the d
e
cre
a
se
deg
ree
o
f
the obje
c
tive functio
n
val
u
e
in two iterations is less th
a
n
the given minimum in
cre
m
ent.
On the math
ematical level
,
fuzzy C-m
e
ans
clu
s
terin
g
is to find the fuzzy dividi
ng matrix
U=[ui
k
]
c×n
that make
s clu
s
tering obj
ecti
ve function
J
minimum a
nd the clu
s
t
e
ring
cente
r
P
.
Obje
ctive function
J
i
s
cal
c
ulated a
s
[15]:
n
k
c
i
d
ik
u
ik
m
P
U
J
m
11
)
(
2
)
(
)
,
(
(7)
Whe
r
e,
(di
k
)
2
=
ǁ
xk-
pi
ǁ
is
the d
i
s
t
an
ce
be
tw
e
e
n
th
e two
ve
c
t
ors
x
k
and
p
i
,
x
k
is
the k-th
sampl
e
s of
d
a
ta, pi i
s
the
i-th
clu
s
teri
n
g
p
r
ototype,
i =
1
,
2,…,
c;
k
= 1, 2,…,
n, m
∈
(1,
∞
)
is
weig
hting ex
pone
nt, the
obje
c
tive fun
c
tion
J
i
s
th
e sq
ua
re
su
m of the we
ighted di
stan
ce
betwe
en a va
riety of data and t
he co
rrespondi
ng clu
s
t
e
r ce
nter.
3. Experimental resul
t
s
3.1 Experimental de
sign
Experiment
s are
ca
rri
ed
out on the
CK614
3 m
a
chi
n
ing
ce
n
t
er. The exp
e
rime
ntal
material
is
45
steel. T
he
cu
tter materi
al i
s
YT1
5
. The
cutting fo
rm i
s
cutting
and
the cooling
fluid
w
a
s
n
’t us
ed
. D
a
te wa
s
co
lle
c
t
ed
w
h
en
th
e
to
ol
wear are 0.0
mm, 0.1mm,
0.2mm,
0.3
mm,
0.4mm, an
d
0.5mm. Th
e l
ength
of sam
p
led
data
i
s
1
0000. The
ex
perim
ents
we
re perfo
rme
d
a
t
three
wo
rki
n
g co
ndition
s.
Their
cuttin
g
veloci
ty, cutting feed a
nd de
pth re
spectively are
as
follows: (5
00
r/min, 0.5mm
/
r, 0.5mm),
(1000
r/mi
n, 0.
5mm/r, 1m
m
)
, and
(150
0
r
/min, 0.8mm
/
r,
1.5mm).
The
vibratio
n a
c
celeration
sensor
is 87
02B50M
1 K-Shear p
r
odu
ced
by Ki
stle
r
Switze
rlan
d, whi
c
h can m
easure
displa
ceme
nt,
velocity and a
c
celeratio
n
. Th
e singl
e-ch
an
nel
sampli
ng freq
uen
cy is 1
0
0
KHz. Fi
gure
2 is th
e pi
cture
of se
nsors in
sta
llation.
Figure 3 i
s
t
he
picture of wo
rn cutting tool.
Figure 2. The
picture of
se
nso
r
install
a
tion
Figure 3. The
picture of too
l
wear
3.2. The De
-noising of T
ool Wearing
Vibration Signal
In order to e
n
su
re
the
accurate
extraction of
the
fractal
dimen
s
i
on, the
wavel
e
t theo
ry
wa
s u
s
ed
to
redu
ce
the
n
o
ise
of the vi
bration
si
gnal
. Take
the
b
o
x dimen
s
io
n
for exa
m
ple,
if
there
is a
sin
u
soi
dal
sig
nal
s=si
n(0.03*t)
, then a
d
d
no
ise to
the
sig
nal, at la
st, u
s
e
db4
wavel
e
t
to de-n
o
ise the sig
nal by
4 level de
co
mpositio
n.
T
he a
c
tual bo
x dimensi
on
of the sinu
so
idal
Vibration Sen
s
or
ToolHolde
r
Wo
rkpi
ec
e
0.27~0.3mm
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Application of Fractal
Dim
ensio
ns and F
u
zzy
Clusteri
ng to Tool Wear Monitoring (Weilin Li)
191
sign
al is
0.99
344
,
,
h
o
wever the
calculat
ed dime
nsi
o
n
of the sig
nal
with noi
se i
s
1.41
321
th
e
box dime
nsi
on i
s
1.11
10
3 after th
e
de-n
o
isi
ng
proce
s
s. It ind
i
cate
s that n
o
ise
ha
s g
r
e
a
t
influen
ce on
the cal
c
ul
ation of the di
mensi
on.
So
doe
s the
correlation di
mensi
on. In
the
followin
g
, an
alyze the
too
l
vibration
sig
nal of 0.5m
m
wea
r
valu
e
unde
r first worki
ng
co
ndition
(cutting
velocity 500r/min,
cutting fee
d
0.5mm/r
,
cu
tting depth 0.
5mm). Fig
u
re
4 is the tim
e
domain g
r
a
p
h
before an
d a
fter de-n
o
isi
n
g.
Figure 4. Time-do
m
ain g
r
a
ph before an
d after de-noi
sing
3.3. Fractal
Dimension F
eatur
es of T
ool Wear Sig
n
als
To get the quantitative cha
nging info
rma
t
ion unde
r different tool we
ar state
s
, the fractal
dimen
s
ion
s
were
cal
c
ulate
d
unde
r all ki
nds of
we
a
r
states, inclu
d
in
g box dimen
s
ion, informati
o
n
dimen
s
ion, a
nd correlatio
n
dimen
s
ion. A
n
effectiv
e fra
c
tal dime
nsi
o
ns featu
r
e
ha
s to in
clud
e the
followin
g
two
points
simulta
neou
sly: divisibility and rep
eatability.
(1)
Calcula
t
ion of Bo
x Di
mension
Acco
rdi
ng to
the box di
mensi
on
cal
c
ulation
theo
ry, the box dimensi
on of t
ool we
ar
states
can b
e
got base
d
on the de-noi
sed vibrat
ion
signal
s. Con
s
ide
r
ing the l
ength of pap
er,
Only the fra
c
t
a
l dimen
s
io
n
of different wear
states
un
der the fi
rst
workin
g cond
ition are li
ste
d
in
Table1, in
clu
d
ing thre
e sa
mples in eve
r
y wear
conditi
on.
Table 1. The
box dimen
s
io
n unde
r the first working
condition
Tool
w
ear
0.0mm 0.1mm 0.2mm
0.3mm 0.4mm 0.5mm
Sample
No.1
1.3594
1.3841
1.4307
1.5168
1.5260
1.5578
Sample
No.2
1.3503
1.3939
1.4430
1.5237
1.5191
1.5590
Sample
No.3
1.3572
1.3797
1.4502
1.5209
1.5321
1.5650
From th
e tab
l
e above, b
o
x
dimen
s
ion
unde
r differe
nt wea
r
state
s
fluctu
ate in
a wi
de
rang
e, having
obviou
s
divisibility. Throug
h longitu
dinal
com
pari
s
o
n
,
the box dim
e
nsio
ns
of sa
me
wea
r
statu
s
fluctuate in a
small range
unde
r the fi
rst worki
ng con
d
ition. It shows that it has a
good repe
ata
b
ility.
(2)
Calcula
t
ion of Inform
ation Dimen
s
ion
Acco
rdi
ng to the informati
on dimen
s
io
n
form
ula whi
c
h wa
s list a
bove, the informatio
n
dimen
s
ion of
tool
we
ar states can be
g
o
t
base
d
on th
e de-noi
sed v
i
bration
sig
n
a
l
s. Table
2 a
r
e
the inform
ation dim
e
n
s
io
ns of
all
we
ar
stat
us an
d thre
e
sam
p
les
und
er t
he first working
condition.
Table 2. Information dime
n
s
ion u
nde
r the first wo
rki
n
g con
d
ition
Tool
w
ear
0.0mm 0.1mm 0.2mm
0.3mm 0.4mm 0.5mm
Sample
No.1
1.5660
1.6385
1.6421
1.6816
1.6939
1.7521
Sample
No.2
1.5669
1.6389
1.6419
1.6811
1.6929
1.7524
Sample
No.3
1.5658
1.6392
1.6425
1.6823
1.6935
1.7538
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 187 – 1
9
4
192
From Ta
ble
2, the information dime
ns
io
n ch
ang
es when too
l
s we
ar. Although the
cha
nge
is very little, it can
reflect
the
de
gree
of
deviation fro
m
n
o
rmal workin
g
status of tool
s. At
the same tim
e
, the calcula
t
ion results of
three sa
mple
s are li
sted in
Table 2, whi
c
h refle
c
t it has
good repe
ata
b
ility.
(3)
Calcula
t
ion of Cor
r
el
ation Dimen
s
ion
The pa
ram
e
ter which in
clude
s del
ay amount a
n
d
embed
ding
dimen
s
ion
must b
e
determi
ned b
e
fore
cal
c
ulat
ing tool we
ar correlatio
n d
i
mensi
on. In this pa
per, th
e delay amo
unt
and em
bed
di
ng dime
nsi
o
n we
re d
e
termined by m
u
tual inform
ation theo
ry an
d Ca
o metho
d
.
Takin
g
the first wo
rki
ng co
ndition a
s
example,
the de
lay amount is 2 and emb
e
dding dim
e
n
s
ion
is 21 in every
wear
state
s
. Their valu
es
of co
rrelatio
n dimen
s
ion a
r
e listed in the
Table 3.
Table 3. Co
rrelation dime
n
s
ion u
nde
r the first wo
rki
n
g con
d
ition
Tool
w
ear
0.0mm
0.1mm 0.2mm 0.3mm 0.4mm
0.5mm
Sample
No.1
1.4546
1.6801
2.3421
4.6552
6.9879
10.8707
Sample
No.2
1.4593
1.6824
2.3515
4.6405
6.9746
10.7962
Sample
No.3
1.4449
1.6726
2.3456
4.6623
6.9918
10.9168
From th
e T
a
ble 3, it
sho
w
s that th
e val
ue
of
co
rrelation dim
e
n
s
io
n give
s la
rge
ch
ang
e
with the
ch
a
nge
of tool
wea
r
a
nd
ca
n be
used
to
evaluate th
e
tool
conditio
n
. Similarly, the
correl
ation di
mensi
on
ca
n
be g
o
t in a
n
o
ther
wo
rk
i
n
g co
ndition.
They al
so h
a
v
e the divisi
b
ility
and re
peata
b
i
lity.
3.4. Tool We
ar States Re
cogni
tion
Ba
sed on FCM Clustering
In the experi
m
ent, several
group
s of da
ta under e
a
ch workin
g co
ndition were
colle
cted
to validate t
he effe
ctiveness of the
method. T
a
ki
ng first cond
ition for exa
m
ple, the
cl
uster
identificatio
n pro
c
e
ss i
s
as
follows:
First of all, form a 18
×3 m
a
trix X for being
clu
s
tered
according to
table 1, table
2, an
d
table 3. The
1~3 col
u
mn
s of X are fractal di
me
nsi
ons
when to
ol wea
r
is 0.
0mm. The 4
~
6
colum
n
s of X are fra
c
tal di
mensi
o
n
s
wh
en tool wea
r
i
s
0.1mm. Th
e 7~9
colum
n
s of X are fra
c
tal
dimen
s
ion
s
when tool wear is
0.2mm. Th
e 10~12 colu
mns of X are
fractal dim
e
n
s
ion
s
when to
ol
wea
r
is 0.3m
m. The 13
~1
5 col
u
mn
s of
X are frac
tal
dimen
s
ion
s
when tool
we
ar is 0.4mm. T
h
e
16~18 colum
n
s of X are fractal di
men
s
ions
when to
ol wea
r
is 0.
5mm. The error of obje
c
ti
ve
function i
s
1
0
-5
. The cla
s
sification
numb
e
r is 6. The
cla
ssifi
cation
-matrix
U
can
be obtai
ned
by
FCM alg
o
rith
m. The re
sult
s of
U
are list in table 4.
Table 4. Cla
s
sificatio
n
-m
atrix
U
Classification-matrix
U
(1
-
9
co
lu
mn
)
9.997E-01
9.986E-01
9.988E-01
1.105E-04
1.350E-03
1.324E-03
1.631E-04
3.527E-05
9.846E-05
3.030E-04
1.274E-03
1.106E-03
9.999E-01
9.985E-01
9.985E-01
2.956E-04
6.344E-05
1.778E-04
2.103E-05
8.659E-05
8.127E-05
1.423E-05
1.809E-04
1.566E-04
9.995E-01
9.999E-01
9.997E-01
1.919E-07
7.839E-07
7.561E-07
7.549E-08
9.511E-07
8.486E-07
1.802E-06
3.996E-07
1.102E-06
5.548E-07
2.268E-06
2.183E-06
2.261E-07
2.849E-06
2.538E-06
6.067E-06
1.348E-06
3.712E-06
1.655E-06
6.773E-06
6.495E-06
7.188E-07
9.068E-06
8.053E-06
2.446E-05
5.459E-06
1.500E-05
Classification-matrix
U
(
10-18
column)
1.930E-06
1.557E-05
9.030E-06
3.293E-07
4.836E-06
2.929E-06
1.101E-06
4.842E-05
3.465E-05
2.237E-06
1.806E-05
1.046E-05
3.581E-07
5.260E-06
3.185E-06
1.156E-06
5.087E-05
3.637E-05
3.721E-06
3.013E-05
1.738E-05
4.688E-07
6.890E-06
4.168E-06
1.344E-06
5.924E-05
4.227E-05
5.156E-07
4.103E-06
2.430E-06
6.733E-07
9.771E-06
6.009E-06
1.000E+0
9.994E-01
9.996E-01
3.660E-06
2.890E-05
1.731E-05
1.000E+0
9.999E-01
1.000E+0
6.469E-06
2.912E-04
2.008E-04
1.000E+0
9.999E-01
9.999E-01
1.853E-06
2.739E-05
1.645E-05
2.527E-06
1.121E-04
7.914E-05
Thro
ugh the
definition of classificatio
n
-matrix
U
, the
row
numb
e
r of maximum
of each
colum
n
is
cl
as
sif
i
cat
i
o
n
n
u
mbe
r
.
The r
e
sult
s of
tabl
e 4 coi
n
ci
de
with the a
c
tual re
sult
s. The
c
l
us
ter c
enter
matrix
V
and the corre
s
po
nding
wea
r
s
are list in Ta
b
l
e 5.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Application of Fractal
Dim
ensio
ns and F
u
zzy
Clusteri
ng to Tool Wear Monitoring (Weilin Li)
193
Table 5. Clu
s
ter cent
er ma
trix Pand corresp
ondi
ng wears
Cluster center m
a
trix P
Wears(mm)
1.3556
1.5662
1.4529
0.0
1.3859
1.6389
1.6784
0.1
1.4413
1.6422
2.3464
0.2
1.5606
1.7528
10.8612
0.5
1.5257
1.6934
6.9848
0.3
1.5205
1.6817
4.6527
0.4
The obtain
e
d
cluste
r ce
nter ca
n be a stand
ard
mo
de for tool wear state
s
re
cog
n
ition.
The tool we
a
r
states of a
new
sampl
e
can b
e
determined a
c
cord
ing to the clo
s
en
ess deg
re
e of
the ne
w
sam
p
les to
the
standa
rd m
ode
. Takin
g
a
n
e
w
sam
p
le
X
1
as a
n
exa
m
ple, its
wea
r
is
0.2mm in the first wo
rki
ng condition:
X
1
= [1.4131 1
.
6512 2.51
83]
After cal
c
ulat
ing the
clo
s
e
ness d
egr
ee,
what
we
ca
n get the di
stance
D
1
bet
wee
n
X
1
and cl
uste
r centers V are
as follo
ws:
D
1
= [1.070
3 0
.
8405 0.17
44
8.3449 4.4
6
8
1
2.1373]
So the clo
s
e
s
t ro
w bet
we
en
X
1
and cl
uster ce
nters
V
is third. S
o
the we
ar of
the new
sampl
e
0.2m
m, which coi
n
cidi
ng with
the actu
al
co
ndition. Thi
s
tool wea
r
sta
t
es monito
rin
g
method is ve
rified by the experime
n
t in other p
r
o
c
e
s
sing co
ndition
s.
4. Conclusio
n
No
wad
a
ys, fractal theo
ry and fuzzy clu
s
tering a
r
e fro
n
t
ier re
sea
r
ch topics an
d ap
plied to
cla
ssifi
cation
and pattern identificatio
n in many fi
elds for the supe
riority of themselve
s
. Ho
w to
use the two t
heori
e
s to re
cog
n
ize tool wea
r
state
s
is a valuable
resea
r
ch topic. Firstly, wa
velet
theory wa
s u
s
ed to de
-noi
se the ori
g
ina
l
vibration
sig
nals. Secondl
y, the fractal dimen
s
ion
s
were
extracted by
fractal theo
ry, including
box dime
n
s
io
n, correlatio
n
dimensi
on, and informati
o
n
dimen
s
ion. T
he three
ch
ara
c
teri
stic value
s
we
re
use
d
a
s
sta
t
es in
dicato
r for tool
we
ar
monitori
ng. F
i
nally, the fuzzy C-me
an
s cluste
rin
g
al
gorithm
wa
s
use
d
to re
co
gnize tool wear
states.
The expe
rim
ent results sh
ow that: Wav
e
let de-n
o
isi
n
g method ca
n efficiently eliminate
the effect of
noise on f
r
a
c
tal dimen
s
ion
s
. The f
r
a
c
tal
dimen
s
ion
s
of tool we
ar
vibration
sign
als
are
sen
s
itive to tool wea
r
states. The fra
c
tal di
me
nsio
ns ba
se
d on
fractal the
o
ry
can reveal the
unde
rlying in
formation in
the vibration signal
s.
The tool wea
r
states
can
be accurat
e
ly
recogni
ze
d b
y
the fuzzy cl
usteri
ng an
al
ysis on fra
c
ta
l dimensi
o
n
s
. Meanwhile, fuzzy clu
s
teri
ng
analysi
s
, unli
k
e n
e
u
r
al n
e
tworks
whi
c
h
need
a la
rge
numb
e
r
of sample
s to le
arn,
can
gre
a
tly
redu
ce th
e di
agno
si
s time
and
can b
e
u
s
ed fo
r re
al-ti
m
e monito
rin
g
; this metho
d
ca
n also b
e
use
d
for othe
r con
d
ition m
onitorin
g
area
s.
Ackn
o
w
l
e
dg
ements
This p
ape
r
is supp
orted
by the Fu
ndame
n
tal Rese
arch F
u
n
d
s for th
e
Central
Universitie
s
-SWJT
U
1
2
CX
039.
Referen
ces
[1] Sun
Ba
o
y
ua
n.
T
he Intelli
ge
nc
e Monitor
i
ng T
e
chn
i
qu
e of C
u
tting Proc
ess
. Dali
an: Dal
i
a
n
Universit
y
of
T
e
chnolog
y Pr
ess. 1999: 1-
2
0
.
[2]
T
e
ti R,
Jemielniak K, O'Do
n
nell G, Dornfe
l
d
D. Advance
d
Monitori
ng of Machi
n
in
g Ope
r
ations.
CIRP
Anna
ls—Man
u
f
acturing T
e
ch
nol
ogy
. 20
10; 59(2): 71
7-7
3
9
.
[3]
Roth Joh
n
T
,
Djurd
ja
novic D
r
aga
n, Yang
Xiao
pin
g
. Qualit
y a
nd Insp
ecti
on of Machi
n
i
n
g Operatio
ns:
T
ool Conditi
o
n
Monitori
ng.
Journal of
Manufactur
i
ng
Science a
n
d
Engin
eeri
n
g
.
2010; 13
2(4
)
:
041
01
51-0
4
1
0
151
6.
[4]
Abel
lan-
Neb
o
t, Jose Vice
nte, Romero S
ubir
ó
n
F
e
rnan
do. A
Revie
w
Of Mac
h
ini
ng Mo
nitor
i
ng S
y
stems
Based o
n
Artifi
cial Intel
lig
enc
e Process Mo
d
e
ls.
T
he Intern
ation
a
l Jo
urna
l
of Advance
d
Manufactur
i
ng
T
e
chno
logy
. 2
010; 47(
1-4): 2
37-2
57.
[5]
X
i
aoli Li. A Brief Revie
w
: Acoustic Emission Me
tho
d
for
T
ool W
ear Monitori
ng D
u
ring T
u
rning
.
Internatio
na
l Journ
a
l of Mach
ine T
o
o
l
s an
d Manufactur
e
. 2
002; 2(2):1
57-
165.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 187 – 1
9
4
194
[6]
Kassim AA, Mi
an Z
hu, M
a
n
n
a
n
MA. T
ool Co
nditi
on C
l
ass
i
fi
cation
Usin
g H
i
dde
n Mark
ov
Mode
l Bas
e
d
on F
r
actal An
al
ysis of Mac
h
in
ed Surface T
e
xtures.
Machin
e
Vision a
nd Ap
plicati
ons
, 2
0
0
6
; 17(5): 32
7-
336.
[7]
Jun
y
a
n
Ya
ng,
You
y
u
n
Z
h
a
ng,
Yon
g
she
n
g
Z
h
u. Intell
ige
n
t F
ault D
i
a
gnos
is
of Rol
l
i
ng B
eari
ng B
a
sed
o
n
SVMs and F
r
a
c
tal Dime
n
sio
n
.
Mechanic
a
l S
ystems a
nd Si
gna
l Processi
n
g
. 2007; 2
1
(5): 201
2-20
24.
[8]
Pan F
u
, W
e
ili
n
Li, Li
qin Z
h
u. Cutting T
ool W
ear Mo
nitori
ng
Based
on W
a
v
e
let D
e
-no
i
sin
g
and F
r
acta
l
T
heor
y
.
Appl
ie
d Mecha
n
ics a
nd Materi
als
, 2
011; 48-
49: 34
9-35
2.
[9]
Xu Yu
xiu, Ho
u
Rongta
o
, Yan
g
W
enpi
ng. Ap
plicat
i
on of Ge
nera
l
F
r
actal Dimensi
on to C
oup
lin
g F
ault
Diag
nos
is.
Chi
na Mech
anic
a
l
Engi
neer
in
g
, 2001; 14(
21): 18
12-1
814.
[10]
Ron
gge
n Ya
n
g
, Ming
w
u
R
e
n. W
a
velet D
e
-N
ois
i
n
g
Usi
ng Pri
n
cip
a
l
Comp
one
nt A
nal
ysis.
Ex
per
t
Systems w
i
th Appl
icatio
ns
. 2
011; 38(
1): 107
3-10
76.
[11]
Vid
y
a
H A,
T
y
agi
Bin
d
i
a
, Kri
s
hna
n V.
Rem
o
val
of
Interfer
ences
from P
a
rtial D
i
sch
arge
Puls
es Us
in
g
Wavelet T
r
ansform.
T
e
lkomni
ka.
2011; 9(
1): 107-
114.
[12]
Yang Z
h
engm
i
n
, Yin And
o
n
g
. F
ault Reco
gnit
i
on of Ve
hicl
e
T
r
ansmission
Gear Base
d on
T
i
me Series
Anal
ys
is
a
nd F
u
zz
y
Cluster.
T
r
ansactio
n
s
of the C
h
i
nes
e Soci
ety of A
g
ricult
ural M
a
c
h
in
ery
. 20
04
;
24(2): 12
9-1
3
3
.
[13]
U
y
un S
hof
w
a
t
u
l, Ri
adi
Ima
m
. A F
u
zz
y
T
opsis
M
u
ltip
le-
A
ttribute D
e
cis
i
on M
a
kin
g
for
Schol
arsh
i
p
Selection
.
T
e
lk
omnik
a
. 201
1; 9(1): 37-4
6
.
[14]
Y Ashke
naz
y.
T
he Use of
Ge
nera
lize
d
Infor
m
atio
n
Dim
ens
ion
in
Me
asuri
n
g F
r
actal
Dim
e
n
sio
n
of T
i
me
Series.
Statisti
cal Mech
anics
and its App
lic
ations
. 19
99; 27
1(3-4): 42
7-44
7.
[15]
Pan F
u
, W
e
ili
n Li, W
e
i
q
in
g
Cao. F
a
u
l
t Dia
gnos
is
of Bear
ings B
a
sed
on
T
i
me-Dela
y
e
d
Correl
a
tio
n
Demo
dul
atio
n and F
u
zz
y Cl
u
s
tering.
Adva
n
c
ed Materi
als
Rese
arch
. 20
1
1
; 211-2
12: 51
0-51
4.
Evaluation Warning : The document was created with Spire.PDF for Python.