TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 65
7
9
~ 658
6
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.646
6
6579
Re
cei
v
ed Ap
ril 10, 2014; Revi
sed
Jul
y
8, 2014; Accept
ed Jul
y
18, 2
014
Modelling of Single Stage Inverter for PV System Using
Optimization Algorithm
Karthick S P*
1
, Karthigai
v
e
l
R
2
, Helen Catherine R L
3
1,2
Department of Electrical &
Electron
ics,
PSNA Coll
eg
e of Engi
neer
in
g & T
e
chnolog
y,
Dini
d
i
gul, T
a
milna
du, Indi
a -6
246
22
3
Departme
n
t of Electrical & El
ectronics, Sri K
r
ishn
a
Col
l
eg
e of
Engin
eer
ing &
T
e
chnol
og
y,
Coimb
a
tore, T
a
miln
ad
u, India
-6410
08
*Corres
p
onidng author, e
-mail: karrthicksp@gmail.c
o
m
1
, karthi.mtech@gm
a
il.com
2
,
rl.hel
encath
e
ri
ne@
gmai
l.com
3
A
b
st
r
a
ct
MPPT
control
alg
o
rith
m a
nd
lossless
inv
e
rter c
an be i
m
p
r
ovin
g
the efficiency of
ph
otovolta
i
c
system
. Amount of solar r
adiation ex
pos
ed
on the
panel is
affected by
buildings and tree
shadows. Such
partia
lly sha
d
e
d
cells le
ad to
the
existence
of multip
le
mpps an
d the p
r
obl
em c
an be
regard
ed as
a
n
opti
m
i
z
at
ion
pr
obl
e
m
. T
he co
ntrol a
l
g
o
rith
m
na
me
d se
ek
er
opti
m
i
z
at
ion
al
gorith
m
(s
oa)
i
s
impl
e
m
ente
d
i
n
this pap
er to find the gl
ob
al
mp
p inste
ad lo
cal maxi
ma o
b
t
aine
d in cas
e
of conventi
o
n
a
l
perturbati
on a
n
d
observ
a
tion
(p
&o)
meth
od, i
n
crementa
l
co
n
ductanc
e
and
other s
o
luti
on
meth
od
olo
g
i
e
s. Sw
itching
los
s
es
are min
i
mi
z
e
d
by sing
le stag
e
inverter confi
g
uratio
n.
The pr
opos
ed syste
m
output volt
a
g
e
is a rectified si
ne
w
a
ve. Simulati
on
mo
del
is d
e
vel
ope
d i
n
ps
im th
at cou
p
l
e
s soa a
l
gor
ith
m
co
de
d in
matlab. F
i
n
a
lly
it w
i
l
l
improve th
e ov
erall
efficiency
and re
duc
e the
sw
it
ching loss
es of the solar
photov
olta
ic system.
Ke
y
w
ords
: opt
imi
z
a
t
io
n al
gori
t
hm (seek
er), mp
pt, buck bo
ost singl
e stag
e inverter
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Today’s Po
wer en
gine
er f
o
cu
s on im
proving
the u
s
a
ge of naturall
y
repleni
sh
ed
energy
sou
r
ces
su
ch
as sunlight,
wind, etc. So
lar en
ergy
fin
d
s ap
plicatio
n in variou
s
area
s li
ke sol
a
r
heater,
sola
r coo
k
e
r
, day lighting an
d many.
Solar
syste
m
conve
r
ts sunli
ght
into
electr
i
c
ity, usin
g
photo
v
oltaic (PV) cell
s. To
overcome th
e dra
w
ba
cks,
particle
swa
r
m ba
sed co
ntrol algo
rith
ms we
re dev
elope
d for higher
power utilization from panel
[3].
The metho
d
we ad
opted i
s
PSO that is an effective and sim
p
le M
e
ta heuri
s
tic
method
for obtainin
g
optimize
d
sol
u
tion. In sect
ion I
of the p
aper, the pro
posed Single
stage invert
er
config
uratio
n
is discu
s
se
d. Single sta
ge bu
ck
b
o
o
s
t
inverter configuration can
p
e
rfo
r
m tw
o
tasks. It either bu
cks
or
boo
sts the
p
anel’
s
out
put
DC voltag
e
and
conve
r
ts it into AC. As a
result, the e
n
t
ire ci
rcuit is
redu
ce
d in
confi
guration
and i
s
m
o
re
comp
act.
Th
e adva
n
tage
s of
prop
osed sin
g
le stage
i
n
verter
are
that
it has better
gain, a
nd le
ss
swit
chin
g lo
sses .The
out
put
voltage of a
device
ca
n b
e
adju
s
ted
a
s
pe
r the
dut
y cycle. T
he
conve
r
ter i
s
operated th
ro
ugh
MPPT contro
ller that is co
ded with Opti
mizati
on al
go
rithm in orde
r to obtain maximum power
from the pan
el.
2. Single Stage Buc
k
Boo
s
t Co
nv
erter
An inverte
r
o
perate
s
to
co
nvert direct
curr
ent (DC) t
o
alternating
curre
n
t (AC).
U
se of
inverter
circui
ts plays a vital role to improve
the efficien
cy of Solar pan
els. Th
e variable
DC
output of the panel i
s
co
nverted into d
e
sirable
DC
and
then to AC in
orde
r to co
n
nect it with th
e
utility grid. PV system inv
e
rters
can
act
as M
a
xi
mum
power point trackers
when cont
rolled
wi
th
approp
riate
control
algo
rith
ms. Efficien
cy of pan
el
i
s
i
m
prove
d
by
a
dopting
si
ngl
e sta
ge i
n
vert
er
config
uratio
n [4] as sho
w
n i
n
Figure 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
79 – 658
6
6580
2.1. Existing Conv
erter Problems
Buck Bo
ost
conve
r
ters o
perate
s
ha
rd
switch
ing
which
rise th
e
switching lo
sses a
nd
stre
ss a
c
ross the
conve
r
ter in
conve
n
tio
nal meth
od
s [
5
]. Output Po
wer level f
r
o
m
the i
n
verte
r
is
redu
ce
d due
to current rip
p
les. Amon
g the singl
e sta
ge and two stage inverte
r
config
uratio
n
s
,
two
stage
sy
stem h
a
ving
more
no
of
switch
es. E
n
e
r
gy lo
ss is m
o
re
due
to m
o
re
stag
es of
conve
r
si
on. T
o
overcome t
hese pro
b
lem
s
, a buck bo
o
s
t conve
r
ter i
s
ado
pted.
2.2. Methodo
log
y
Adopte
d
A single
stag
e inverter
co
mes o
u
t with redu
ce
d num
ber of switchi
ng co
mpon
en
ts whi
c
h
in turn mi
nimi
ze
s the
swit
ching lo
sse
s
[6]. Loss r
edu
ction i
s
al
so a
c
hieve
d
du
e to sin
g
le e
nergy
conve
r
si
on
stage. Switch
es
are
turn
e
d
O
N
at
fun
damental
fre
quen
cy to
re
duce
swit
chi
ng
losse
s
. Cu
rre
nt ripple
s
are redu
ce
d by in
cludi
ng in
d
u
ct
or topolo
g
y. It is necessa
ry
to decide the
desi
r
e valu
e
of indu
ctor to
increa
se th
e
output vo
ltag
e level. Outp
ut voltage of
the co
nverte
r is
based o
n
dut
y cycle. It op
erate
s
in di
scontin
uou
s m
ode to a
c
hie
v
e unity power facto
r
. Th
e
prop
osed
co
nverter’
s g
a
i
n
is in
crea
sed by
√
2
than
that of co
n
v
entional
co
nverters. Th
e
c
onverter effec
t
Figure 1. Block
Diag
ram f
o
r Prop
osed
Model
After the co
n
v
ersio
n
sta
g
e
the output o
f
c
onverte
r i
s
boo
st DC vo
ltage only. By using
the H-b
r
idge
inverte
r
we
can
obtain
th
e si
nu
soidal
AC voltage.
Usi
ng
semi
sinusoidal P
W
M
pulse we givi
ng the g
a
te p
u
lse to th
e switch
es.
An
d
the output of
the inve
rte
r
conne
cted
wit
h
the
load o
r
g
r
id.
Becau
s
e
of this
conve
r
si
o
n
we
re
du
ce
the losse
s
a
nd imp
r
ove t
he voltage
g
a
in.
Here the ma
in obje
c
tive of the syste
m
is us
ed to
improve the
efficiency of
the system
by
redu
cin
g
the
system ene
rgy
co
nver
sio
n
by redu
cin
g
the
stag
es
in the
co
nverter sy
stem
also
here we ana
lyzed some pape
rs
fo
r
o
u
r
refere
nc
e
there th
ey mentione
d di
fferent different
method
s they introdu
ced t
o
improve th
e efficiency
o
f
the system also the
r
e wil
l
be a proble
m
in
all the sy
ste
m
is they a
r
e
not able to
extract
the m
a
ximum po
we
r d
u
ring
day tim
e
too. But there
the thing i
s
i
n
case
if we
used m
e
ch
anical tra
c
kin
g
mea
n
s tha
t
need
a
se
parate
po
we
r to
operate the system and it too having two times
one i
s
singl
e axis tracking
syst
em and anot
her
one is d
ual
axis tra
cki
ng
system the
main di
ffere
n
c
e bet
wee
n
the sin
g
le axi
s
and
dual a
x
is
tracking sy
stem is they
wi
ll track the sunlight in
one directio
n only but in dual axis it
will
track
both the axis ultimately the system will give more
efficiency compare to single axi
s
tracking but
i
t
con
s
um
es m
o
re
po
we
r th
at nee
d a
servo motors to
move the
pa
nel in
two
axi
s
b
u
t ultimate
ly it
rise
s th
e initi
a
l cost of th
e
system
and
that ne
ed m
o
re mainte
nan
ce the
s
e m
u
ch
dra
w
b
a
cks a
r
e
in t
h
e
me
cha
n
ical
t
r
a
c
king
sy
st
em b
u
t
i
n
ca
se
if
sup
p
o
se
it
i
s
st
an
dalon
e
sy
st
e
m
mea
n
s
t
hat
not
requi
re
d just
comp
are the
overall effici
e
n
cy
of the m
e
ch
ani
cal tra
cki
ng
system
and
stand
al
one
system
mea
n
s
that give
s
some
differe
nce
in thei
r
o
u
tput, but tha
t
also if it i
s
a thermal b
a
s
ed
system if we need the
r
mal
energy a
s
a output
mean
s that system
gives more
output and th
e
mech
ani
cal tracking give
s
better efficie
n
cy but t
he o
v
erall cost of
the system i
s
some
wh
at high
comp
are to their
colle
cto
r
material.
Here the sy
stem
co
st is
some
what different
how m
ean
s t
he
sola
r photovo
l
taic gen
erato
r
that pv cost
also
hig
h
bu
t the system gives very le
ss p
e
rfo
r
ma
n
c
e
and the
effici
ency al
so
vary depen
ds up
on the m
a
te
ri
al and
co
st al
so va
ry dep
e
nd up
on the
type
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modellin
g of Single Stage
Inverte
r
for P
V
System
Usi
ng Optim
i
zation Algorithm
(Karthi
ck S P
)
6581
of materi
al h
e
re
we h
a
vin
g
the
s
e
mu
ch
problem
s
we a
r
e fa
cin
g
t
o
in
stall the
p
v
system
for this
we h
a
ving a
optimal
soluti
on is to extract the m
a
ximum po
we
r f
r
om the
solar panel
by u
s
i
n
g
different type
s of el
ectroni
c tra
c
king
me
thod is
called
maximum p
o
w
er poi
nt tra
c
king. T
he MP
PT
controlle
r will
get the in
put
from the
sol
a
r p
hot
ovoltai
c
outp
u
t an
d
comp
are with
the refe
re
nce
and g
ene
rate
a pa
rticul
ar
gate pul
se
a
nd give to
th
e switch
es. T
hen o
n
ly we
get the d
e
si
red
output. And
we fo
cu
se
d
on the
maxi
mum p
o
wer
point trackin
g
control u
s
i
ng o
p
timization
algorith
m
.
3. Simulation Resul
t
The
wo
rkin
g
of the p
r
op
o
s
ed
mod
e
l i
s
verified fo
r i
t
s efficie
n
cy
usin
g two
si
mulation
softwa
r
e, PSIM and MAT
L
AB. MPPT control al
go
rithm is
develo
ped in
MATL
AB environm
ent.
Re
sults obtai
ned
prove
s
t
hat the
pro
p
o
s
ed
See
k
e
r
o
p
timization
b
a
se
d MPPT
control al
go
rithm
in more effect
ive in finding global optima
l
solu
tion. Th
e algorithm
converg
e
s for
redu
ce
d num
ber
of iterations
as compa
r
ed
with that of
PSO
appro
a
c
h. Figu
re 2 indicates the
circuit diagram
dra
w
n u
s
ing
PSIM software in this circu
i
t diagram tha
t
compri
se
s solar pv whi
c
h
is cou
p
led
with
singl
e stage
conve
r
ter
wh
ich co
nvert
s
the
lo
w
vo
lta
ge d
c
to hi
g
h
voltage
d
c
and
that to
o
conve
r
ts in a
c
voltage in a single sta
ge here
we
co
nsider a load a
s
re
sistive an
d inductive lo
ad
also that con
necte
d with the grid. Also in th
is simul
a
tion that havin
g a extra com
pone
nt is:
Figure 2. Pro
posed PSIM Model for Si
n
g
le Stage Inverter
Config
uration
Maximum po
wer p
o
int tracker
whi
c
h
extract the
maximum power from
the sola
r
photovoltai
c
panel
which contin
uou
sly indicates the
power a
c
cord
ing to their in
solatio
n
. For
the
simulatio
n
pu
rpo
s
e
we
can
modify the isolation le
vel
according to
our
conve
n
ie
nt becau
se if
we
want to
che
c
k the
o
u
tput
for p
a
rticula
r
ratin
g
sola
r
panel
ou
tput
mea
n
s we
can
cha
nge
th
e
rating an
d also chan
ge thei
r insol
a
tion like for mornin
g
that will be l
e
ss and mid
noon is in pe
ak
and eveni
ng
it redu
ce
s th
e level so
ea
sily we
c
an
check thei
r ou
tput ac
cordin
g to their in
p
u
t
strategy and the
pa
ramete
rs we have
t
o
give
to set
the
ope
n circuit
voltage and sho
r
t
ci
rcuit
curre
n
t from t
he curve
we
can
get the
maximum po
wer
and
due
to the level of insolatio
n
ea
sily
we
can
get th
at maximum
power o
u
tput. And the rem
a
ining fig in
di
cate
s the volt
age a
nd
curren
t
level of the p
anel a
nd
out
put po
we
r fro
m
the
conv
e
r
ter. That n
e
e
d
a fee
dba
ck
loop
whi
c
h
gives
the contin
uou
s monito
ring t
o
the mppt bl
ock whi
c
h ve
rify the output with the refe
rence and
gives
the app
rop
r
ia
te gate pul
se
prod
uce an
d
gives to
the
converte
r for t
he gate
sign
a
l
.fig 9 indicat
e
s
the wo
rki
ng
operation of
the co
nv
erter and the
cycl
es of the
swi
t
ching in th
e
circuit an
d the
remai
n
ing
waveform
s
sh
ows the
outp
u
t voltage
a
nd o
u
tput
cu
rre
nt of the
prop
osed
sy
stem
whi
c
h
simul
a
ted in
po
wer sim
u
lation
software
an
d t
he la
st figu
re
sh
ows th
e
maximum p
o
w
er
extraction
fro
m
the
pan
el
usin
g the
p
r
o
posed
opt
imi
z
ation
alg
o
rit
h
m
which
si
mulated i
n
M
a
t lab
whi
c
h the co
ding having
the man
ba
sed se
arch al
gorithm ultim
a
tely that is called
see
k
er
optimizatio
n
algorith
m
. After thi
s
we wi
ll disc
u
ss th
e
hard
w
a
r
e im
plementatio
n
and
re
sults
in
next chapte
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
79 – 658
6
6582
Figure 3. Input Waveform
s of PV Panel
Figure 4. Ref
e
ren
c
e a
nd Carri
er Wavefo
rm
Fi
gure 5. Pulse Wi
dth Mod
u
lation for Mo
sfet
Figure 6. Modes of Op
erat
ion for the Co
nverter
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modellin
g of Single Stage
Inverte
r
for P
V
System
Usi
ng Optim
i
zation Algorithm
(Karthi
ck S P
)
6583
Figure 7. Output Voltage Acro
ss DC-DC
Conve
r
ter
Figure 8. Output Voltage Acro
ss Single
Stage
Inverter
Figure 9. Output of Optimization Algo
rit
h
m usin
g Mat
l
ab
PV system si
mulation mo
d
e
l is develo
p
e
d
in PSI
M software. PSIM provide
s
facili
ty of co
simulatio
n
wi
th MATLAB. Thu
s
the M
PPT control
algorith
m
is i
n
terfaced
wit
h
PSIM mod
e
l
throug
h Sim Cou
p
ler M
o
d
u
le
4. Experimenta
t
ion And
Resul
t
Before im
ple
m
enting th
e
hard
w
a
r
e
pa
rt first we an
al
yzed the
diffe
rent type
s of
analysi
s
we
analy
z
ed
in ou
r l
o
cal
zone th
e
kno
w
the p
e
rfo
r
ma
nce
of the
sol
a
r i
n
sol
a
tion.
So first
initially
we u
s
ed th
e basi
c
sola
r irradiation m
e
te
r to colle
ct th
e sola
r in
sola
tion in our
area and
we to
ok
in differe
nt timings in
cont
inuou
s m
ann
er a
nd
we u
n
derstood
that
mid no
on h
a
v
ing more
sol
a
r
insol
a
tion.
Then
we u
s
e
d
the voltmeter an
d amm
e
ter to analy
z
e
the open
circuit voltage an
d sh
ort
circuit cu
rrent
in different insolatio
n
whi
c
h
we analy
z
e
d
and sh
own the grap
hical diagram whi
c
h
is p
a
rticula
r
y for th
e 10
0
w
sola
r p
a
n
e
l which h
a
ving thin
film materi
al am
orph
ou
s. in t
h
e
h
a
r
dw
ar
e
p
a
rt w
e
us
ed
3
in
d
u
c
t
o
r
s
2 95
μ
H fo
r the
conve
r
ter an
d on
e 3.4m
H for the
filter, 3
MBR40
250
G
diode
s
and
o
ne
RURG
806
0 dio
de, 2
ca
pacito
r
s 11
m
F
an
d 1.2
μ
F,
wa
s con
s
t
r
uct
e
d
usin
g
fou
r
switche
s
while
the conve
r
ter swit
ch.
h
e
re we co
ntrol
th
e
mo
del by
a
pplied
u
s
ing
PIC
microcontroll
er
kit to
prod
uce
the P
W
M mod
u
lation
sig
nal fo
r th
e switch. Fig
u
re
10,
11, 1
2
, 1
3
sho
w
s the VI, solar
radi
atio
n variation an
d
output po
wer of the sola
r panel is
sho
w
n.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
79 – 658
6
6584
Figure 10.
Experim
ental Setup to Find
Panel
VI Chara
c
teri
stics
Figure 11.
Ou
tput Voltage of the Inverter with
LC Filter
Figure 12.
Ou
tput voltage of different pan
els
Figure 13. Power vs Volta
g
e
of the Solar PV Pane
‐
2
0
2
4
6
8
10
12
14
0
5
10
15
20
Power,
W
Voltage,
V
1000
W/m2
900
W/m2
800
W/m2
700
W/m2
600
W/m2
500
W/m2
400
W/m2
300
W/m2
200
W/m2
100
W/m2
100
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modellin
g of Single Stage
Inverte
r
for P
V
System
Usi
n
g Optim
i
zation Algorithm
(Karthi
ck S P
)
6585
Figure 14. VI Cha
r
a
c
teri
stics of the Solar PV Panel
Figure 15. Ou
tput Pulse fro
m
the Optoco
upler
to Turn the Mos
f
et Switch
Figure 16.
Ou
tput Voltage of the Inverter
without L
C
Filter
Figure 17.
Ou
tput Voltage of the Inverter with LC Filte
r
The voltag
e
output of th
e
inverte
r
i
s
9
5
ohm
resi
sti
v
e load
and
the in
put volt
age
(PV
voltage) of 1
8
V. Figure
1
5
sh
ows the
pulse wi
dth
modulatio
n fo
r the Mo
sfet, Figure 16
sh
ows
the output sq
uare
wavefo
rm without L
C
filter, Fi
gu
re 17 sho
w
s t
he output
sin
e
wave fo
r the
inverter with
LC filter,
the
sha
pe i
s
sin
u
s
oid
a
l
a
nd
h
a
s a small
v
o
ltage rippl
e.
That wavefo
rms
taken
from
the di
gital si
g
nal o
s
cillosco
pe
whi
c
h in
di
cate
s the
vol
t
age, current
and
pul
se
with
modulatio
n of the hard
w
a
r
e
prototype sy
stem mod
e
l
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
79 – 658
6
6586
Finally, it is clear that the
hard
w
a
r
e
system
has the f
eature of mo
re d
c
gain, a
nd less
co
st, and le
ss switching l
o
ss an
d hig
h
efficien
cy. The me
asure
d
experi
m
ent
al efficien
cy
wa
s
about 84%.
7. Conclusio
n
The tech
nolo
g
y indicate
s
to give better effici
en
cy to the system
with the sin
g
le stag
e
inverter co
nfiguratio
n
that c
onve
r
si
on
lo
sses are red
u
c
ed.
Sin
c
e b
o
t
h DC-DC
co
nversi
on a
nd
DC-
AC co
nversi
on are pe
rfo
r
med in
sin
g
l
e stage, the
overall
circuit configu
r
at
ion is
com
p
act.
De
cre
a
se in
numbe
r of switch
es d
e
creases the
co
st. Seeke
r
o
p
timization
b
a
se
d MPPT control
algorith
m
ex
actly tra
c
ks
global
optima
l
sol
u
ti
on i
n
st
ead l
o
cal o
p
tima, a m
a
jo
r disadvanta
g
e
of
earlie
r propo
sed meth
od
s. Maximum powe
r
tra
cki
ng
is done eve
n
at partially sha
ded
condi
tion
s
of the cells. I
n
future
we
can u
s
e th
e sa
me inverte
r
fo
r differe
nt types of l
a
test n
ano m
a
terial
sola
r
pv to get the
different types of perfo
rma
n
ce.
Referen
ces
[1]
SB Kjaer, JK
Peders
en, F
Blaab
jer
g
. A revie
w
of singl
e-ph
ase gr
i
d
-con
necte
d i
n
verters for
photov
olta
ic modu
les.
IEEE Trans. Ind. Appl.
, 2005; 41(
5): 1292
–1
306.
[2]
Q Li, P W
o
lfs.
A revie
w
of the sing
le p
has
e
photov
oltaic
modu
le i
n
tegra
t
ed conv
erter topo
log
i
es
w
i
t
h
three differe
nt DC link co
nfig
u
r
ations.
IEEE Trans. Power Electron.
, 200
8; 23(3): 13
20
–13
33.
[3]
R W
a
i, W
W
ang. Grid-conn
ec
t
ed photov
olta
i
c
gener
ation s
y
stem.
IEEE Trans. Circuits
Syst.-I
, 2008;
55(3): 95
3–
963
.
[4]
M Anderse
n, B Alvsten.
20
0W
low
cost
mo
du
le inte
gra
t
ed ut
ility inter
f
ace formodu
la
r photovo
l
tai
c
ener
gy systems.
Proc. IEEEIECON. 1995: 5
72–
57
7.
[5]
A Lohn
er,
T
Me
y
e
r, A Nage
l. A
ne
w
pa
ne
l-in
te
gra
t
able
inv
e
rter
conc
ept for
gri
d
-con
nect
e
d
photov
olta
ic s
y
stems.
Proc. IE
EE Int. Sym
p
. I
nd. Electron.
, 1
996: 82
7–
83
1.
[6]
DC Martins, R
Demo
nti. Grid conn
ected PV
s
y
stem us
in
g tw
o
en
erg
y
pro
c
essin
g
stages
.
Proc. IEEE
Photovo
l
t. Spe
c
. Conf.
, 2002: 164
9–
165
2.
[7]
T
Shimizu, K
W
ada, N
Nak
a
mura. F
l
yb
ac
k-t
y
pe
si
n
g
l
e
-p
hase
util
it
y int
e
ractive
inv
e
rter
w
i
th
p
o
w
e
r
puls
a
tion d
e
co
upli
ng o
n
the
dc inp
u
t for an ac photov
olt
a
ic mod
u
le s
ystem.
IEEE Tr
ans.
Power
Electron.
, 20
06
; 21(5): 126
4–1
272.
[8]
N Kasa, T
Iida,
L C
hen. F
l
yb
a
ck inverter
con
t
ro
lle
d b
y
s
ens
orless c
u
rrent
MPPT
for photo
v
oltaic
po
w
e
r
sy
s
t
e
m
.
IEEE Trans. Ind. Electron.
, 2005; 5
2
(4): 114
5–
115
2.
[9]
Chu
nhu
a
Liu,
KT
Chau,
Xia
o
don
g Z
h
a
ng. A
n
Effi
cie
n
t W
i
n
d–Ph
o
tovo
ltaic
H
y
bri
d
Ge
ner
ation
S
y
ste
m
Using
Do
ubl
y Excite
d Per
m
ane
nt-Magn
e
t
Brushless
Machi
ne.
IEEE Transactions on Industria
l
Electron
ics
. 20
10; 57(3).
[10]
SB Kjaer, F
Blaab
jerg. D
e
sig
n
optimiz
atio
n of a
sing
le p
h
a
se inv
e
rter fo
r photov
oltaic
app
licati
ons
.
Proc. IEEE Power Electron. Spec. Conf.
, 200
3: 1183
–1
19
0.
Evaluation Warning : The document was created with Spire.PDF for Python.