TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 3, March 2
015,
pp. 467 ~ 47
5
DOI: 10.115
9
1
/telkomni
ka.
v
13i3.714
0
467
Re
cei
v
ed
De
cem
ber 4, 20
14; Re
vised Janua
ry 1
5
, 20
15; Accepted
Jan
uary 27, 2
015
Multi-Carrier based 27-level H
y
brid Multi-level Inverter
Interface with PhotoVoltaic
P.Kiruthika*,
Ram
a
ni Ka
n
n
an
K.S.Rangas
am
y Co
lle
ge of T
e
chno
log
y
/ An
n
a
Univ
ersit
y
,
K.S.R Kalvi Na
gar, T
i
rucheng
ode,
Nam
a
kkal
-
627
215/C
h
e
n
nai, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: kiruthikam
ah
esh5
10@
gmai
l
.
com
A
b
st
r
a
ct
T
h
is pa
per
pre
s
ents a M
u
lti-
Carrier
Puls
e
W
i
dth
Mod
u
l
a
ti
on co
ntrol f
o
r
a Sin
g
l
e
-ph
a
se
27-l
e
ve
l
Hybrid Mu
lti-Le
vel Inverter for phot
ov
olta
ic systems. Multi-C
a
rier Puls
e Wid
t
h Modul
ation t
e
chn
i
qu
e uses
a
easy
ma
pp
ing
to ge
nerat
e g
a
t
e sig
nals
for t
he i
n
verter.T
he
Maxi
mu
m Po
w
e
r Point T
r
ac
king
is ca
pa
ble
of
extracting
max
i
mu
m p
o
w
e
r fr
om PV
array c
onn
ected
to e
a
ch
DC
link
a
g
e
vo
ltage
stag
e. T
he M
a
xi
m
u
m
Pow
e
r Point T
r
ackin
g
al
gorith
m
is so
lve
d
by
Pertur
b a
nd Observer
meth
o
d
.T
his is do
ne t
o
acco
mp
lis
h h
i
g
h
ener
getic perf
o
rmanc
e w
i
th
low
T
o
tal Harmo
n
ic Distort
i
o
n.T
he grad
es are co
mp
ared
w
i
th conventi
ona
l
Multi-Lev
el Inv
e
rter in terms
of inferior T
H
D is
obtai
ned and
the 27-l
e
v
e
l
Hybri
d
Muti
-Leve
l
Inverter
is
simulat
ed by u
s
ing MAT
L
AB/
simuli
nk.Si
m
ul
ated res
u
lts ar
e avai
la
ble to v
e
rify the usefu
l
ness an
d acc
u
r
a
cy
of the prop
ose
d
met
hod. This
propos
al ca
n be eas
ily
exte
n
ded to a
n
n-lev
e
l inv
e
rter for PV system
Ke
y
w
ords
: multi-lev
e
l invert
er, m
u
lti-carrier pulse widt
h m
o
dulation,
photovolta
ic system
, total
har
monic
distortio
n
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
As the worl
d is ap
preh
ensive
with
fossi
l
-
fuel ex
hau
stion an
d
ecol
ogical
probl
em
s
cau
s
e
d
by
convention
a
l p
o
we
r
pro
d
u
c
tion, rene
w
abl
e en
ergy
sou
r
ce
s, m
a
inly
sola
r
and
wi
nd
energy, have beco
m
e very trendy and
difficult. P
hotovoltaic (PV) sou
r
ces a
r
e
used tod
a
y in
many appli
c
ations be
ca
use they h
a
ve t
he advantage
s of being protection an
d free
contami
natio
n [1-5]. Sola
r-ele
c
tri
c
-e
ne
rgy obli
gatio
n
ha
s devel
op
ed
con
s
iste
ntly by 20%–2
5%
per an
num
o
v
er the
pa
st
20 exi
s
ten
c
e,
whi
c
h
is
mai
n
ly due
to th
e dimi
nishi
n
g
expen
se
s
a
nd
price. It has
some
conditio
n
s
su
ch a
s
a
n
gro
w
in
g co
mpeten
ce of
sola
r cells,
m
anufa
c
turin
g
and
techn
o
logy i
m
provem
ents.
The m
e
chani
sm
of PV pro
ductio
n
syste
m
s i
s
quickly
ri
sing
due
to
co
ncern
s
rel
a
ted to
surro
undi
ngs,
global
warm
ing, ene
rgy p
r
ecaution
s
, tech
nolo
g
y improvem
ents
and de
crea
si
ng
co
st
s.
Ho
wev
e
r,
P
V
pr
odu
ct
ion
sy
stem
s have two m
a
in tro
uble
s
t
hat is little
co
nversi
on
ene
rgy
in little irra
dia
t
ion co
ndition
s an
d the
qu
antity of
elect
r
ic
po
wer ge
nerate
d
by P
V
arrays va
ri
es
con
s
tantly wit
h
weath
e
r co
ndition
s. The solutio
n
of so
lving these p
r
oblem
s are di
scusse
d [3-4].
A lot of Maximum Power
Point Tra
cki
n
g
(MPPT) al
gorithm
s a
r
e
there but h
e
re Pe
rturb
and
observe
r
(P&O)
method
can b
e
u
s
e
d
becau
se th
ey are
simple
a
nd e
a
sy
to e
x
tract maxim
u
m
power from th
e panel.
A PV inverter, which is a
n
important el
ement
in the PV system, is used to ch
ange d
c
power from
the
sola
r m
o
d
u
le into
a
c
po
wer
.
The
n
e
e
d
of
seve
ral
source
s
on th
e DC sid
e
of
the
conve
r
ter ma
ke
s multilevel
tech
nolo
g
y
gorg
eou
s fo
r PV appli
c
ati
ons. Be
ca
use the M
u
lti-L
e
vel
Inverters
(ML
I
) [6-7]
are
cl
assified i
n
to t
w
o type
s na
mely Di
stin
ct so
urce
an
d
Multisou
rce
MLI.
Distin
ct so
urce MLI ha
s
only one
DC sou
r
ce
and
remai
n
ing a
r
e the Ca
pa
ci
tors o
r
Cl
am
ping
Diod
es.O
ne type of Distinct source MLI is the
Neut
ral
Point Clamp
ed (NP
C
) ML
I or also kno
w
n
as
Diod
e Cl
a
m
ped Inve
rte
r
(DCI
). The
DCI
creat
e t
he small
ste
p
of stai
rcase output volt
age
from several levels of DC
capaci
to
r voltage
s. The other type of Distin
ct sou
r
ce MLI is Flying
Cap
a
cito
r (F
C) MLI. It require
s hug
e n
u
mbe
r
of cap
a
citors to cla
m
p the device voltage to one
cap
a
cito
r voltage level [8]. Multisou
rce MLI has n
u
m
ber of DC source
s dep
e
nding u
pon t
he
voltage levels ea
ch with
one H-bri
dge
conne
cted t
o
a DC source. De
pendi
n
g
on the voltage
levels the ma
gnitude
of th
e voltage so
urce will
cha
nge. By usin
g the H-bri
d
g
e
topology, three
habitually u
s
ed voltage synthesi
s
ba
sed multile
vel
inverters are Ca
scade
d H-b
r
id
ge (CHB),
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 467 – 4
7
5
468
Hybrid
(H) a
nd
New Hyb
r
id (NH) M
L
I. The fun
c
tion
s of the
s
e M
L
Is a
r
e i
denti
c
al a
s
that of t
h
e
Distin
ct so
urce MLI. This type of
multilevel inverter can avoid ex
tra clampi
ng di
ode
s
or volta
ge
balan
cing
ca
pacito
r
s.M
a
n
y
method
s of
Pulse
Wi
dth
Modulatio
n (PWM) te
ch
ni
que
s
a
r
e u
s
e
d
to
control the inverter.In thi
s
27-l
e
vel HMLI choo
sin
g
a Multi-Ca
rrie
r
Pulse
Width Mod
u
l
a
tion
techni
que [9-11] (MCP
WM
) becau
se it can be u
s
ed
to
eliminate the
side-ban
d ha
rmoni
cs and I
n
conve
n
tional
15-level
HML
I, the THD co
nsid
era
b
ly high whe
n
com
pare to the 2
7
-level HM
LI. It
is con
c
lud
ed
that the THD
will be
re
du
ced with
i
n
cre
a
se
s of level
s
. Then o
n
ly p
r
opo
se
d met
h
od
can b
e
used for the high p
o
w
er a
ppli
c
atio
ns.
2.
Photov
olt
a
ic Sy
stem
A photovoltai
c
sy
stem i
s
a
system
whi
c
h
use
s
o
ne o
r
more
sol
a
r p
anel
s to conv
ert solar
energyinto el
ectri
c
ity. It consi
s
ts of num
erou
s
co
mp
o
nents, a
s
well
as the ph
oto
v
oltaic modul
es,
mech
ani
cal a
nd ele
c
tri
c
al
asso
ciate
s
a
nd mou
n
ti
ng
s and me
an
s of regul
ating
and/or
modifying
the ele
c
trical
output [12-14
]. PV
cells are made
of se
micon
d
u
c
tor
equipm
ent a
s
silicon. Fo
r solar
cell
s, a skin
n
y
semicond
u
c
tor
wafer i
s
particula
rl
y treated to form
an
ele
c
tric fi
eld, optimisti
c on
one
side
an
d
dep
re
ssi
ng
on the
other.
While
light
energy stri
ke
s the
sol
a
r
cell, elect
r
on
s are
kno
c
k sh
apel
ess from the
atoms in the semi
con
d
u
c
tor fab
r
ic b
u
t electri
c
al
con
d
u
c
tors a
r
e
emotionally i
n
volved to th
e po
sitive a
n
d
ne
gative
si
des, fo
rm
an
electri
c
al
ci
rcuit, the ele
c
trons
can b
e
captu
r
ed in the
sh
ape of an
stimulating
current - that is,
electri
c
ity. Th
is ele
c
tri
c
ity can
then be u
s
ed
to powe
r
a lo
ad. In Figure
1 sho
w
s the PV system st
ructu
r
e.
Figure 1. PhotoVoltaic System
2.1. Equiv
a
le
nt Circui
t of
PV
The ba
sic
eq
uivalent ci
rcui
t of a PV cell
is gi
ven in th
e Figu
re 2. A
n
ideal i
s
mo
deled
by
acu
r
rent
sou
r
ce i
n
p
a
rall
el
with
a dio
d
e
.
Ho
we
ver no
sol
a
r
cell
is i
deal
and th
ereby shunt
an
d
seri
es resi
stances
are added to
the model.Single-crystal silicon,
P
o
lycrystalli
ne
silicon, Gallium
Arse
nide
(Ga
A
s), Cadni
u
m
Telluri
de
(CaTe),
Cop
per
Indium Di
sel
e
nide th
ese
are the
mate
rials
are u
s
ed in th
e sola
r cell.
Figure 2. Equivalent Circuit
of Solar Cell
In the Equation (1
) sh
ows
the solar
cell
par
am
eters to the output cu
rrent and o
u
t
put voltage,
I
L
I
D
I
SH
R
SH
+
_
V
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Multi-Carrier
based 27-level Hybrid M
u
lti-level Inve
rte
r
Interface wit
h
PhotoVoltai
c
(P.Kiruthi
ka
)
469
1
(1)
2.2. Chara
c
teristics o
f
PV
This
point i
s
mostly the
kn
ee poi
nt of th
e cu
rve. Thi
s
point at
whi
c
h the maxim
u
m po
wer
that can be
obtaine
d fro
m
the PV module is
kno
w
n as MAXI
MUM POWE
R POINT usually
referred
a
s
M
PP. This
can
be infe
rre
d from that
the P
o
wer vs
. Volt
age
Charac
teris
t
ics
that there
is o
n
ly one
p
o
int at
whi
c
h
the po
we
r i
s
maximu
m. Fi
gure
3
sh
ows the P –
V
ch
ara
c
teri
stics
of a
PV module.
Figure 3. P-V Characte
ri
stics of PV Mod
u
le
2.3. Maimum Po
w
e
r Poin
t Tracking Al
gorithm
To extort the maximum powe
r
from the panel Maxi
mum Powe
r Point Trackin
g
Method
can b
e
used. This MPP varies with
cha
n
ge in tempe
r
a
t
ure, irradian
ce and loa
d
.
Figure 4. Flow Ch
art for P
&
O Algorithm
Many of the MPPT metho
d
are availa
b
l
e
but we a
r
e cho
o
si
ng Perturb and o
b
se
rver
(
P&O
)
me
th
od
b
e
c
a
us
e it is
s
i
mp
le
. Th
e P&O
a
l
g
o
r
i
thms
ac
tiva
te
by s
p
or
a
d
i
c
a
lly In
c
r
e
m
en
tin
g
or d
e
creme
n
ting the a
r
ray terminal volta
ge o
r
current
and
comp
ari
n
g the PV out
put po
wer wit
h
that of the e
a
rlie
r pe
rturb
a
tion cy
cle.
Time compli
cation of this
al
gorithm is
very less. Cost of
executio
n is l
e
ss and h
e
n
c
e easy to exe
c
ute.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 467 – 4
7
5
470
3. Topolog
y
of the
H
y
brid Multile
v
e
l Inv
e
rter
A fundament
al con
s
tructio
n
of a singl
e
pha
se HM
LI is shown in Fi
gure
5. Every inverter
use
s
a dc v
o
ltage to spa
w
n a mod
u
la
ted volt
age at the output termin
als. Th
e entire outp
u
t
voltage is o
b
tained by the
sum of e
a
ch
individual
o
u
tput voltage. Every inverte
r
is tale
nted t
o
prod
uce thre
e output volt
age level
s
, that is, +vd
c
,
−
vdc, a
nd
0. The level
of HMLI
can
be
con
s
id
ere
d
b
y
using the
gi
ven formul
a 3
s
. Where S is a numb
e
r of
stage
s, therefore 3
3
=27 l
e
vel
HMLI [15]. To propo
se the
numbe
r of switche
s
ac
co
rdi
ng to the Stages that is 3
H
-bri
dge inve
rter
module
s
with
different d
c
voltage sources .Every
H-bridg
e
have
4 switch
es
a
nd the q
uanti
t
y o
f
swit
che
s
u
s
e
d
in the HMLI
is 12. Here, Figure
5
sho
w
s th
e con
s
truction
of the hybrid m
u
ltilevel
inverter.
Figure 5. Single Phase Hy
br
id Multi-Lev
el Inverter
The inve
rter
use
s
a o
r
din
a
ry three-l
e
g
inve
r
t
er
an
d a
n
H
-
b
r
idg
e
w
i
th
its
D
C
s
o
ur
ce
in
seri
es
with e
a
ch p
h
a
s
e le
g. The output
voltage v
1
(3v) of this first leg of the top
inverter is g
oes
to ON stat
e.
For
a d
e
p
r
e
s
sing
half
cycl
e this le
g is
c
o
nn
ec
te
d
in s
e
r
i
es
w
i
th
a
fu
ll
H
-
b
r
idge
,
whi
c
h, in
revolve, is
co
mp
lete by a
sup
p
ly volt
age. 2
7
outp
u
t level
s
can
be
o
b
tained
by va
ri
ous
swit
chin
g sta
t
es of ea
ch
H-b
r
id
ge
cell
. The sw
itchi
ng state
s
a
n
d
the outp
u
t values
hybrid
inverter a
r
e gi
ven in Table
1.
Table 1. Outp
ut Voltage And Switchin
g States
Of The
Hybrid M
u
lti Level Inverter
S=3
4. Multi-Ca
rrier Pulse Wid
t
h Modula
t
io
n Techniqu
e
To Cont
rol the output voltage of the inverter
, we can
go for the PWM tech
niqu
e. It can
be u
s
ed to
carryin
g information on
a
edu
cate of p
u
lse
s
, the inf
o
rmatio
n is
e
n
co
ded i
n
the
width
of each p
u
lse. This tech
nique h
e
lps
in maintainin
g a con
s
tant
voltage [16]. A modulation
approa
ch for
MLI is given in Figure 6.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Multi-Carrier
based 27-level Hybrid M
u
lti-level Inve
rte
r
Interface wit
h
PhotoVoltai
c
(P.Kiruthi
ka
)
471
Figure 7. Modulation App
r
oache
s for M
L
I
In the
level-shifted PWM
method
s, the
carrie
rs of th
e mo
dule
s
ha
ve a frequ
en
cy off ca
r
= 1/Tsw
whe
r
e the fre
que
ncy of the carri
er
sign
al
is inversely
prop
ortio
nal to the switchi
n
g
perio
d of the
device.Th
e re
feren
c
e volta
ge, on
the ot
her h
and, ca
n have value
s
of the ra
ng
e
−
MVdc an
d M
V
dc. To wrap
the total voltage range, th
e ca
rrie
r
s are
shifted vertically, so that the
carrie
r of the
first modul
e covers th
e ra
n
ge from
zero
to Vdc, while
the se
con
d
covers th
e ra
n
g
e
from Vdc to 2
V
dc. The la
st module cove
rs the voltage
from (M
−
1)V
d
c to MVdc.
There are th
ree
kind
s of level
shifted mod
u
lation techni
que
s, nam
ely
Phase O
ppo
sition Di
sp
osi
t
ion, Alternative
Phase
Op
po
sition Di
spo
s
iti
on ,Pha
se
Di
spo
s
ition.In t
h
is
we
are
ch
oosi
ng the
p
hase op
po
sition
disp
ositio
n (P
OD) be
cau
s
e
the carrie
rs
above the
referen
c
e
point,
are out of p
hase with tho
s
e
belo
w
ze
ro, b
y
180 degree.
5. Anal
y
s
is
of Simulation Resul
t
s
At the instant prop
osed 27
- level HMLI
can b
e
sim
u
l
a
ted by usin
g
Matlab/Simul
i
nk tool
box. He
re
co
mpare the T
HD
re
sult
of
conve
n
tional
13 level into
prop
osed 2
7
-level HM
LI with
MCPWM met
hod u
s
ing M
A
TLAB/Simulink
system. In the co
nven
tional MLI, ca
rrie
r
wave PWM
method can
be used to b
e
pulse gene
ration divisi
o
n
.In the Figure 7 sho
w
s that the simulat
i
on
block of the
MCPWM and also it
will
gi
ven the pulses for each
switches. Here
12 switches
are
available be
cause of the Hybrid MLI. So we
nee
d 12 pulses fo
r each switch
es. In Figure
8
sho
w
s the si
mulation outp
u
t of the POD method.
Figure 7. Multi-Ca
rri
er Pul
s
e Width Mod
u
lation
techni
que
Figure 8. Simulation Outp
u
t
of Pulses fro
m
Phase
Oppo
sition Dispo
s
ition Method
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 467 – 4
7
5
472
Table 2. Co
m
pari
s
ion of Conv
ention
a
l a
nd Prop
osed
Method
Parameters
Conventional To
polog
y
Proposed Metho
d
Number of S
w
itc
hes
28
12
Sw
itching Losses
Mor
e
Less
Energ
y
Conversi
on
Efficiency
Less
More
Sw
itching Str
e
ss
Mor
e
Less
THD(
%)
13.58
3.02
In Figure 9
sho
w
n th
at the T
HD val
u
e of
15 l
e
vel
HMLI by F
a
st Fou
r
ie
r Transfo
rm
analysi
s
.In th
e co
nvention
a
l metho
d
T
HD val
ue
i
s
high
com
pared to that
of the propo
se
d
27-
level Hybrid
Multilevel Invert
er i
s
sh
own in Figure 10
.
Figure 9. THD Re
sult
s of 15-level Inve
rter
Figure 10. Ou
tput Voltage of the 27-leve
l Hybrid MLI
Figure 11. THD Re
sult
s of 27-level Inve
rter
0
5000
1
0000
1500
0
-2
5
0
-2
0
0
-1
5
0
-1
0
0
-5
0
0
50
10
0
15
0
20
0
25
0
Ti
m
e
i
n
s
e
c
V
o
lt
a
g
e
in
V
o
lt
s
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Multi-Carrier
based 27-level Hybrid M
u
lti-level Inve
rte
r
Interface wit
h
PhotoVoltai
c
(P.Kiruthi
ka
)
473
In the Figure
9 sho
w
s the conve
n
tional
THD valu
e th
at is the THD value is 13.5
8
% and
the Figu
re
11
sho
w
s p
r
op
o
s
ed
THD val
ue that
i
s
3.0
2
%.Here the
THD value
wi
ll be d
e
crea
ses
by incre
a
si
ng
the level of the MLI.
5.1. Solar Ra
diation Re
so
urce Asse
s
m
ent
The i
n
tensity
of sola
r radi
ation
rea
c
hin
g
ea
r
t
h
s
u
r
f
ac
e
w
h
ic
h
is
13
6
9
w
a
tts
p
e
r
s
q
ua
r
e
meter is
kno
w
n a
s
Solar
Con
s
tant, by usin
g sol
a
r irradian
ce tra
cking the maximum po
wer f
r
om
the pa
nel. F
r
ee
ho
rizo
n, Strong
net
work
co
nne
ct
ivity
,
Safety
& Security, Elec
tromagnetic
interference, Easy accessi
b
ility to
site, these are the availability of
the site sel
e
ction. Based
on
this Ta
miln
adu h
a
s 7
numb
e
r
o
f
station
s
that is Ka
raiku
d
i, Kayathar,
Che
n
nai,
Rama
natha
p
u
ram, Vello
re
, Trichy, Erod
e. The
s
e
st
ations
are
sele
cted d
ue to t
h
eir latitud
e
and
longitud
e
.He
r
e we
are in e
r
ode
dist
rict
station ID
is 1
827. So
we
can an
alysi
s
the SRRA dat
a
s
for pro
p
o
s
ed
system. Ba
sed o
n
the followin
g
pa
ra
meters SRRA can be
ca
lculate
d
. Glo
bal
Hori
zo
ntal Irradia
n
ce (G
HI), Air
Te
mperatur
e
(AT)
,
W
i
nd dir
e
c
t
ion (WD
)
, D
i
rec
t
Nor
m
al
Irradi
an
ce (DNI), Relative Humidity (RH), At
mosp
heri
c
Pre
s
su
re (AP), Diffuse
Hori
zo
ntal
Irradi
an
ce (DHI), Rain A
c
cumulation
(RA*), Wind Sp
eed (WS).
Table 3. SRRA Data for Ju
ne 201
4
In the Table
3 sho
w
s the
SRRA data f
o
r
the
June
month an
d the Table 4
sh
ows the
SRRA data fo
r the Octo
ber
month. By using th
is data
s
easily obtai
n
, the maximum
powe
r
.
Figure 12. Co
mparitive Ch
art for Ju
ne 2
014
In the Figu
re
12 sho
w
s t
he Compa
r
iti
v
e cha
r
t for
sola
r irradi
an
ce in
Ju
ne.
Here the
Global
Hori
zontal Irradi
a
n
ce,
Direct
Hori
zo
ntal
ai
rra
dian
ce
Di
rect
Norm
al Irra
dian
ce
are
comp
ared. G
H
I rea
c
he
s th
e maximum value.So
this p
a
rt only we re
ach maxim
u
m powe
r
.
Table 4. SRRA Data for
Octob
e
r 20
14
0
1
2
3
4
5
6
7
Aver
Min
Max
I
rradiance
in
W/m2
GHI
DNI
DHI
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 467 – 4
7
5
474
In the Figu
re
13 sh
ows th
e Com
p
a
r
itive ch
art
for
so
lar irradi
an
ce
in octob
e
r.
Here the
Global
Hori
zontal Irradi
a
n
ce,
Direct
Hori
zo
ntal
ai
rra
dian
ce
Di
rect
Norm
al Irra
dian
ce
are
comp
ared.DNI rea
c
he
s th
e maximum value.So th
is p
a
rt only we re
ach maxim
u
m powe
r
.
Figure 13. Co
mparitive Ch
art for Octo
be
r 2014
6. Conclusio
n
In this pa
pe
r, MCPWM techniqu
e can b
e
us
ed to
co
ntrol the
outp
u
t voltage of
the 27
-
level HMLI. In the
propo
sed m
e
thod
e
x
hibits that
minimum
THD valu
e
and
get
enh
an
ced
efficien
cy. Th
erefo
r
e th
e p
l
anne
d
sch
e
m
e can
be
u
s
ed
to d
e
velop the
level
of inverte
r
a
nd
redu
ce
s the
h
a
rmo
n
ics. Su
bse
que
ntly this p
r
opo
se
d system can b
e
app
rop
r
iate f
o
r hig
h
voltag
e
and
high
po
wer ap
plications du
e to
th
eir
ability to
synthe
size
waveform
s
with bette
r h
a
rmonic
spe
c
tru
m
an
d also it synt
hesi
s
Little transitio
n lo
ss
of swit
che
s
d
ue to lo
w swi
t
ching f
r
equ
e
n
cy
and re
du
ced
EMI.
Ackn
o
w
l
e
dg
ements
The autho
rs want to than
k AICTE New
Delhi fo
r the
sup
port given
to this work throu
gh
the re
sea
r
ch
work an
d
awa
r
de
d the
“Ca
r
ee
r A
w
ard for Yo
ung Te
achers”
Dr.K.Ram
ani
(
F.No.1
1.8/AICTE/RIF
D
/CAYT/POL-I/2013-14
).
Referen
ces
[1]
JP Benner, L K
a
zmerski. Phot
ovolta
ics gai
ni
ng gre
a
ter visi
bilit
y
. IEEE Spectr
. 1999; 29(
9): 34–4
2.
[2]
J Rodríg
uez, J
Lai, F
Pen
g
. Multilev
e
l i
n
ver
t
ers:
a surve
y
of topol
ogi
es, c
ontrols and a
pplic
atio
ns.
IEEE Trans. In
dustrial Application
. 200
2; 49(
4): 724-7
38.
[3]
S Chin, J G
adson. Max
i
mum Po
w
e
r P
o
int T
r
acker.T
r
ufts Univers
i
ty
Dep
a
rtment
of Electric
a
l
Engi
neer
in
g an
d Comp
uter Scienc
e. 200
3; 1-66.
[4]
R F
a
ran
da, S
Leva.
E
nergy
Comp
ariso
n
of
MPPT
techniq
ues for
PV S
y
s
t
ems.
WSES Transaction
on
Power Systems
. 2008; 3: 446
-455.
[5]
Carrara, Gard
e
lla, Marc
h
e
son
i
, G Sciutto. A ne
w
m
u
ltil
eve
l
PW
M method: A theoretica
l
an
al
ysis.
IEEE
T
r
ans. Pow
e
r Electron
., 19
92
; 7(3): 497–
505
.
[6]
Grath, Holm
es. Multi-carr
ier P
W
M
strategies
for multil
eve
l
i
n
verters
. IEEE
Trans. Ind. Electron
., 200
2;
49(4); 85
8–
867
.
[7]
Raman
i
K, Kri
s
hna
n A. Ne
w
h
y
bri
d
27
lev
e
l
multil
evel
inv
e
rter fed in
ducti
on
motor driv
e.
Internatio
na
l
Journ
a
l of Rec
ent T
r
ends in
Engi
neer
in
g. 20
09; 2(5).
[8]
DG Holmes, BP McGrath. Op
portunities for
ha
rmo
nic ca
nc
ellati
on
w
i
t
h
ca
rrier-bas
ed PW
M for a t
w
o-
level
and mu
ltil
evel casc
ad
ed
inverters.
IEEE Trans. Ind. Appl.,
2001
;
3
7
(2)
:
574–5
82.
[9]
LG F
r
anque
lo,
J Rodrigu
e
z, et.al.
T
he age of multileve
l co
nverters arrive
s.
IEEE Ind.Electron. Mag.
,
200
8; 2(2): 28
–39.
[10]
M Murugesa
n
,
K Ramani, S
T
hangav
el. A H
y
br
id Mult
ileve
l Inverter
w
i
th Re
duc
e
d
Number of
Sw
itches for Induction Motor Drive.
African J
ourn
a
l of Scie
n
t
ific Researc
h
.
201
1; 4(1).
[11]
YS La
i, F
S
S
h
yu. T
opolo
g
y
for h
y
br
id m
u
ltilev
e
l
inv
e
rter. De
partmen
t of Electric
al
Eng
i
ne
eii
n
g
,
Natio
nal T
a
ipe
i
Universit
y
of Techn
o
lo
g
y
.
IEE Proc-Electr.
Power Appl
. 20
0
2
; 149(6).
0
1
2
3
4
5
6
7
8
Aver
Min
M
ax
I
rradiance
inW/m2
GHI
DNI
DHI
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Multi-Carrier
based 27-level Hybrid M
u
lti-level Inve
rte
r
Interface wit
h
PhotoVoltai
c
(P.Kiruthi
ka
)
475
[12]
Moham
ed Aza
b
. Global m
a
xi
mum po
w
e
r p
o
int trackin
g
fo
r partial
l
y
s
h
a
d
ed PV arra
ys
usin
g particl
e
s
w
a
rm optimiz
ation.
Intern
ati
ona
l Journ
a
l of
Renew
ab
le En
ergy T
e
chn
o
lo
gy
. 2009; 1(
2): 211-
235.
[13]
Hsiao
Yin
g
-T
ung, Ch
en C
h
i
n
a-Ho
ng.
Maxim
u
m
power tracking for
photovoltaic power
system
.
37
th
IAS annu
al me
eting i
n
d
u
stri
al app
licati
on
co
n
f
erence
.
20
02; 2:
1035
–4
0.
[14]
K Ram
ani, A
Krish
nan. S
witchin
g Patter
n
Se
l
e
ction
Sc
heme
Base
d
11
leve
ls F
l
yi
ng
Cap
a
cito
r
Multilev
e
l Inver
t
er fed Inductio
n
Motor.
Europ
ean Jo
urn
a
l of Scientific R
e
se
arch
. 201
0; 48
(1): 51-62.
[15]
Valan Rajk
um
ar, PS Manohar
an. Simulation and an experim
ental investigation of SVPWM
techni
qu
eon a
multileve
l volt
age so
urce
inv
e
rter for photo
v
oltaic s
y
stem
s
. Elesvier Ele
c
trical pow
er
and e
ner
gy system.
20
13; 52:
116-
131.
[16]
Shahr
in Md A
y
o
b
, Z
a
ina
l
Sa
lam, Abdu
l Ha
lim Moh
a
med
Yatim. Non-Si
nuso
i
da
l PW
M Method fo
r
Casca
ded M
u
l
t
ilevel
Inverter.
T
E
LKOMNIKA Indon
esi
an
Journ
a
l of E
l
e
c
trical En
gin
e
e
rin
g
.
20
12;
10(4): 67
0~
67
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.