TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5784 ~ 5792
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.607
1
5784
Re
cei
v
ed Fe
brua
ry 17, 20
14; Re
vised
April 8, 2014;
Accept
ed Ap
ril 26, 2014
Simulink Based
Multi Variable Solar Panel Mo
deling
Chan
dani Sharma*
1
, Ana
m
ika Jain
2
Electron
ics & Commun
i
cati
o
n
Engg., Graph
ic Era Univ
ersit
y
, De
hrad
un, U
ttrakhand, Ind
i
a
*Corres
p
o
ndi
n
g
author, em
ail
:
chanda
ni
19n
ov@gma
il.com
1
, anamikaj
ain
2
829
@gma
il.co
m
2
A
b
st
r
a
ct
Solar En
ergy,
the most ab
und
ant an
d w
i
dely
us
ed R
e
new
abl
e Ener
gy is not only
reliab
l
e,
scala
ble b
u
t serves sol
u
tio
n
to glob
al w
a
rmi
ng ar
oun
d the w
o
rld. T
h
is
energy is
us
ed for el
ectrici
t
y
gen
eratio
n us
i
ng Ph
otovolt
a
i
cs (PV) conve
r
ting So
lar En
ergy int
o
el
ectricity. Photovo
l
taics (PV) pla
y
signific
ant r
o
l
e
for future
Dist
r
ibute
d
a
n
d
Re
new
abl
e E
nerg
y
Gener
atio
n
Systems (
D
G). T
h
is stu
d
y is
a
n
effort to vis
ual
i
z
e
si
mulati
on
tool
for s
o
lar
ce
ll
array
un
der r
api
dly c
h
a
ngi
n
g
so
lar r
a
d
i
atio
n a
n
d
te
mp
erat
ur
e
by ins
e
rting
a t
e
st sign
al
in th
e contro
l i
nput.
T
he
mai
n
o
b
j
e
ctive is to fi
nd t
he p
a
ra
meters
of the n
onl
in
ea
r I-
V
and P-V equ
ation by l
o
cati
ng the curve a
t
three poi
nts: short circuit cu
rrent, open cir
c
uit voltag
e an
d
max
i
mu
m p
o
w
e
r. F
u
ture Sma
r
t Grids can be
opti
m
i
z
e
d
if
computer
i
z
e
d
a
nd
des
ig
ned u
s
ing math
e
m
at
ical
m
o
deling and
simulation syst
em
at STC. Case study r
e
lat
i
ve to fa
ctors including weat
her and seas
onal
variati
ons is te
sted throug
h SIMULINK mod
e
l
.
Predict
ed cha
nges ar
e confi
gure
d
for deter
mi
nati
on of MPP.
T
he prop
ose
d
mo
de
l is bas
e
d
on var
i
atio
ns
by chan
gi
n
g
absor
ption
of li
ght w
i
th physic
a
l ins
pecti
ons
for
data corres
p
o
n
d
in
g to low
and
high te
mp
erat
ures.
Ke
y
w
ords
: STC (Stand
ard Test Con
d
itio
ns
)
,
distribute
d
an
d renew
a
b
le
e
nergy g
e
n
e
rati
on syste
m
s (D
G),
irradianc
e, MPP (Maximum
Power Point), SIMULINK
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
India ha
s hi
gh solar i
n
solation with
1500
-2
0
00
sunshine h
o
u
r
s pe
r year
g
enerating
about 6
00T
W of po
wer. At
pre
s
e
n
t sol
a
r ph
otovolta
ic is the
prim
e
cont
ributo
r
t
o
the ele
c
tri
c
ity
infrast
r
u
c
ture
in develo
p
in
g co
untrie
s
. T
he
study of
P
hotovoltaic’
s
descri
b
e
s
ph
ysical
pro
c
e
s
s of
solar
cells by which sun light is
converted into
e
l
ectri
c
al
cu
rrent wh
en it
stri
kes a
suit
able
semi
con
d
u
c
tor devi
c
e. P
hotovoltaic
b
e
ing
co
st
effective are u
s
ed i
n
many
spe
c
ific-pu
r
pose
appli
c
ation
s
,
inclu
d
ing tel
e
comm
uni
cati
ons, lig
hting,
water-p
u
mpin
g and
sig
nali
ng. Appli
c
atio
ns
in ho
spital
s
can b
e
valua
b
l
e in
regi
on
s
with u
n
reli
abl
e conventio
n
a
l en
ergy
so
urces. A
re
cent
appli
c
ation,
showi
ng p
r
om
ising fe
ature
worl
dwi
de,
i
s
a Photovol
taic sy
stem t
hat floats a
n
d
purifie
s wate
r in landlo
c
ked
area
s.
The
fundam
ental
limits of
solar cell are
relative
to
current, voltag
e, or
re
si
stan
ce. T
hey
vary with
ch
a
nge in
irradi
a
n
ce
and
tem
peratu
r
e
co
ntributing
to lo
sse
s
an
d
sol
a
r cell
efficien
cy.
As
su
ch
dete
r
minatio
n of
Maximum p
o
w
er poi
nt fr
o
m
IV and
PV
Ch
ara
c
te
risti
c
s is requi
re
d to
make full utili
zation of PV array output power [1, 2].
1.1. Basic S
o
lar Cell
The mo
st co
mmon
sola
r
cell is
a large
-
area pn j
u
n
c
tion made fro
m
Silicon. Fo
r sili
con
sola
r
cell, de
pletion regio
n
extends
i
n
to
the p-side
be
cau
s
e
of more heavily do
p
ed n
-re
gion
with
built-in Ele
c
tri
c
Fiel
d
(E)
du
e to differen
c
e in F
e
rm
i
Le
vels of
p an
d
n type. As th
e n-sid
e
i
s
ve
ry
narro
w, most
of the photons a
r
e a
b
sorbe
d
within
the depletio
n regi
on an
d
photo ge
nerate
electron
-hole
pairs (E
HPs). These are i
mmediatel
y separated by
E which drifts them apa
rt. An
open
ci
rcuit v
o
ltage
develo
p
s
between
the te
rminal
s
of the
device
with the
p
-
si
d
e
po
sitive a
n
d
n
-
side ne
gative
.
If an external load is con
necte
d t
hen the exce
ss electro
n
in
the n-si
de can travel
arou
nd the
e
x
ternal ci
rcuit
and
rea
c
h th
e p-side to
re
combi
ne
with
the exce
ss h
o
les th
ere. If
the
terminal
s of the device are
sho
r
t
ed, the
n
the exce
ss electron
s in
the n-side
ca
n
flow throu
gh
the
external
circu
i
t to neutralize the exce
ss
hole
s
in
the p
-
sid
e
. This
cu
rre
nt due to t
he flow of ph
oto
gene
rated
ca
rrie
r
s i
s
call
e
d
the photo
c
u
rre
nt [5].
To u
nde
rsta
nd the
el
ectronic be
havio
r of
a
so
l
a
r
cell, it i
s
ne
ce
ssary to
create
its
equivalent
el
ectri
c
al m
ode
l. The mo
del
con
s
tru
c
ted
i
s
ba
se
d o
n
d
i
screte
ele
c
tri
c
al
com
pon
e
n
ts
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
link Based Multi Varia
b
le Solar Pan
e
l Modelin
g (Cha
nda
ni Sharm
a
)
5785
who
s
e
be
hav
ior i
s
well
kn
own. Exp
e
rim
entally be
hav
ior
of solar cell is stu
d
ied
by de
signi
ng
its
dc eq
uivalent
circuit as i
n
Figure 1 [7]. We
con
s
ide
r
an ideal
sola
r cell de
scrib
e
d
usin
g a current
sou
r
ce in pa
rallel with diod
e, serie
s
an
d shu
n
t resi
sta
n
ce a
dde
d to it.
Figure 1. DC
Equivalent M
odel of Solar
Cell
Equation
s
mentione
d bel
ow pri
o
r to sola
r cell co
nstru
c
tion a
r
e modele
d
throu
gh
electri
c
al
com
pone
nts grap
hically de
si
gn
ed in SIMULI
NK. These in
clud
e:
Therm
a
l Voltage Equatio
n
V
T
= k
B
T
OPT
/
q
(
1
)
Diod
e Cu
rren
t Equation
I
D
= N
p
I
S
[e
(V/
N
s) + (IRs
/Ns)/N
V
T
C
-
1
]
(
2
)
Load Curre
n
t
Equation
I
L
= I
Ph
N
p
- I
D
-I
S
H
(3)
Photocu
r
rent Equation
I
ph
= [
k
i
(T
OPT
-T
REF
) +I
SC
] I
R
R
(4)
Shunt Cu
rre
n
t
Equation
I
SH
= (I
R
S
+V
)/
R
S
H
(5)
Reverse Satu
ration Current
I
S
= [
I
RS
(T
OPT
/T
REF
)
3
*q
2
Eg/N k
B
* e
(1/T
OPT
-1/T
REF
)
(6)
Reverse Cu
rrent
Equation
I
RS
= I
SC
/ [e
(q
V
OC
/k
i
CT
OPT
)
-
1
]
(
7
)
Output Powe
r
P
=
V
I
(
8
)
Standard Te
st Con
d
itions (STC) is fol
l
ow
e
d
for implementin
g a
bove equatio
ns with
values of pa
rameters an
d con
s
tant
s eq
ual to the one
s mention
ed i
n
Table 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 578
4 –
5792
5786
Table 1. STC and other Pa
ramete
rs Stu
d
ied In De
scri
bing Sola
r Ce
ll
SYMBO
L
PA
RA
M
E
T
E
R
NA
M
E
VALUE
V
T
Thermal
Voltage
Variable
V Oper
ating
Voltag
e
Variable
V
OC
Open ckt voltage
21.1 V
I
SC
Short ckt current
3.8 A
I
S
Diode Reverse S
a
turation
Curre
nt
2*10-4 A
I
ph
Photocurrent
Variable
I
Cell Output Cu
rr
ent
Variable
T
REF
Reference Temp
erature of
cell
25
°C
T
OP
T
Oper
ating
Temp
erature
Variable
R
SH
Shunt Resistance of Cell
360.002
Ω
R
S
Series Resistance of Cell
0.18
Ω
Eg Energ
y
B
and
Ga
p
1.12eV
N Ideality
Factor
1.36
k
B
Boltzmann constant
1.38 × 10-23 J/K
k
i
Curre
nt Propo
rtio
nality
constant
2.2*10
-
3
q
Electron charge
1.602 × 10
-
19
C
G Irradiance
1000W/m
2
N
s
No. of cells in series
Variable
N
p
No. of cells in parallel
Variable
C
No. of Cells in module
Variable
2. Simulink
Modelling
Equation
(1
) t
o
(8
) m
ention
ed for op
erati
ng ba
si
c
sola
r cell a
r
e m
o
d
e
led u
s
in
g Si
mulink.
Modelin
g is d
one for ST
C usin
g physi
ca
l system
s at compon
ent level instea
d eq
uation
s
.
Thus
com
p
let
e
Subsyst
e
m
formulation
and re
presen
tation of equ
ations i
s
achi
eved b
y
SPS (Simulink to Physical Signal) and PSS (Physi
cal to Simulink Signal) blocks given in
Figure 2.
Figure 2.Com
p
lete Subsy
s
tem Model
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
link Based Multi Varia
b
le Solar Pan
e
l Modelin
g (Cha
nda
ni Sharm
a
)
5787
2.1 STC (Sta
ndard Te
st Conditions
)
The ele
c
trical
output
of sol
a
r pan
els
is m
easured i
n
watts. T
h
e
r
e
are
several
scen
ario
s
durin
g whi
c
h
sola
r pan
els rea
c
h thei
r maximum ou
tput. High no
on is p
eak ti
me as it is t
h
e
hottest pa
rt
of the day.
Whe
n
it is n
o
t rain
in
g o
r
sno
w
in
g an
d
ski
es
are cl
ear,
sola
r pa
nels
prod
uce m
a
ximum effici
en
cy. The
STC
for
sola
r
cell
modelin
g i
s
t
e
mpe
r
ature
o
f
25°
C
(29
8
.1
5K)
and a
n
irra
di
ance of 1
000
W/m
2
.
Other con
d
ition
s
in
clude
altitud
e
angle with pe
rpen
dicular
sun
and optimu
m
tilt of panel. The location of
site sele
cted
is also co
nsi
d
ered.
Single
cell
o
u
tput is maxi
mum
with 2
0
%
efficien
cy
coveri
ng
100
cm
2
(0.01m
2
) s
u
r
f
ac
e
area
produ
ci
ng 2.0
watts
of po
wer. Sin
g
le
sola
r
cell
output mo
del
ed at ST
C i
s
plotted by IV
and
PV Chara
c
te
ristics gra
p
h
s
given belo
w
in Figure 3 an
d 4.
Figure 3. IV
Grap
h Ch
ar
a
c
t
e
ri
st
ic
s of
S
o
lar
Cell
Figure 4. PV
Grap
h Ch
ara
c
teri
stics of Solar
Cell
An interse
c
tion of IV and
PV Charact
e
rist
i
cs
are u
s
ed fo
r dete
r
mination of
Maximum
Powe
r Point
(MPP). MPP refers to PV u
n
ique
ope
rati
ng poi
nt deliv
ering
maximu
m po
wer givi
ng
highe
st efficie
n
cy of sola
r cell or an a
rray
.
It varies with
solar i
rra
dian
ce an
d tempe
r
ature.
The valu
es f
o
r va
riou
s
p
a
ram
e
ters at
MPP for si
ngle
sol
a
r
cell are V
OC
=21.096V,
I
SC
=3.7981A and
P
MA
X
=75
.
32W.
Experimentall
y
when
singl
e
sola
r cell is
model
e
d
ab
o
v
e para
m
eters is in
dicated
throug
h
intersectio
n
o
f
IV and PV g
r
aph
s a
s
in Fi
gure 5.
Figure 5. SIMOUT Scope
Cha
r
a
c
teri
stics of Solar Cel
l
Irradi
an
ce an
d temperatu
r
e largely affect IV and PV
grap
hs for
sin
g
le sola
r cell.
Thus fo
r
prop
er mo
nitoring, a
rray o
f
solar
cells i
s
used. Sola
r panel
s con
s
ist of solar cells. As one
sin
g
le
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 578
4 –
5792
5788
sola
r cell doe
s not produ
ce sufficie
n
t e
nergy for
m
o
st purpo
se
s, sola
r cells a
r
e put togethe
r in
sola
r pan
els
so that they produ
ce m
o
re
electri
c
ity join
tly.
Gene
rally an
array of 36 or 72 cell
s is const
r
u
c
ted.
Comme
rci
a
ll
y these pane
ls prove
best
fo
r pra
c
tical
ap
plica
t
ions of stre
et
li
ghting
a
nd
wate
r h
e
a
ting
system
s. Th
e va
rio
u
s
para
m
eters for
array o
u
tputs
wh
en
model
is va
ried fo
r different cells result in T
able
2
observation
s:
Table 2. Arra
y Output
CELLS IN
A
R
R
A
Y
SIMOUT
RE
A
D
I
N
GS
VO
LTAG
E V
OC
CURREN
T
I
SC
PO
WER P
MA
X
36 21.073
3.798
60W
72 21.049
3.797
50W
It is clear that
on increa
sin
g
no. of cells i
n
array, output decrea
s
e
s
.
3. Factor
s Affec
t
ing Simulink Model Results
Many facto
r
s
affect the ene
rgy output of
sola
r en
ergy
system. Som
e
vary like i
r
radian
ce
and temp
erature
whe
r
e
a
s
some
are fixed like seri
e
s
an
d shunt
resi
stan
ce
an
d diod
e ideal
ity
factor. A pro
p
e
r monito
ring
of all these fa
ctors is e
s
sen
t
ial.
In this p
r
op
osed work 3
6
solar
cell
array
is
te
sted fo
r
varying valu
e
s
of tem
perature
and
Irradi
an
ce ma
inly.
3.1. Wea
t
her
Condition
s causing Vari
able Irradian
ce (G
)
The po
we
r of solar e
n
e
r
gy
system to b
e
gene
rated i
s
gre
a
tly red
u
ce
d due to
variou
s
atmosp
he
ric distra
ction
s
. These
i
n
clu
d
e
cl
oudi
ng a
nd sha
d
ing
effects due
t
o
fog, haze and
smog in d
o
m
e
stic o
r
indu
strial are
a
s. Rain and
sno
w
also affect
s solar pa
nel efficien
cy.
For de
scri
bin
g
these
devi
a
tions, Irradi
ance mo
d
e
l is co
nst
r
u
c
ted
using
Co
nst
ant, Step
and T
r
ap
ezoi
dal si
gnal
s. V
a
riation
s
relat
ed to differ
ent
sign
als
re
sult
cha
nge i
n
ch
ara
c
teri
stics
o
f
sola
r cell a
s
d
e
scrib
ed in Fi
gure 6, 7 an
d
8.
Figure 6. Vari
able G Outp
u
t
for Array IV
Sc
ope
Figure 7. Vari
able G Outp
u
t
for Array PV
Scope
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
link Based Multi Varia
b
le Solar Pan
e
l Modelin
g (Cha
nda
ni Sharm
a
)
5789
Figure 8. Vari
able G MPP Scope
Output
It is cle
a
r th
at highe
st o
u
tput is
evid
ent
for
Con
s
tant irradian
ce. But in p
r
actical
irra
dian
ce i
s
never
con
s
ta
nt, and vari
e
s
. Ho
weve
r g
r
aphi
cally va
riation is
not very large a
n
d
is
appreci
ably g
ood for tra
p
e
z
oid
a
l sig
nal whe
n
com
p
a
r
ed to step si
g
nal.
Against
this b
a
ckgroun
d, p
e
rform
a
n
c
e
is lar
gely affe
cted
cau
s
in
g h
uge
differe
nces i
n
Fil
l
Facto
r
and Ef
ficien
cy of panel.
Fill Facto
r
is defined
as
maximum sq
uare fitting in
terse
c
tion
of IV and PV curves. It
descri
b
e
s
rati
o of maximu
m power g
e
n
e
rated
by a solar
cell to th
e pro
d
u
c
t of V
OC
and I
SC.
It
is
given by expression FF
=
P
MAX/
V
OC
I
SC
.
This
in turn deteriorates
Effic
i
enc
y
(
η
) d
e
fined a
s
out
put
of po
we
r d
e
li
vered
from
solar pa
nel to
i
n
cid
ent p
o
we
r. It is related
to FF
throug
h exp
r
e
ssi
on
η
=
V
OC
I
SC
FF/
/
P
IN.
De
scription of
obse
r
vation
s for MPP is given in Table
3:
Table 3. Irrad
i
ance Effect on Array Outp
ut
C
O
LO
UR
PV/IV
PARA
M
E
TER
SIMOUT
RE
A
D
I
N
GS
IRRADI
ANCE
VOL
T
A
G
E
V
OC
CURREN
T
I
SC
PO
WER
P
MA
X
Constant
21.073
3.798
59.393
Trapezoidal
20.786
3.038
47.120
Step 20.415
2.278
34.615
Fill Facto
r
an
d Efficiency o
f
panel are
ca
lculate
d
in Ta
ble 4:
Table 4. Irrad
i
ance Effect on Array Outp
ut
P
A
R
A
M
E
TER ESTIM
A
T
ED
O
U
TPUTS
IRRADI
ANCE
FILL FAC
T
OR
FF = P
MA
X
/
V
OC
I
SC
EFFICIEN
CY
η
= V
OC
I
SC
FF/
/
P
I
N
Constant
0.742085
98.9883%
Trapezoidal
0.746185
78.5333%
Step 0.744323
57.6917%
As FF i
s
a
measure of t
he "squa
ren
e
ss"
of
the
IV
cu
rve,
a sol
a
r cell with a
high
er
voltage ha
s a large
r
po
ssible FF as
compa
r
ed to l
o
we
r voltage
that takes u
p
less area.
The
maximum the
o
retical FF from a
sola
r ce
ll can
be d
e
te
rmine
d
by differentiatin
g
th
e po
wer from
a
sola
r cell wit
h
respe
c
t to
voltage and finding where
this is equa
l to zero. Th
us metho
d
s to
maintain con
s
tant irradia
n
c
e u
s
ing
Cont
rolle
rs o
r
Battery Banks are desi
r
ed.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 578
4 –
5792
5790
3.2. Effec
t
of Var
y
ing Temperatu
r
e (T
)
Although the
temperature
doe
sn't affect
the
amount
of sola
r ene
rgy received
by sola
r
panel, it d
o
e
s
affe
ct ho
w
much
po
we
r
is obtai
ned.
Panels produ
ce le
ss p
o
we
r from th
e
sa
me
amount of su
nlight as they
start getting
hotter.
On in
cre
a
si
ng tem
peratu
r
e, ba
n
d
gap redu
ce
s
resulting in
crease in rele
ase
of ene
rg
y by ex
ited electron
s du
e to su
n en
ergy. Since the
differen
c
e in
rest
state an
d ex
ited state
of electro
n
s
determi
ne vol
t
age output.
The pa
ram
e
ters
most affe
cted
by increa
se i
n
tempe
r
ature are th
e op
e
n
-ci
r
cuit volta
ge that de
cre
a
se
s a
nd
sho
r
t-
circuit current
that increa
se
s an
d vice ve
rsa. Si
n
c
e th
e
voltage de
creases fa
ster t
han in
crea
se
in
the current, t
he
re
sult i
s
t
hat the
overa
ll efficien
cy g
oes do
wn
a
s
η
=
V
OC
I
SC
FF/
/
P
IN.
But overall
the effect is not very strong so sol
a
r panels
can still function properl
y
even in the summ
er
when
it is hot outsid
e
.
Ho
wever, thi
s
differe
nce
of varying te
mper
ature i
s
insig
n
ificant
and can b
e
controlled
upto 55°
C th
erefo
r
e mo
d
e
l in re
sults
sho
w
chan
ge
s from 5
°
C t
o
55°
C. After 105
°C, sha
r
p
decrea
s
e in
o
u
tput occu
rs.
As pra
c
tically such
hug
e tempe
r
ature is not fea
s
ible
to obtain the
s
e
are not
con
s
i
dere
d
.
The Sea
s
on
al variation of temperatu
r
e on
IV and PV chara
c
teristics is d
epicte
d
in
Figure 9 and
10.
Figure 9. Te
mperature Effect on Array IV
Scope Output
Figure 10. Te
mperature Effect on Array PV
Scope Output
Table 5. Tem
peratu
r
e Effect on Cell O
u
tput
COL
O
R
P
A
R
A
M
E
TER
SIMOUT
RE
A
D
I
N
GS
IV/PV
TEM
P
E
RAT
URE
VOL
T
A
G
E
V
OC
CURREN
T
I
SC
PO
WER
P
MA
X
/
5°C
21.305
3.754
59.829
/
15°C
21.191
3.776
59.651
/
25°C
21.073
3.798
59.393
/
35°C
20.951
3.820
59.064
/
45°C
20.826
3.842
58.670
/
55°C
20.697
3.864
58.218
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Sim
u
link Based Multi Varia
b
le Solar Pan
e
l Modelin
g (Cha
nda
ni Sharm
a
)
5791
Table 6. Tem
peratu
r
e Effect on Cell O
u
tput
P
A
R
A
M
E
TER ESTIM
A
T
ED
O
U
TPUTS
TEM
P
E
RAT
URE
FILL FAC
T
OR
FF = P
MA
X
/
V
OC
I
SC
EFFICIEN
CY
η
= V
OC
I
SC
FF/
/
P
I
N
5°C
0.748059
99.715%
15°C
0.745477
99.41833
%
25°C
0.742085
98.98833
%
35°C
0.737997
98.44%
45°C
0.733251
97.78333
%
55°C
0.727969
97.03%
As ob
serve
d
, huge vari
ations in o
u
tpu
t
s are o
b
served for high
er tempe
r
atu
r
es
a
s
comp
ared to lowe
r one
s. T
h
is variatio
n causes o
u
t
put to vary decre
asin
g efficien
cy and fill factor
cal
c
ulatio
n. This is
well def
ined thro
ugh
Table 5 an
d 6
.
Hen
c
e
si
gnificant
ope
ratin
g
temp
eratu
r
e ne
ed
s to
b
e
sele
cted
when
used i
n
mounting
of fixed pa
ne
l structu
r
e. S
o
metime
s to
make
a
rray l
e
ss temp
erature
dep
end
e
n
t with
se
aso
nal
cha
nge
s, Co
ntrolle
r
i
s
att
a
ch
ed with system.
Th
i
s
delivers conti
nuou
s non
di
storted
outp
u
t
for
off-noon time
whe
n
tempe
r
ature de
crea
ses.
4. Other Fac
t
ors Affec
t
in
g Outpu
t
of
Solar Cells
Many other
factors affect
the energy
out
put of solar en
ergy system. The
s
e a
r
e
descri
bed b
e
l
o
w.
4.1. Shading
The solar e
n
e
r
gy system n
eed
s to be in
stalled in a
n
open a
r
ea n
o
t
influence
d
b
y
shade.
The ene
rgy o
u
tput redu
ce
s, if even a small sectio
n of the sola
r pan
els is shad
ed
. This is due to
variation cau
s
ing
chan
ge
in resi
stan
ce
of sola
r cell.
Both the magnitud
e
of serie
s
and
sh
unt
resi
stan
ce for solar cell de
pend on the
geomet
ry of
cell. These ch
ange
s re
sult shift in operat
ing
point of the solar cell.
Idea
lly standard value
s
have b
een u
s
ed in e
x
perime
n
tal a
nalysi
s
for solar
cell mod
e
l usi
ng fixed R
S
and R
SH.
4.2. Diode Idealit
y
The i
deality f
a
ctor
N, of
a
diode
is a
me
as
u
r
e
of h
o
w
clo
s
ely the
di
ode foll
ows t
he id
eal
diode e
quatio
n. Recombin
ation is limite
d
by minority carrie
rs in Ba
nd to band lo
w level inje
ction
that occu
rs f
o
r
N<=1. Recombinatio
n i
s
limited
by m
a
jority
carrie
rs fo
r b
and
to
ban
d hi
gh l
e
ve
l
injectio
n with
N<=2. Fo
r N=2/3 there are mo
re
m
a
jority ca
rrie
r
s than min
o
rity require
d for
recombi
natio
n. Hen
c
e valu
e of N is ch
osen 1.
32 such that appro
p
ri
ate values a
r
e obtaine
d.
4.3. Proximity
to
the Equator
Site selectio
n
s
nea
rby equ
ator gen
erate
more
ele
c
tri
c
ity power o
u
tput than othe
rs. Thi
s
is du
e to fact that the rate of rotation
of earth
spin
is faste
s
t a
nd sun is ve
rtically ab
ove
at
midday. Gen
e
rally a fixed
mount solar panel lo
cate
d on eq
uato
r
with adju
s
te
d 15
0
angl
es to
clea
n in the rain witho
u
t manual rotation
.
4.4. Dirt
y
Pa
nels
Solar p
anel
s
can
be
come
dirty due to P
o
llution, traffic du
st an
d bi
rd d
r
op
ping
s
leadin
g
to soiling o
n
panel. To
co
mbat this, pa
nels n
eed to
be cle
ane
d regula
r
ly. A solar pa
nel co
nsi
s
ts
of
sola
r cell
s
cove
red by a
protective glass c
oatin
g
.
Physical
in
spe
c
tion
on
perio
dic ba
si
s i
s
done. Some
times, monit
o
ring
device
is atta
ch
e
d
for autom
ated cle
anin
g
and
syst
em
trouble
s
h
ooti
ng if less o
u
tput is dete
c
te
d.
4.5. Contr
o
l Flo
w
Sy
stem
Solar E
nergy
System
can
b
e
mo
re
efficie
n
t by
ma
kin
g
sur
e
it
i
n
cl
ud
es
a
co
nt
rol
s
y
s
t
e
m.
The control
system en
sures that co
nst
ant MPP
is maintaine
d
throu
gho
ut the panel o
peration
irre
sp
ective
o
f
cha
nge
s i
n
i
rra
dian
ce
and
tempe
r
at
ure. Using
control
l
er, qu
antity o
f
lights to
be
l
i
t
or volume of
water th
at ne
eds to b
e
hea
ted in
appli
c
a
t
ions can be
redu
ced. Thi
s
increa
se
s solar
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 578
4 –
5792
5792
energy syste
m
efficien
cy. Solar shingl
e
s
cove
ri
ng e
n
t
ire roof can
also b
e
used
but probl
em
s a
s
the tilt angle can b
e
rem
o
ved us
i
ng ap
propriate
cont
ro
l system.
5. Conclusio
n
This a
r
ticle provides a cl
assificatio
n
of
solar cell pane
l const
r
u
c
tion
techniqu
e ba
sed o
n
fixed numbe
r of control va
riable
s
. The
model i
s
dev
elope
d usi
ng
basi
c
ci
rcuit equatio
ns of
the
sola
r cells i
n
cluding the
effects
of sol
a
r i
rra
diat
ion a
n
d
temperature
cha
nge
s. The
s
e a
r
e follo
wed
by identification of
MPP for
a p
a
rticula
r
a
pplic
ation.
The
re
sult
s
of the
analysis a
r
e
rel
a
ted
to
variable irra
d
i
ance model
in first part o
f
paper.
The
result
s sh
o
w
that the perform
an
ce
s are
approximatel
y
identical u
nder both st
atic
(con
stan
t) and
dyna
mic (t
rape
zoi
dal an
d ste
p
)
con
d
ition
s
. This po
rtion serves a
s
a tutorial
on P
V
device an
d help
s
in u
nderstan
ding
the
para
m
eters that comp
ose the singl
e-di
o
de PV model.
In the
se
con
d
pa
rt, tempe
r
ature va
riations
a
r
e m
e
a
s
ured
du
ring
a yea
r
widely
sp
re
ad
from
rang
e 5
°
C to
55
°C.
The o
u
tputs
are ve
ry
se
n
s
itive
to cha
n
ges
in
tem
p
e
r
ature whe
n
use
d
for dete
r
mini
ng efficie
n
cy.
Simulation a
nd expe
ri
me
n
t
al re
sults
sh
ow the
high
stability and hi
gh
efficien
cy of 36
cell
s P
V
arrays. It is inte
re
stin
g to poi
nt o
u
t that slig
h
t
differen
c
e
s
in
perfo
rman
ce
s co
ntribute
hug
e
cha
nge i
n
fill
factor an
d
efficien
cy. T
o
obtai
n S
T
C,
impleme
n
tation throug
h
digital contro
llers can b
e
applie
d to
minimize e
r
ror fun
c
tion
s for
cha
nge
able irradia
n
ce and
temperature
s
.
6. Future
Wo
rk
Curre
n
tly total energy pro
d
u
ce
d thro
ugh
sola
r is le
ss than 1% of total dema
nd
hen
ce
there is a la
rg
e scope in thi
s
are
a
. Solar
power ge
ne
ra
tion is merely con
c
entrated
in three state
s
Gujarat, Raja
sthan
an
d M
a
hara
s
ht
ra. T
h
ere
are
imm
e
nse
op
portu
ni
ties in
Uttrakhand
where
PV
system
s are being di
stribu
ted and
insta
lled by URE
DA on sub
s
i
d
y basis to meet the lighting
requi
rem
ents.
LED
Ba
se
d Solar Hom
e
Lighting
Sy
stems (SHLs), Solar
Street Lights
and
S
o
lar
Lanterns, a
r
e
among
st few stand-alon
e tech
niqu
es.
Multiple mod
u
les may be
use
d
and o
p
e
rated th
rou
g
h
Governme
nt-funde
d sol
a
r po
we
r
proje
c
ts fo
r G
r
id ge
neratio
n. This
could
prove
b
enefi
c
ial whe
n
u
s
e
d
in re
sea
r
ch
and technol
o
g
y
validation pro
j
ects at vario
u
s level
s
.
Test an
d vali
dation
studie
s
for 3
6
cells array with p
r
ope
r
circuits wa
s sim
u
lat
ed an
d
results
we
re
pre
s
ente
d
he
re. However,
the obje
c
tive
to obtain fix
ed maximu
m
power
point
for
Distri
buted E
nergy Ge
ne
ra
tion Syst
ems
still need
s to be wo
rked up
on.
Referen
ces
[1]
T
a
rak Salmi, M
oun
ir Bo
uzg
u
e
nda, A
d
e
l
Gast
li,
Ahm
ed M
a
s
m
oud
i. MAT
L
AB/Simuli
nk Bas
ed M
ode
lli
n
g
Of Solar Photo
v
oltaic C
e
ll.
Internati
ona
l Jour
nal of Re
new
a
b
le
Energy Research Tarak
Salm
i Et Al
.
201
2; 2(2).
[2]
Dr P Sang
am
es
w
a
r R
a
ju, M
r
G Venkates
w
a
rlu. Simsc
a
pe Mod
e
l of P
hotovo
l
taic ce
ll
.
International
Journ
a
l of Adv
ance
d
Res
earc
h
in Electric
al
, Electron
ics an
d Instrumentati
on Eng
i
n
eeri
n
g
.
2013; 2(5).
[3] URL
http://pveducat
ion.org/pvcdrom/sola
r-cell-operation.
[4]
URL http://phot
ovolta
ic mode
l in MAT
L
AB/simulink.
[5]
Savita Nema,
RK Nema,
Gay
a
tri A
g
nih
o
tri. Matla
b
/simuli
n
k
ba
sed stu
d
y
of ph
otovo
l
ta
i
c
cells/mo
dul
es/arra
y
an
d th
eir e
x
p
e
rime
n
t
al verificati
on
.
Internation
a
l
Journa
l of Energy a
n
d
En
vi
ronm
e
n
t
. 2
010; 1(3): 4
87-
500.
[6]
Pavels
Suskis,
Il
ya Ga
lkin.
E
nha
nce
d
Ph
ot
ov
olta
ic Pa
ne
l
Mode
l for MA
T
L
AB-Simulink
Envir
onme
n
t
Consi
der
ing
S
o
lar
Cel
l
J
unct
i
on
Ca
pacita
n
c
e
.
Industri
a
l E
l
ectronics
Soci
ety
. IECON -
39th A
n
n
ual
Confer
ence
of the IEEE.
2013
.
[7]
Islam MA, Mohammad N Khan PKS
.
Model
i
ng an
d perfor
m
ance a
n
a
l
ysis
of a gen
eral
i
z
e
d
photov
olta
ic
array in Matla
b
. Joint Intern
ation
a
l Co
nfer
ence IN 20
10
on
Po
w
e
r Ele
c
tronics, Drive
s
and Ener
g
y
S
y
stems b
y
IE
EE. 2010.
[8]
Sheko
o
fa O, T
aher
ban
eh
M.
Mode
lli
ng
of si
licon
sol
a
r p
a
n
e
l by
Matla
b
/si
m
u
link
an
d
ev
alu
a
ting
th
e
importa
nce
of its p
a
ra
mete
rs in
a s
pace
ap
plic
atio
n
.
3rd Inter
nati
o
nal
Co
nfere
n
c
e
o
n
R
e
ce
nt
Advanc
es in S
pace T
e
chnologies. RAST
'07 by
IEEE. 2007.
Evaluation Warning : The document was created with Spire.PDF for Python.