TELKOM
NIKA
, Vol. 11, No. 8, August 2013, pp. 45
7
2
~4
579
e-ISSN: 2087
-278X
4572
Re
cei
v
ed Fe
brua
ry 4, 201
3; Revi
se
d
May 16, 20
13; Acce
pted Ma
y 27, 201
3
Micro Device Modeling Method and Design for
Manufacturability
Zheng Liu*, Bo Sun
Schoo
l of Mechatron
i
c Eng
i
n
eeri
ng, Xi’a
n T
e
chn
o
lo
gic
a
l U
n
iversit
y
, Xi’
an
Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: zheng.l
i
uma
i
l
@
gmai
l.com
A
b
st
r
a
ct
T
he
micr
o d
e
vi
ce d
e
sig
n
i
ng fl
ow
beg
ins
w
i
th the
mask
desi
gn c
u
rrently,
w
h
ich
is
not
intu
itive f
o
r
desi
gner
an
d
someti
me
mad
e
the
m
c
onfus
ed. As a r
e
su
lt, the man
u
fa
cturabi
lity is
h
a
rd to
prove
i
n
adva
n
ce w
i
th t
he trad
itio
nal
desi
gni
ng w
a
y.
Especi
a
lly
for
surface
micr
o
-
mac
h
in
ed
dev
ice w
i
th
multi
p
le
structural
layer
s
, the
2D
mask
des
ign
ca
nn
ot ens
ure
the
fab
r
icatio
n of
co
mplex
3D
d
e
vice
w
i
th hi
gh
yi
eld
s
relia
bly. T
he ri
se of structural des
ig
nin
g
strategies g
a
ve a
directi
on to ch
ang
e the traditi
ona
l hab
it. On
the
other ha
nd, th
e top-dow
n
method pr
ovi
des
the adva
n
ced
desig
nin
g
flo
w
,
w
h
ich begi
ns w
i
th the syste
m
level design.
However, th
ere stil
l so
me k
e
y tech
no
log
i
e
s
to stu
d
y furt
her
bec
ause
o
f
the
nove
l
de
si
g
n
proce
dure.
T
o
i
m
pr
ove th
e
ma
nufac
tur
abi
li
ty of
micro
d
e
v
ice, the
d
e
si
gni
ng fl
ow
ba
sed
on
des
ig
n
for
ma
nufactur
abi
li
ty metho
dol
og
y is presente
d
, w
h
ic
h draw
on the adv
a
n
tages
a
nd e
x
peri
ence of t
h
e
mec
h
a
n
ica
l
d
e
s
ign
method.
T
he key tech
n
o
lo
gies
on t
h
e
structural d
e
si
gn l
e
vel, the
p
r
ocesses
pla
n
n
in
g
level
an
d th
e fabric
ating
lev
e
l
are i
n
trod
uce
d
corres
p
o
ndi
n
g
ly. In a
dditi
on
, w
e
present t
he fra
m
ew
ork
to
imple
m
ent the
meth
od.
Ke
y
w
ords
: de
sign for man
u
facturab
ility, mi
cro devic
e,
opti
m
a
l
des
ign, co
mp
uter ai
de
d d
e
sig
n
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Along
with th
e in
cre
a
si
ng
deman
ds, th
e mo
st challe
nge fa
ced
in
micro d
e
vice
area
i
s
the ma
rketization. Th
e traditional
de
si
gning
flow is de
rived f
r
o
m
integ
r
ated
ci
rcuit fab
r
icating
pro
c
e
s
ses,
which
is botto
m-up
flow an
d summa
ri
ze
d a
s
ma
sk-to
-
sh
ape
-to-ve
rify [1]. Taking
the
more
com
p
le
x
st
ruct
u
r
e i
n
t
o
ac
cou
n
t
,
it
makes t
h
e micr
o dev
i
c
e de
sig
n
ing
pro
c
e
ss p
o
o
rly
intuitive and
unreli
able. E
s
peci
a
lly for
surface mi
cr
o
m
achi
ning, it
is too
mu
ch f
o
r the
de
sig
n
e
r to
confirm all t
he processe
s of mu
ltiple layers i
n
advance. Furt
herm
o
re, the more
com
p
lex
stru
cture a
n
d
co
nst
r
aint
wi
ll make thi
s
situati
on
worse. The
r
efo
r
e,
it is the
adv
anced
de
sign
ing
flow to
begi
n
with the
3
D
model f
r
om
which
the fa
bri
c
ating
inform
ation i
s
d
e
riv
ed [2, 3]. Be
cause
this de
signi
n
g
flow is inv
e
rse in contrast wi
th the
traditional o
n
e, howeve
r
, how to b
u
ild
the
relation
shi
p
b
e
twee
n de
sig
n
ing mo
del a
nd the fa
b
r
ica
t
ing pro
c
e
s
s
become
s
an i
m
porta
nt step
to
improve manufacturability. It is also the key
point of the top-down desi
gn methodology [4].
The me
cha
n
i
c
al de
sig
n
ing
tools a
r
e mo
re mature,
whi
c
h, althou
gh
belon
ging to
different
regio
n
, afford
lesson
s meriting
attention
[5]. Because the fabrica
t
ing cha
r
a
c
te
ristic, the too
l
s
evolved from
integrate
d
ci
rcuit d
e
si
gn
are
still
popul
ar [6, 7]. To overcome th
e sho
r
tcomin
g of
those
tool
s, the top
-
do
wn
desi
gn m
e
tho
d
is p
r
opo
se
d, whi
c
h
currently face
s
m
any challe
ng
es
[8]. Implementing DFM
(design for
manufacturability) i
s
conducive t
o
improv
e manufacturabilit
y,
whi
c
h i
s
also the
key challen
ge to
reali
z
e
the t
op-d
o
wn m
e
thod [9].
Ho
wever,
ho
w
to
comprehensi
vely intr
oduce the design f
o
r manufacturability me
thod into the
micro device
design
with the stan
dardi
ze
d pro
c
e
s
ses is
still require stud
y further [10, 11]. With respe
c
t to mod
e
l
con
s
tru
c
tion,
the featu
r
e
techn
o
logy i
n
micr
o
device mod
e
ling
i
m
prove
s
de
signing
efficie
n
cy
[12]. With the
method, in
some in
stan
ce
s, ev
en th
e
mech
ani
cal t
ools
ca
n be
use
d
to imp
r
ove
desi
gning
efficen
c
y [13, 1
4
]. Neverthel
ess, be
cau
s
e
the ch
ara
c
te
ristic
of
the micro
fabri
c
at
ing,
there i
s
still n
o
method eff
e
ctive eno
ug
h to comb
i
n
e
the feature t
e
ch
nolo
g
y with the pro
c
e
s
se
s
gene
ration. Current wo
rks
focu
s on syst
em leve
l modeling an
d si
mulation [15,
16]. Where the
overall de
sig
n
ing flow of
micro
device is co
ncerned,
there are m
u
ch m
o
re
re
search of solving
probl
em of
“functio
n
-to
-
sh
ape” t
han
re
search i
n
the
stage
of “sha
pe-to
-ma
s
k” [
17]. In fact, the
latter is th
e key point to im
prove m
anufa
c
tura
bilit
y. To introd
uce
the
desi
gn fo
r m
anufa
c
tura
bili
ty
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Micro De
vi
ce
Modelin
g Met
hod an
d De
si
gn for Man
u
facturability
(Z
heng Li
u)
4573
idea into th
e
desi
gning
flo
w
of mi
cro
de
vice, the fram
ewo
r
k and
according
key t
e
ch
nolo
g
ies
are
pre
s
ente
d
in this pa
per.
2. Modeling Metho
d
s Ev
olv
e
ment an
d Tools Dev
e
lopment
The defici
e
n
cy of the traditional de
signi
n
g
flow is illu
strated in Fig
u
re 1.
Figure 1. The
Tradition
al Desig
n
ing Flo
w
The tradition
al de
sig
n
m
e
thod
begi
ns with m
a
sk l
a
yout de
sig
n
. On o
ne
ha
nd the
pro
c
e
ss i
s
concern
ed in
the early sta
ge, on
the o
t
her the co
n
s
eq
uent two
iteration
s
ma
ke
desi
gning work
time-consuming
and inaccurate. In
constrast, illustrated in Fi
gure
2, the
stru
ctural de
sign method i
s
mo
re conven
ient for desi
g
ner.
Figure 2. The
Structural De
sign Meth
od
For
stru
ctural
desi
gn meth
od, the comp
onent
lib
ra
ry and
schemati
c
synth
e
si
s i
m
prove
s
the desi
gning
efficiency. Howeve
r, the probl
em
to improve ma
n
u
facturability emerged be
cause
of
the ne
w
f
l
ow of simul
a
tion-to
-ma
s
k-to-fab
ri
cation
. Ho
w to
im
prove
the
m
anufa
c
tura
bili
ty
T
r
a
d
i
t
i
o
na
l
de
s
i
g
n
m
e
t
h
o
d
P
r
o
ces
s
i
t
er
a
t
i
o
n
M
a
s
k
l
ayo
ut
F
a
br
i
c
a
t
i
o
n
P
a
c
k
ag
i
n
g
an
d
t
e
s
t
Si
m
u
l
a
t
i
o
n
N
u
m
e
r
i
c
a
l
anal
ys
i
s
De
s
i
g
n
c
o
n
c
e
p
t
F
i
nal
pr
o
d
u
c
t
P
r
oces
s t
ech
n
o
l
o
gy
De
s
i
g
n
i
t
e
r
a
t
i
o
n
St
r
u
c
t
u
r
al
d
e
s
i
gn
m
e
t
h
od
M
a
s
k
l
ayo
ut
F
a
br
i
c
a
t
i
o
n
P
a
c
k
ag
i
n
g
and
t
e
s
t
Si
m
u
l
a
t
i
o
n
N
u
m
e
r
i
c
a
l
anal
ys
i
s
De
s
i
g
n
c
o
n
c
e
p
t
F
i
na
l
pr
o
d
u
c
t
P
r
o
ces
s t
ech
n
o
l
o
gy
C
o
m
p
o
n
en
t
l
i
b
r
a
ry
Sc
h
e
m
a
t
i
c
S
y
nt
he
s
i
s
M
a
cro
m
o
d
e
l
s
V
eri
f
i
ca
t
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No. 8, August 2013 : 4572
– 4579
4574
according
with the advan
ce high level
modelin
g me
thod still nee
ds furth
e
r st
udy. To ensu
r
e
better m
anuf
acturability, the
DFM-ori
e
nted top
-
do
wn de
sign
met
hod i
s
p
r
e
s
e
n
ted a
s
sho
w
n in
Figure 3.
Figure 3. The
Three L
e
vels of Top-do
wn
De
sign Meth
od
The first level
is
system l
e
vel de
signi
ng,
whi
c
h d
eal
s
with si
mulatio
n
and
optimi
z
ation of
both ele
c
tri
c
a
l
and me
cha
n
ical
com
pon
ents. As
the
effective way
of analyzin
g
the trodition
al
Co
m
p
o
n
e
n
t
l
i
b
r
a
r
y
V
i
r
t
u
a
l
r
e
a
l
i
t
y
e
n
vi
r
o
nm
e
n
t
s
uppo
r
t
S
y
s
t
e
m
le
v
e
l
m
o
d
e
lin
g
E
l
ect
r
i
ca
l
a
n
d
el
ect
r
o
n
i
c
s
i
m
u
l
a
t
i
o
n
a
nd
o
p
ti
m
i
z
a
ti
o
n
F
e
at
ur
e
l
i
b
r
ar
y
T
e
m
p
la
t
e
li
b
r
a
r
y
P
r
o
c
e
s
se
s lib
r
a
r
y
Ma
t
e
r
i
a
l
l
i
b
r
a
r
y
E
qui
pm
e
n
t
l
i
bra
r
y
Me
c
h
a
n
i
c
a
l
s
i
m
u
l
a
t
i
o
n
and
op
t
i
m
i
z
a
t
i
on
M
u
l
t
i
-
E
n
e
r
g
y m
o
de
l
i
ng
,
s
i
m
u
l
a
t
i
on
a
nd
o
p
t
i
m
i
z
a
t
i
o
n
(
b
o
nd g
r
aph r
e
pr
e
s
en
t
a
t
i
o
n
)
D
e
v
i
c
e
le
v
e
l
m
o
d
e
lin
g
Te
m
p
l
a
t
e
ba
s
e
d
re
d
e
si
g
n
st
r
a
t
e
g
y
Fea
t
u
r
e
bas
e
d
m
o
de
l
i
ng
stra
t
e
g
y
Ge
o
m
e
t
r
i
c
Hy
b
r
i
d
m
o
de
l
i
ng
D
y
n
a
m
i
c ch
a
r
a
c
t
e
rs s
i
m
u
l
a
t
i
o
n
a
n
d
ev
a
l
u
a
t
i
on
bas
e
d o
n
vi
r
t
ual
p
r
o
t
o
t
ype
f
a
b
r
ic
a
t
in
g
le
v
e
l
m
o
d
e
lin
g
Fa
b
r
i
c
a
t
i
n
g
fl
o
w
pl
ann
i
ng
Mo
d
e
l
r
e
c
o
g
n
it
io
n
and f
e
at
ur
e
s
com
b
i
n
a
t
i
o
n
F
a
br
i
c
a
t
i
n
g pr
o
c
es
s
e
s
s
i
m
u
l
a
t
i
o
n
an
d
o
p
ti
m
i
z
a
ti
o
n
Fe
a
t
u
r
e
s
ma
p
p
i
n
g
M
a
s
k
g
e
ne
r
a
t
i
o
n
an
d m
a
nuf
ac
t
u
r
i
ng
pr
o
c
e
s
s
e
s
de
s
c
r
i
pt
i
o
n
P
r
oc
es
se
s
v
eri
f
i
ca
t
i
on
M
i
cr
o
m
o
d
e
ls
ex
tra
c
t
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Micro De
vi
ce
Modelin
g Met
hod an
d De
si
gn for Man
u
facturability
(Z
heng Li
u)
4575
mech
ani
cal structu
r
e,
the multi-phy
sics
simulatin
g
m
e
thod is i
n
tro
duced into th
e are
a
of micro
device [1
8]. To perfo
rm the
task
of mod
e
ling an
d sim
u
lation of multi
-
ene
rgy d
o
m
a
in, bon
d gra
p
h
is a
pplie
d o
n
the supp
ort o
f
com
pone
nts libra
ry. In th
e devi
c
e l
e
ve
l modeli
ng, th
e 3
D
mo
del
of
micro devi
c
e
is con
s
tru
c
te
d. Thre
e ways a
r
e
sup
p
lie
d to build th
e
model. If the
stru
cture of t
h
e
new de
sig
n
in
g in
stan
ce i
s
simil
a
r to
t
he tem
p
late,
that i
s
, the
co
de
s of
th
e ne
w
stu
r
ct
ure
matche
s the
code
s ret
r
ieved from the templa
te
library on the ba
sis of
Neural Net
w
orks
techn
o
logy, t
he p
a
ra
mete
rs of the
te
mplate a
r
e
revised
to
co
nstru
c
t th
e n
e
w m
odel.
F
o
r
example, a serie
s
of micro sp
ring can
be co
nstr
ucte
d with facility by means of
the param
etric
template. Th
e actu
al
stru
cture of the
sp
ring
agree
s
with the de
sire
d one
an
d co
nform
s
to LI
G
A
techn
o
logy [19]. While f
o
r tho
s
e not
matchin
g
a
n
y template, the para
m
e
t
ric featu
r
e
s
are
provide
d
to b
u
ild the mo
d
e
l. These fea
t
ures
ar
e revi
sabl
e 3
D
ele
m
ents
satisfy
i
ng the intuiti
v
e
modelin
g ha
bit, which a
r
e store
d
in the flexib
le and extensi
b
l
e
feature lib
rary. Takin
g
the
compl
e
xity of device
into
accou
n
t, the
hybrid m
odeli
ng meth
od i
s
also
pe
rmitted to d
eal
wi
th
arbitrary stru
cture
s
.
After model con
s
truction,
the
dy
namic characters
simul
a
tio
n
and
evaluat
ion
is perfo
rme
d
based on virt
ual prototype
method.
Final
ly, the fabrica
t
ing level modeling ha
ppe
ns,
whi
c
h is com
p
leted in a feature
s
mappi
ng way. Fo
r surface micro-machi
n
ing, th
e pro
c
ed
ure
s
of
feature
s
co
m
b
ination an
d
fabricatin
g flow pl
an
ning
are followe
d to carry out the layering
operation. T
he inform
atio
n of mask i
s
derived
fro
m
the 3D model by mea
n
s of geom
e
t
ric
algorith
m
. Wi
th the de
rive
d process m
odel, t
he co
rrespon
ding si
mulation and
optimization
is
finishe
d
befo
r
e fabri
c
atio
n
.
To improve
the intu
ition
of modeling
pro
c
e
s
ses, t
he virtual rea
lity
environ
ment is con
s
tructe
d to suppo
rt the latte
r modeling sta
g
e
s
. At the same time, the two
feedba
cks b
e
t
ween differe
nt levels
provi
de better ma
nufactu
rabilit
y.
3. Design for Manufacturabilit
y
in Mic
r
o Dev
i
ce Designing
To intro
duce
desig
n for
manufa
c
turab
ility
methodol
ogy into the
desi
gning
proce
s
s of
micro d
e
vice,
the
stage
s i
n
volved a
r
e
taken
into
a
c
count to
provide the
ov
erall
co
nst
r
ai
nt.
Beside
s th
e conceptual
de
signi
ng
stage
, there a
r
e th
ree sta
g
e
s
in
desi
gning
cy
cle, in whi
c
h t
he
DFM elem
ent
s wo
rk
to co
operate with the
top
-
do
wn
de
signi
ng flo
w
. Th
e mai
n
factors to
ap
ply
the desi
gn for manufactu
ra
bility strategy are a
s
follows:
1) Structu
r
al
de
sign
stage
Above all, th
e model
s are con
s
tru
c
te
d wi
th feature technol
ogy
. The functio
nal and
stru
ctural m
o
dels con
s
ist
of functio
nal
co
mpo
nent
s and
st
ru
ctural feat
u
r
e
s
correspon
dingl
y.
These fe
atures th
em
selv
es
po
ssess
good
ma
n
u
facturability i
n
a
se
nse.
Whe
n
com
b
i
ned
together, h
o
wever, more co
nstrai
nt sh
oul
d be ta
ken int
o
acco
unt. Th
e de
signin
g
rules
are
ba
se
d
on
MUMP
s stand
ard, wh
ich
is a
co
m
m
ercial
p
r
og
ram that prov
ides
co
st-eff
ective, pro
o
f-o
f
-
con
c
e
p
t MEMS fabricatio
n. For t
he de
vices that a
r
e
commo
n to use, the tem
p
lates a
r
e b
u
i
l
t up
to make the
model
s
of these d
e
vice
s parametri
c.
Whe
n
n
e
w d
e
sig
n
ing
task com
e
s, it
is
comp
ared
wit
h
the te
mplat
e
s fi
rstly. Th
e simil
a
r
in
stance i
s
retrie
ved from
the
libra
ry, which is
para
m
eteri
z
e
d
to
accom
m
odate to
the
new task. A
s
for th
e tem
p
l
a
tes, e
a
ch
of them
ha
s
go
od
manufa
c
turab
ility by means of the const
r
aint
on the ad
justing limit of the param
eters.
2) Processe
s
de
sign
stage
In the p
r
o
c
e
s
se
s d
e
si
gn
stage, the
map
p
ing
relatio
n
ship bet
wee
n
desi
gning
mo
del an
d
pro
c
e
ss
mod
e
l is
con
s
tru
c
ted. The d
e
si
gning m
odel i
s
ba
se
d on
h
y
brid mo
delin
g rep
r
e
s
e
n
tation
techn
o
logy. Ho
wever, the
overall
con
s
ideratio
n of
fabri
c
ation i
s
insuffici
ent with the origi
n
al
desi
gning m
o
del. Whe
n
mappe
d into proce
s
s model,
which is org
anized wi
th p
r
ocess featu
r
es,
the co
nst
r
ain
t
feature
s
b
a
se
d
on
sta
ndardized p
r
oce
s
se
s take
essential
ef
fect to imp
r
o
v
e
manufa
c
turab
ility.
3)
Test an
d fabri
c
ating
stage
Before fa
bri
c
ating, the g
e
o
metri
c
a
nd
physi
cal
sim
u
lation i
s
ca
rried
out to v
e
rify the
manufa
c
turab
ility of the
previou
s
mo
dels. Th
e consequ
ent feedb
ack di
re
cts the
revision
pro
c
e
ss.
Tog
e
ther with t
h
e
feedb
ack
occurrin
g in
pro
c
e
s
ses de
sig
n
ing
stag
e, th
ey co
nstitute
the
feedba
ck flow of the design
i
ng circle.
The de
sign fo
r manufa
c
turability strateg
y
in di
fferent stage
s is illu
strated in in Fi
gure 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No. 8, August 2013 : 4572
– 4579
4576
Figure 4. The
Desi
gn for M
anufa
c
tura
bili
ty Strategies
4. The Sy
ste
m
Frame
w
o
r
k
To implement the DFM-based designing meth
od, the framework is illustrated in
Figure 5. The
module
s
a
r
e
arrang
ed in
the co
ope
rati
ve desi
gning
environ
ment
with di
stribut
ed
databa
se.
T
e
s
t
an
d
f
a
b
r
i
c
at
i
n
g
P
r
o
c
e
sse
s
d
e
si
g
n
S
t
r
u
c
t
ur
a
l
de
s
i
g
n
C
o
m
p
o
n
e
n
t
lib
r
a
r
y
F
e
a
t
ur
e
s
l
i
br
a
r
y
T
e
m
p
l
a
t
e
s
l
i
b
ra
ry
l
h
w
a
b
c
B
e
nd f
e
a
t
ur
e
ab
c
l
h
C
onc
a
v
i
t
y
f
e
a
t
ur
e
F
F
...
De
s
i
g
n
ru
l
e
s
1
h
2
h
12
hh
1
h
2
h
12
hh
12
hh
D
e
sig
n
ru
l
e
s
P
r
op
os
i
n
g
c
u
tt
i
n
g
pl
an
e
h
3.
5
hm
P
r
op
os
i
n
g
cu
t
t
i
n
g
p
l
a
ne
h
3.
5
hm
D
e
si
g
n
ru
l
e
s
b
a
se
d
o
n
MU
MP
s
s
t
a
n
d
a
r
d
iz
a
t
io
n
Pa
r
a
m
e
t
r
i
c
te
m
p
l
a
te
s w
i
t
h
g
o
o
d
m
a
n
u
f
a
c
t
u
r
a
b
ilit
y
3D
f
e
a
t
u
r
e
s
wi
t
h
go
od
m
a
n
u
f
a
c
t
u
r
a
b
ilit
y
W
i
t
h
f
i
xe
d
m
appi
n
g
rel
a
t
i
o
n
s
h
i
p
fe
a
t
u
r
e
i
n
d
e
x
CS
G
m
o
d
e
l
Fe
a
t
u
r
e
S
i
tu
a
t
io
n
b
i
t
Pa
r
a
m
e
t
e
r l
i
st
Lo
c
a
t
i
o
n
l
i
s
t
At
t
r
i
b
u
t
e
Na
me
T
r
ee lis
t
C
e
ll
in
d
e
x
R
e
la
ti
o
n
Ind
e
x
F
e
a
t
u
r
e
lis
t
L
aye
r
Pre
l
a
y
e
r
N
e
xt
l
a
ye
r
Fa
t
h
e
r
m
o
de
l
S
itu
a
t
ion
Lay
e
r
l
i
s
t
C
e
ll
lis
t
F
e
a
t
u
r
e
lis
t
De
v
i
c
e
m
o
d
e
l
M
a
sk
l
i
st
T
r
ee lis
t
F
e
a
t
ur
es
S
h
a
pe f
e
at
ur
e
s
M
a
i
n
f
e
at
ur
e
s
A
r
r
a
y
f
e
a
t
ur
es
A
u
x
f
e
a
t
ur
es
C
ons
t
r
ai
n
t
f
e
a
t
ur
es
M
a
nag
i
n
g
f
e
a
t
ur
es
P
r
oc
e
s
s
f
e
at
u
r
es
S
u
r
f
a
c
e m
i
c
r
om
ac
h
i
ni
n
g
B
u
lk
m
i
c
r
om
ac
hi
ni
n
g
De
po
s
i
t
i
o
n
Et
c
h
i
n
g
S
a
c
r
ific
ia
l
l
a
y
e
r
Ma
s
k
Bo
n
d
Et
c
h
i
n
g
P
r
o
c
e
ss
f
e
e
d
ba
c
k
a
n
d
ve
r
i
f
i
ca
t
i
on
Ma
p
p
i
n
g
D
e
s
i
gn
f
e
a
t
u
res
m
o
de
l
i
n
g
ba
s
e
d
o
n
H
y
b
r
i
d
r
e
p
r
e
s
e
nt
at
i
o
n
Fa
b
r
i
c
a
t
i
n
g
p
r
oc
e
s
s
e
s
m
o
d
e
l
i
n
g
bas
e
d
o
n c
o
ns
t
r
ai
nt
f
e
a
t
u
r
es
re
s
t
ri
ct
i
o
n
S
t
a
n
d
a
rd
i
z
ed
p
r
oce
s
s
e
s
Ve
r
i
f
i
c
a
t
i
o
n
G
e
om
e
t
r
i
c an
d
p
h
ys
i
c
al
si
m
u
l
a
t
i
o
n
Fa
b
r
i
c
a
t
i
n
g
f
l
ow
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Micro De
vi
ce
Modelin
g Met
hod an
d De
si
gn for Man
u
facturability
(Z
heng Li
u)
4577
Figure 5. The
Frame
w
o
r
k a
nd Modul
es o
f
the System
1)
System level desi
g
n
The fun
c
tion
al model is
constructe
d wi
th
bond grap
h method. After the simul
a
tion in
time domai
n
and freque
ncy dom
ain,
the mod
e
l i
s
optimi
z
ed
by cont
rol
system. Base
d on
mappin
g
algo
rithm, the functional mo
del
corre
s
po
nd
s to stru
ctural
model.
2) Template
-ba
s
ed
red
e
si
gn
The previou
s
instan
ce
s are par
amete
r
ized a
nd cod
ed sto
r
ing in
template libra
ry. After
cla
ssif
y
ing t
h
e ca
se
s,
t
h
e
t
e
mplat
e
sy
st
em
is
org
anized by n
eural
n
e
t
wo
rk
s
.
W
h
en
ne
w
desi
gning
wo
rk
co
ming, it
is
retrieve
d
from th
e library to find t
he mat
c
hing template. Af
te
r
Te
m
p
l
a
t
e
s
l
i
b
r
a
r
y
C
oop
e
r
at
i
v
e
de
s
i
g
n
c
o
n
t
r
o
l
De
s
i
g
n
e
r
1
De
s
i
g
n
e
r
2
De
s
i
g
n
e
r
n
Ce
n
t
e
r
P
o
r
t
a
l
C
o
nc
e
p
t
u
a
l
de
s
i
g
n
R
e
qui
r
e
m
e
nt
an
al
y
s
i
s
D
e
m
a
nd ve
c
t
o
r
C
h
ar
ac
t
e
r
i
s
t
i
c
ve
c
t
o
r
Ma
p
p
i
n
g
S
c
he
m
e
s
s
y
nt
h
e
s
i
z
i
ng a
n
d r
e
v
i
s
i
o
n
Eva
l
ua
t
i
o
n
a
n
d de
c
i
s
i
o
n
Op
t
i
mi
z
a
t
i
o
n
P
r
o
c
e
ss d
e
si
g
n
D
e
si
g
n
in
g
f
e
a
t
u
r
e
s
c
o
m
b
in
a
t
io
n
C
o
ns
t
r
a
i
nt
r
u
l
e
s
M
a
ppi
ng
F
a
b
r
i
c
at
i
n
g f
l
o
w
o
p
t
i
m
i
z
a
t
i
o
n
Pr
oce
s
s m
o
d
e
l
gen
e
ra
t
i
on
G
e
o
m
e
t
r
i
c
a
nd phy
s
i
c
a
l
s
i
m
u
l
a
t
i
on
S
y
s
t
e
m
l
e
v
e
l
m
o
d
e
lin
g
O
p
ti
m
i
z
a
ti
o
n
Ti
m
e
-
d
o
m
a
i
n
si
m
u
l
a
t
i
on
Al
g
o
r
i
t
h
m
s
M
o
d
e
l
co
n
v
ers
io
n
sy
stem
O
v
era
l
l
co
n
t
r
o
l
sy
ste
m
C
o
m
p
o
n
en
t co
n
t
ro
l m
o
d
u
l
e
F
r
e
que
nc
y
-
do
m
a
i
n
si
m
u
l
a
t
i
o
n
T
e
m
p
l
a
te
-b
a
s
e
d
r
e
d
e
si
g
n
C
a
se
s c
a
l
c
if
i
c
a
t
i
o
n
N
e
ur
al
ne
t
w
o
r
k o
r
g
a
n
i
z
a
t
i
o
n
P
r
e
s
e
n
t
a
t
i
o
n
a
nd i
nde
x
i
ng
s
c
he
m
e
D
e
si
g
n
i
n
g
s
a
m
p
l
e
ret
r
i
ev
a
l
P
a
r
a
m
e
te
rs u
p
d
a
te a
n
d
ref
resh
C
h
ar
ac
t
e
r
a
n
al
ys
i
s
a
n
d
e
v
al
u
a
t
i
o
n
V
P
in
f
o
r
m
a
t
io
n
mo
d
e
l
V
P
geom
e
t
ri
c
mo
d
e
l
D
y
n
a
m
i
c
a
n
al
ys
i
s
w
i
t
h
fi
n
i
t
e
e
l
e
m
en
t
M
a
th
em
a
t
i
c
m
o
d
e
l
o
p
ti
m
i
z
a
ti
o
n
I
n
tel
l
ig
e
n
t d
e
ci
s
i
o
n
Op
t
i
m
a
l
d
e
c
i
s
i
on
P
a
ra
m
e
tri
c
o
p
ti
m
i
z
a
ti
o
n
Fe
a
t
ur
e
-
ba
s
e
d m
o
de
l
i
ng
m
a
teri
a
l
Pa
r
a
m
e
t
r
i
c
f
e
a
t
u
res
De
s
i
g
n
r
u
l
e
s
H
y
br
i
d
m
o
de
l
i
ng
r
e
pr
e
s
e
n
t
a
t
i
o
n
St
anda
r
d
i
z
a
t
i
o
n a
nd
o
p
t
i
m
i
z
a
t
i
o
n
P
r
o
c
es
s
e
s v
erif
i
ca
t
i
o
n
G
e
om
etr
i
c
m
o
de
l
i
ng
De
s
i
g
n
e
r
3
Da
t
a
b
a
s
e
e
n
g
i
n
e
Co
mp
o
n
e
n
t
s
l
i
b
r
a
r
y
F
e
at
ur
e
s
l
i
brar
y
P
r
oces
se
s l
i
b
ra
ry
M
a
t
e
r
i
al
l
i
brar
y
Evaluation Warning : The document was created with Spire.PDF for Python.
e-ISSN: 2
087-278X
TELKOM
NIKA
Vol. 11, No. 8, August 2013 : 4572
– 4579
4578
para
m
eters revising, the
model i
s
upd
ate. T
he sy
stem doe
s not
need to mat
c
h the in
stan
ce
absolutely. The mism
atch
ed part
s
ca
n be built with o
t
her way
s
.
3) Feature-b
a
se
d
modelin
g
The p
a
rametric featu
r
e
s
a
r
e u
s
ed
as th
e fund
ament
al compo
nent
s to
build
up
the 3
D
stru
ctural mo
del. For tho
s
e
parts that a
r
e too irre
gula
r
to match fe
ature
s
in libra
ry, the geome
t
ric
modelin
g wa
y is provided
to con
s
tru
c
t the app
earan
ce, whi
c
h reli
es on the g
e
o
metri
c
elem
ents
and mod
e
ling
comma
nd
s. The structu
r
al
model is
the feature
-
ba
se
d
hybrid
represe
n
ting mod
e
l.
4) Processe
s
de
sign
The de
sig
n
in
g feature
s
combinatio
n p
r
ocedu
re de
als with
the con
s
tru
c
tion of
layer
informatio
n for su
rface micromac
hinin
g
, in other word
s, how t
he feature
s
are
com
b
ined togeth
e
r
as o
ne laye
r. The process feature
s
is f
abri
c
atin
g
-
o
r
i
ented, such as et
ching fe
ature, de
po
si
ting
feature
and
sacrifi
c
ial l
a
yer feature.
The
mappin
g
relat
i
onship i
s
b
u
il
t betwe
en the
different
kin
d
s
of feature
s
.
Mean
while, t
he un
re
ason
able
stru
ct
ures
a
r
e revi
sed
in acco
rdan
ce with
t
h
e
con
s
trai
nt features to imp
r
o
v
e the manufacturability.
5. Conclusio
n
The de
sig
n
for ma
nufa
c
tu
rability metho
d
for mi
cro
d
e
vice i
s
expl
ored
and
pro
posed.
Above all, thi
s
p
ape
r give
s an ove
r
vie
w
of the
mo
deli
ng meth
od
s t
hat are
con
s
i
dere
d
to
be t
h
e
critical com
p
onent
s of designi
ng t
heo
ry of micro de
vice. With the indicatio
n
of how de
sig
n
ing
method
evol
ves, the
key tech
nolo
g
ies to im
plement th
e
micro d
e
vice
de
sign
for
manufa
c
turab
ility are presented. This e
nable
s
de
sig
ners to mod
e
l the device
more efficie
n
tly
and intuitivel
y, espe
cially for co
mplex
surfa
c
e
mi
cro
-
ma
chin
ed d
e
vice that ha
s multiple l
a
yers.
As a result, the geom
etric model fulfilli
ng the fa
bricating
requirements is efficiently generated
and ma
ppe
d to fabricating
model. Besi
des im
prov
in
g manufa
c
tu
rability of desi
gning m
odel,
the
method hel
ps redu
ce p
r
od
uce d
e
velop
m
ent circle b
e
yond the tra
d
itional de
sig
n
flow.
Ackn
o
w
l
e
dg
ments
This work
wa
s fina
nci
a
lly suppo
rted
by
Na
tural S
c
ien
c
e B
a
si
c
Re
search
Plan i
n
Shaanxi
Province of China (Progra
m
No. 2013
JM7029
),
the Scien
c
e an
d Tech
nolo
g
y Develo
pment
Plan
Found
ation
o
f
Shaanxi Province
(No.
2011K0
7
-11),
Scientific
Rese
arch P
r
og
ram F
und
ed
by
Shaanxi Prov
incial Ed
ucation D
epa
rtme
nt (Prog
r
am
No. 11
JK08
6
4
), Pre
s
ide
n
t Fund of Xi’a
n
Tech
nolo
g
ica
l
University (No. XAGDX
JJ10
07)
a
nd S
haanxi Majo
r
Subject Con
s
truction P
r
oje
c
t.
Referen
ces
[1]
Schli
p
f M, Bat
hurst S, Ki
ppe
nbrock
K, Kim
S
G, Lanza
G. A structured
a
ppro
a
ch to
int
egrate
MEM
S
and Prec
isio
n Engi
neer
in
g methods.
CIRP
Journ
a
l of Man
u
factur
in
g Scie
nce an
d T
e
chn
o
lo
gy
. 2010
;
3(3): 236-
24
7.
[2]
Li J, Ga
o S, L
i
u Y. F
eatur
e-b
a
sed
proc
ess l
a
yer mo
de
lin
g
for surface
mic
r
o-machi
n
e
d
M
E
MS.
Journ
a
l
of Micromech
a
n
ics an
d Micro
eng
ine
e
ri
ng
. 2
005; 15(
3): 620
-635.
[3]
Xu J, Y
uan W
,
Xi
e J, Ch
ang
H. A MEMS CAD metho
dol
o
g
y
from
3D m
o
del to
2D mask
la
yo
ut.
Chin
a
Me
ch
an
i
c
al
Eng
i
ne
e
r
in
g
. 20
0
8
; 19(1): 80-8
4
.
[4]
F
edder
GK.
Top-D
o
w
n
Desi
gn of MEMS
. Proceed
ings
of the 2000 I
n
t. Conf. on Mode
lin
g an
d
Simulati
on of
Micros
ystems Semico
nductor
s
, Sensor
s an
d
Actuators. San Die
go(USA).
200
0; 1: 7-10.
[5]
Z
hang C, L
u
D
,
Jiang Z
.
Stud
y o
n
a MEMS
CAD S
y
stem Based
on So
li
dW
orks.
Appli
e
d Mecha
n
ics
and Mater
i
als
.
200
8; 10(1): 77
2-77
6.
[6]
Z
hang H, Guo
H, Z
hang D, Xu J, He Y. Res
earc
h
on Co
mputer Aid
ed
MEMS Process Integrati
o
n
T
e
chnolog
y.
N
anotec
hn
olo
g
y and Prec
isio
n Engi
neer
in
g
. 2004; 2(3): 2
29-
233.
[7]
Cha
ng H,
Xi
e
J, Xu J, Ya
n Z
,
Yuan W
.
One No
v
e
l MEM
S
Integrated
D
e
sig
n
T
ool
w
i
t
h
Ma
xima
l Si
x
Design Flo
w
s.
Chin
ese Jo
urn
a
l of Sensors
a
nd Actuators
. 2
006; 19(
5): 132
3-13
26.
[8]
McCorqu
o
d
a
le
MS, Gebara F
H
, Kraver KL, Marsman E
D
, Senger R
M
, Bro
w
n RB.
A T
op-Dow
n
Microsystem
s Design
Met
h
odology
and
As
sociat
ed Challenges
. Proce
e
d
in
gs of th
e c
onfere
n
ce
on
Desig
n
, Autom
a
tion a
nd T
e
st
in Euro
pe.
Mun
i
ch(Germa
n
y
).
200
3; 1: 292-2
96.
[9]
DaSilva
MG.
Desig
n
for M
anufactur
a
b
ility
for 3D Micr
o Devic
e
s
. N
S
F
W
o
rkshop
on T
h
ree-
Dimens
io
nal N
anom
anuf
actur
i
ng: Partner
in
g w
i
t
h
Industr
y. Birming
ham(U
SA). 2010; 1: 5
-
9.
[10]
Khan F
,
Bazaz
S, Sohail M.
Desig
n
, Imple
m
ent
atio
n an
d
T
e
sting of Electrostatic SOI Mumps Bas
e
d
Microgripper.
Microsystem
Technologies
. 2010; 16(
11): 19
57-1
965.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
e-ISSN:
2087
-278X
Micro De
vi
ce
Modelin
g Met
hod an
d De
si
gn for Man
u
facturability
(Z
heng Li
u)
4579
[11]
Hu F
,
Ya
o J,
Qiu
C, Re
n
H. A MEMS
Micromirr
o
r
Driven
b
y
El
e
c
trostatic F
o
rc
e.
Jour
nal
of
Electrostatics
. 201
0; 68(3): 23
7-24
2.
[12]
Gao F
,
Hon
g
YS.
F
unction-
Oriented G
e
o
m
etric
Des
i
gn
Appro
a
ch to
S
u
rface Micr
o
m
achi
ned
MEM
S
.
T
e
chnical Pr
o
c
eed
ings
of th
e 2
004
NST
I
Nan
o
tech
nol
og
y
Co
nferenc
e
and
T
r
ade Sh
o
w
.
Bosto
n
(USA). 2004; 1
:
319-32
2.
[13]
Li J, Ga
o S, L
i
u Y. S
o
li
d-Ba
sed
CA
PP for
Surface Micr
o
m
achi
ned
ME
MS Desi
gn.
C
o
mputer-A
ide
d
Desig
n
. 20
07; 39(3): 19
0-2
0
1
.
[14]
Z
hang C, Jia
n
g
Z
,
Lu D, R
en T
,
W
ang J. De
sign for Micro-Electro-
Mecha
n
ica
l
S
y
stems Devices
Based o
n
T
h
ree-Dime
n
si
ona
l F
eatures.
Jour
nal of Xi'
an Ji
a
o
tong U
n
iv
ersity
. 2007; 41(
5): 571-
575.
[15]
Xu J, Yua
n
W
,
Chang H, Yu
Y, Ma B. Angularl
y
Par
a
met
e
rize
d Macrom
ode
l Extracti
on
for MEMS
Structures
w
i
th
Large N
u
mber
of
T
e
rminals.
Journ
a
l of System Si
mul
a
tion
.
2010; 2
2
(3): 7
48-7
51.
[16]
Liu
Y, Jia
ng
P, Z
han
g D.
3D
-
F
eature-Bas
e
d
Structure
Desi
gn for
Sil
i
con
F
abric
ation
of M
i
cro D
e
vic
e
s
.
Microsystem
Technologies
. 2007; 13(
7): 701
-714.
[17]
F
an Z
,
W
ang J, Achiche
S, Goodman E, Rosen
berg R
.
Stru
ctured Synt
hesis of M
E
MS Usin
g
Evoluti
onar
y A
ppro
a
ches.
Ap
plie
d Soft Co
mputin
g
. 200
8; 8(1): 579-5
89.
[18]
Z
hang Y, Hu
an
g X, Hu
an
g T
,
Ru
a
n
J, W
u
X. Ventil
ation Stru
cture
Improve
m
ent of Air-coo
led Ind
u
ctio
n
Motor Usin
g Multip
h
y
sics Si
mulati
ons.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electric
al Eng
i
ne
eri
n
g
.
201
2; 10(3): 45
1-45
8.
[19]
Li G, Sui L, Shi G. Study o
n
the Li
n
ear
l
y
R
ang
e
of S-Shap
ed
MEMS Planar
Micro-sprin
g
.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
n
g
.
2012; 1
0
(6): 1
327-
133
2.
Evaluation Warning : The document was created with Spire.PDF for Python.