TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 15, No. 2, August 201
5, pp. 209 ~
216
DOI: 10.115
9
1
/telkomni
ka.
v
15i2.807
9
209
Re
cei
v
ed Ma
y 13, 201
5; Revi
sed
Jul
y
4, 2015; Accept
ed Jul
y
18, 2
015
Decoupled Feed Forwa
rd Voltage Oriented Controller
for DFIG under Balanced and Unbalanced Fault
Conditions
Dileep Kum
a
r Varma*
1
, Y.
P. Obulesh
2
, Ch. Sai Babu
3
1
Departme
n
t of Electrical a
nd
Electron
ics En
gin
eeri
ng, Shri
Vishn
u
Eng
i
ne
erin
g Col
l
eg
e for W
o
men,
Bhimav
aram, Indi
a,
2
Departme
n
t of Electrical a
nd
Electron
ics En
gin
eeri
ng, K.L.Univers
i
t
y
,
Vadd
es
w
a
r
a
m, Guntur District, India,
3
Departme
n
t of Electrical a
nd
Electron
ics En
gin
eeri
ng, JNT
U
K,
Kakin
ada, Ind
i
a,
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: varma83
32@
gmail.c
o
m
1
, yp
obu
lesh
@gma
i
l
.com
2
, chs_ee
e@
ya
hoo.co.i
n
3
ABST
R
ACT
As W
i
nd Pow
e
r Penetratio
n
i
n
creas
es conti
nuo
usly
in tota
l Pow
e
r Generation, the w
i
nd
turbine
s
are nec
essary
to stay connec
ted to grid
eve
n
und
er
gri
d
di
sturbanc
es. An
enha
nce
d
con
t
rol strategy fo
r
DF
IG is prop
os
ed i
n
th
e pr
ese
n
t pa
per to
me
et the l
a
te
st gr
i
d
co
des s
e
t by
grid
op
erators.
T
he D
e
co
upl
e
d
Current
Co
ntro
ller
i
m
p
l
e
m
e
n
te
d i
n
Gri
d
Vo
lta
ge
orie
nted
ref
e
renc
e fra
m
e i
s
ap
pli
e
d
to Gri
d
Si
de
Co
nvert
e
r
(GSC) to im
pr
ove the dy
namic perfor
m
anc
e of DF
IG. The Propos
ed sc
hem
e
enha
nces t
he Low Voltage
ride thro
ugh c
apa
bil
i
ty of W
i
nd farm by pr
o
v
idin
g r
eactiv
e
Pow
e
r suppor
t under adv
ers
e
grid co
nditi
o
n
s.
The Propos
ed schem
e als
o
counterac
ts the ripples in DC Link vo
ltage, stator/rotor currents and
stator/reactive
pow
er to fulfill
the gr
id c
o
d
e
commitments in
w
eak grid.S
i
m
ulati
on res
u
lts
are pres
ente
d
to
verify the feasi
b
ility a
nd rob
u
s
t
ne
ss of the propos
ed co
ntrol
scheme.
Ke
y
w
ords
:
d
o
ubl
e fed
in
duct
i
on
ge
nerator
(
D
F
IG), grid si
d
e
conv
erter (G
SC), low
volta
ge ri
de thr
o
u
g
h
capa
bil
i
ty (LVR
T
)
, fault ride throug
h cap
abi
lity
(F
RT
)
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Today Power demand i
s
e
s
calating in a
rapid man
n
e
r
due to vario
u
s re
ason
s such a
s
environ
menta
l
and
econo
mic p
r
o
b
lem
s
. The
DFIG
wind
farm
s h
a
ve be
com
e
more
po
pula
r
and
received
more attention
d
ue to it
s vari
ous advant
ag
es li
ke
better variabl
e
spe
ed
control, m
o
re
eco
nomi
c
al,
good
win
d
p
o
w
er control, b
e
tter Voltag
e
and frequ
en
cy sup
port
wh
en
con
n
e
c
ted
to
power g
r
id [1
-2]. Today
Wind Power p
r
o
g
re
ss i
s
ri
sin
g
extensively
for the pa
st few de
ca
de
s
all
over the
wo
rl
d. This
ra
pid
increa
se i
n
Wind
Gen
e
ra
tion ma
ke
s the g
r
id O
p
e
r
ators to imp
o
s
e
string
ent
Grid
co
de
s for
Wind Po
we
r G
enerator
s fo
r voltage
su
p
port a
nd
unin
t
erru
pted Po
wer
Supply [3-4]. Acco
rding t
o
Indian Electri
c
ity Grid cod
e
s IEGC
[5], Wind farms mu
st re
main
con
n
e
c
ted to
grid
even
u
nder fault Co
ndition
s fo
r
a
sp
ecific pe
ri
od of time
a
pproxim
ately for
about 3
00m
s. The LV
RT Capability cu
rv
e for G
r
id
co
nne
cted
Win
d
farm i
s
sho
w
n in Fi
gure
(2),
Whe
r
e Vf
rep
r
esents 15%
of the n
o
min
a
l System Vo
ltage b
e
low
whi
c
h th
e wi
nd turbine
wil
l
be
discon
ne
cted
. The importa
nt feature of DFIG is
that t
he ma
chine
side and g
r
id
side
conve
r
te
rs
are only 30%
of the generator rating
re
sulting in le
ss
cost. As DFI
G
stator is di
rectly conn
ect
e
d
to power grid,
so any di
st
urbances in the gri
d
will
re
sult in increase
in vo
ltage at
Wind farm
and
at Point of i
n
terconn
ectio
n
and
p
r
odu
ce
s Stat
or d
c
Flux com
p
onent.
Thi
s
stator dc
flu
x
comp
one
nt result
s large tran
sient volt
age an
d
current in the m
a
chi
ne si
de
conve
r
ter
wh
ich
damag
es the
DFIG co
nverters a
nd re
su
lts in wind tu
rbine to disco
nne
ct from service [6
-7]. To
avoid LV
RT
Problem
in
DFIG System,
Cro
w
b
a
r Ci
rcuit at RS
C fo
r Protectin
g
DFIG
Co
nverters
unde
r a
bno
rmal condition
s is re
po
rted
in [8]. Bu
t when
Crowb
a
r circuit i
s
a
c
ti
vated roto
r
si
de
conve
r
ter get
s blocke
d an
d the wind G
enerator a
c
ts
as squirrel ca
ge indu
ction
machi
ne dra
w
ing
large
rea
c
tive Powe
r
whi
c
h
furthe
r lo
we
rs the
voltage
at the
wind
fa
rm le
ad
s to t
r
ipping
of
win
d
turbine. But n
e
w g
r
id code
s are not allo
wing to
trip th
e wind tu
rbin
es un
de
r abn
ormal
con
d
itions.
Another Solu
tion to LVRT is using En
ergy sto
r
age
system co
n
necte
d acro
ss dc termi
nal
s to
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 209 –
216
210
balan
ce the P
o
we
r flow to dc link
cap
a
ci
tor to
avoid the the over voltage
acro
ss d
c
link capa
cit
o
r
is d
o
cume
nte
d
in
[9]. The
Cho
ppe
r
Circuit with
re
si
stor i
s
usually
con
n
e
c
ted
across d
c
lin
k to
smooth
o
u
t the d
c
link va
riation
s
unde
r a
bno
rmal
condition
s
are
re
porte
d in
[
10-1
1
]. From
the
prin
ciple
of
norm
a
l
cro
w
bar protectio
n
sch
e
me
some m
o
re e
nhan
ce
d
cro
w
ba
r p
r
ote
c
ti
on
scheme
s
h
a
ve also b
een
well do
cum
e
n
t
ed in the
literature to imp
r
ove DFIG LV
RT re
qui
reme
nts
[12-13]. But t
he a
bove m
e
ntioned
prop
ose
d
scheme
s
h
a
ve
certai
n limitation
s
due to
extra
co
st
involved in h
a
rd
wa
re d
e
si
gn of cro
w
b
a
r
ci
rcuit and
bra
k
ing re
si
stors.
A rob
u
st curre
n
t
co
ntroller
is re
quired fo
r grid
sid
e
co
nverter to av
oid tri
ppi
ng of
wind tu
rbine
whe
n
the roto
r sid
e
convert
e
r
is di
sabl
ed u
nder ab
norm
a
l co
ndition
s.
As repo
rted
in [13], the V
O
C
Cont
rol
schem
e u
s
e
s
PI
controlle
r for tracking
de
sire
d current
into grid
bu
t tracking p
e
r
forma
n
ce is not fair du
e
to
coupling terms involved
in this control strat
egy. T
o
improve tracking
p
e
rfo
r
mance, dyna
mic
respon
se
and
to enhan
ce t
he LVRT
and
FRT C
apa
bil
i
ty a decou
pl
ed Voltage
O
r
iented
cu
rre
n
t
controlle
r wit
h
Fee
d
forwa
r
d
Comp
en
sa
tion is
prese
n
t
ed in thi
s
Pa
per. T
h
is P
a
p
e
r i
s
formulat
ed
as sho
w
n bel
ow. Section 2
addre
s
se
s m
a
thematical modelin
g of Grid
side Con
v
erter.
Figure 1. LVRT of Win
d
farm as p
e
r IEGC
Section 3 propo
se
s the Propo
se
d De
cou
p
led Vo
lt
age Ori
ented
controll
er st
rategy for
DFIG.The
Section
4 di
scusse
s Simul
a
tion results and di
scu
s
sion an
d Se
ction 5 give
s
the
con
c
lu
sio
n
s.
2. DFIG Wind Generation S
y
stem
Figure 2. Sch
e
matic dia
g
ra
m of Grid Co
nne
cted DFI
G
The Schemat
ic diag
ram
of Grid
Con
n
e
c
ted DFIG
i
s
shown in Figu
re 2. DFI
G
st
ator is
directly connected to utilit
y grid through step up
transformer
and rotor
side i
s
connected to grid
via two back to back Con
v
erters. The variable
sp
e
e
d
operation of DFIG is p
o
ssible throu
g
h
Powe
r ele
c
tro
n
ic
conve
r
ter.
The
rating
of
the fr
e
quen
cy conve
r
ter i
s
usu
a
lly on
e third
of the tot
a
l
gene
rato
r rating.The
red
u
c
ed
rate
d co
nverter is
m
o
re
economi
c
al tha
n
oth
e
r type
of Wind
gene
rato
rs. T
he two
conve
r
ters are con
necte
d by
large DC Lin
k
Cap
a
cito
r. In Subsyn
cro
n
ous
mode of op
eration Roto
r Side Co
nverte
r (RSC) a
c
ts
as Inverte
r
a
nd GSC a
c
ts
as Rectifie
r a
n
d
the active Po
wer flows fro
m
Grid
to DFIG and
in Su
p
e
rsy
c
h
r
on
ou
s mode
of Op
e
r
ation
RSC a
c
ts
as
Rectifie
r a
nd GSC
act
s
as Inverte
r
a
nd the a
c
tive Powe
r flows from
DFIG to
Grid. Th
e ma
in
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
cou
p
led F
eed Fo
rward
Voltage Ori
e
n
t
ed Controlle
r for DFIG und
er… (Dile
ep
Kum
a
r Varm
a)
211
Purpo
s
e of G
S
C is to main
tain DC Li
nk
Voltage
Co
nstant and en
su
res
Unity Power fa
ctor at t
h
e
Grid
side te
rminals
and
p
r
ovide
s
ad
ditional rea
c
tive Powe
r supp
o
r
t duri
ng a
b
n
o
rmal
co
nditi
ons
and maintai
n
s Voltage at
the Wind fa
rm terminal
s
Con
s
tant.The
Purpo
s
e of
RSC i
s
to co
ntrol
the stator a
c
tive and rea
c
tive Powe
r indep
ende
ntly by controlli
ng dq co
mp
onent
s of rotor
curre
n
ts. DFIG is ve
ry se
nsitive to g
r
i
d
distu
r
b
a
n
c
e sin
c
e
stato
r
is
dire
ctly conne
cted to
grid,
durin
g n
o
rm
a
l
co
ndition
s t
he
stator
airgap flux
i
s
consta
nt but i
n
ab
normal
con
d
ition
s
un
der
severe voltag
e dips in the
grid sid
e
, the stat
or volta
ge ch
ang
es
abru
p
tly but the air ga
p flux
can
not ch
an
ge insta
n
tly according to
con
s
tant fl
ux linkag
e
theo
rem. So a la
rge tra
n
si
ent flux
with dc comp
onent is ind
u
c
ed in the sta
t
or whi
c
h in turn ind
u
ces l
a
rge
rotor flu
x
and rotor e
m
f in
the rotor
circuit. The large
induced emf in the
rotor
causes la
rge
rotor current a
nd may dam
age
the co
nverte
r. The output
voltage of th
e co
nver
te
r may
excee
d
and RSC co
ntrol
is
l
o
st. Th
e
DFIG
act
s
li
ke
a
conve
n
t
ional
squi
rre
l
ca
ge i
ndu
ct
ion g
ene
rato
r
whe
n
rotor sid
e
conve
r
ter
control is lo
st
durin
g seve
re voltage dip
con
d
it
ion
s
. The Co
nventio
nal indu
ction
gene
rato
r dra
w
s
more
rea
c
tive
Power f
r
om
the grid a
nd
voltage
at the Wind fa
rm
terminal
s still
decrea
s
e
s
.
Due
to loss of co
n
t
rol of RSC d
u
ring fault co
ndition t
he ro
tor power ca
nnot be tran
sferre
d to the grid
side.So th
e e
x
cess a
m
ou
n
t
of energy is
store
d
in
dc li
nk
whi
c
h
cau
s
e
s
the d
c
li
n
k
voltage to
ri
se
sud
denly. So
a novel
Co
n
t
rol st
rategy
of De
co
u
p
led
Feed
Fo
rwa
r
d Voltag
e O
r
iented
Curre
n
t
control
strate
gy is impl
em
ented fo
r G
r
i
d
sid
e
C
onve
r
ter of
DFIG t
o
co
ntrol th
e
DC
Lin
k
Volt
age
and Volta
ge
at the Wi
nd f
a
rm te
rminal
s and
at PCC.
Duri
ng fa
ult p
e
riod,
grid
si
d
e
Co
nverte
r a
c
ts
as STATCO
M by controlli
ng rea
c
tive Powe
r to and from the g
r
id and maintai
n
s Voltage at
Wind
farm termi
nal
s an
d PCC i
s
Con
s
tant. In
the next
se
cti
on the m
a
the
m
atical m
ode
ling of g
r
id
si
de
Conve
r
ter a
n
d
prop
osed Control st
rateg
y
for GSC is discu
s
sed.
3. Mathema
t
i
cal Modeling
of Gr
id Side Conv
erter of DFIG
Figure 3. Grid
conn
ecte
d G
r
id sid
e
Co
nverter
Figure 3 Shows the Mathematic
al Model of utility Source Co
nne
cted to grid sid
e
inverter. In the Figu
re 3,
Va, Vb, Vc
are t
he utility grid Voltage
and Vag, Vbg, Vcg a
r
e
the
voltages at t
he gri
d
Side
Inverter.L an
d R are
the l
eakage
rea
c
t
ance and
Re
sista
n
ce of filter
betwe
en utility grid and Inverter termin
al. The
voltage equatio
ns from KVL can be written
as
s
h
ow
n
be
lo
w
.
(
1
)
(
2
)
(
3
)
The syn
c
h
r
on
ous d
q
voltage equation
s
can be obtain
ed in grid voltage refe
ren
c
e fram
e
with d
-
axis
ali
gning
with g
r
i
d
voltage. Th
e Volt
age eq
uation
s
in
d
q
synchro
nou
s referen
c
e
fra
m
e
given by:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 209 –
216
212
(
4
)
(
5
)
W i
s
the
an
g
u
lar
sp
eed
of
the
rotating
referen
c
e fra
m
e L
is the t
o
tal ind
u
cta
n
c
e
per
pha
se. If Resistan
ce R i
s
n
egle
c
ted an
d q axis cu
rrent
is set at ze
ro
under n
o
rm
a
l
conditio
n
s to
maintain unit
y
Power facto
r
at grid si
de
conve
r
ter. Th
en the above
equatio
ns
will becom
e:
(
6
)
(
7
)
The dq volta
ge equ
ation
a sho
w
n in
a
bove equ
atio
ns in g
r
id co
nne
cted VSI are n
o
t
compl
e
tely d
epen
dent d
u
e
to
cro
s
s
couplin
g term
s
and
inv
o
lved a
s
giv
en in
Equation
s
(4
) an
d
(5).
Th
e Influen
ce
of q-axi
s
o
n
d-axis an
d t
he effe
ct of
d-axis on
q
-
axis
deterio
rate th
e perfo
rma
n
ce of the controller.
Fo
r ind
epen
dent con
t
rol of d and
q axis Cu
rren
ts
these
cro
ss
couplin
g term
s are
co
mpen
sated
by gri
d
feed forwa
r
d
terms a
s
sh
own i
n
Fig
u
re
4.
The po
we
r ba
lance equ
atio
ns are:
(
8
)
Since th
e d
-
axis rotating
referen
c
e i
s
ali
gne
d with
Grid Volta
g
e
Vector We
can
set
Vq=0.
W
ith this the Powe
r
Balance Equ
a
tion be
come
s:
(
9
)
(
1
0
)
This d
e
coupli
ng ma
ke
s re
al and rea
c
tive Po
we
r to control in
depe
ndently by co
ntrollin
g
the d-axis a
n
d
q-axis
Cu
rrents
4. Propos
ed
Deco
upled
F
eed F
o
r
w
a
r
d
Voltag
e Ori
e
nte
d
Curre
nt
Con
t
roller
for
DFIG G
r
id
Side Conv
erter
The Prop
ose
d
Decoupl
ed
feed forward
Voltage
Orie
nted cu
rre
nt Controlle
r is sho
w
n in
Figure 4. Th
e main obj
ective of Propo
sed
Cont
rolle
r is to contro
l the active
Powe
r, rea
c
ti
ve
Powe
r, DC Li
nk Voltag
e a
nd Voltage
at PCC
dur
i
ng
Voltage dip
Condition
s. Fo
r better
Dyna
mic
perfo
rman
ce
and a
c
cu
ra
cy of Voltage
O
r
iented
cont
ro
ller, a d
e
coup
led controller
is in
co
rpo
r
ate
d
at PI Controll
er output by addin
g
Grid v
o
ltage f
eed f
o
rward term
s in orde
r tonu
llify the effect o
f
cro
s
s
cou
p
lin
g effect of d
axis on
q-axis comp
one
nt vice versa.
The Voltag
e
Oriente
d
cont
rol
scheme u
s
e
s
dq rotating referen
c
e fra
m
e to transfo
rm the gri
d
voltage an
d cu
rre
nt variable
s
to
dc varia
b
le
s. In this control d-axis i
s
aligne
d
alon
g grid voltag
e vector so curre
n
t in d-axis
gene
rate
s a
c
tive powe
r
a
nd cu
rrent al
ong the q
a
xis control
s
th
e rea
c
tive po
wer.In thi
s
co
ntrol
stru
cture PI controlle
rs are
usu
a
lly used
, as it provide
s
zero
ste
ady
state e
rro
r
when
controlling
DC ma
gnitud
e
s. In prop
osed strate
gy inner lo
op co
ntrols the g
r
i
d
curre
n
t to
ensure b
a
lan
c
ed
and qu
ality current into the grid n
e
two
r
k. The
oute
r
l
oop regulate
s
the rea
c
tive power delive
r
ed
to grid an
d DC link voltag
e. The co
ntro
ller obje
c
tive
is to maintain
DC lin
k voltage con
s
tant
so
that active p
o
w
er is compl
e
tely tran
sferred to
t
he g
r
i
d
and
imp
r
ov
es
power fact
or to
be at
u
n
ity
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
cou
p
led F
eed Fo
rward
Voltage Ori
e
n
t
ed Controlle
r for DFIG und
er… (Dile
ep
Kum
a
r Varm
a)
213
at the conve
r
ter termi
nals. In this control Stra
tegy Conve
n
tional
PLL is used
to extract grid
pha
se an
gle for dq tra
n
sfo
r
mations.
Figure 4. Pro
posed Decou
p
led Fee
d
forw
ard Voltage
Oriente
d
Cu
rrent Controlle
r
5. Simulation Resul
t
s an
d Discus
s
io
n
Ca
se 1: Bala
nce
d
Fault Condition
A balan
ced v
o
ltage sag of
50% is ap
pli
ed at
t=0.06
Sec in g
r
id n
e
twork a
s
sh
own in
Figure 5.
Due
to voltag
e
sa
g in
the
gri
d
netwo
rk
the voltage at the wind farm
sli
ghtly redu
ce
s to
0.9 Per unit d
u
ring the fault
y
period from
0.06 se
c to 0.1 Second
s a
nd then finall
y
settle down
to
prefault
wi
nd
farm
voltage
of 1
pe
r
unit
as
sho
w
n
in
Figu
re
6.
Due to
re
du
ction in
the
sta
t
or
voltage at the terminal
s o
f
DFIG the st
ator cu
rrent
may sud
denl
y rise
s to large value with
no
prop
er contro
l whi
c
h
results in
la
rge
in
crease in
rotor
c
u
rr
ent caus
ing the
c
onverter to t
r
ip.
Here
the pro
posed
controller
ca
n effectively control t
he cu
rre
nt injecte
d
into grid an
d
helps the
DF
IG
to ride
throug
h even
un
der larg
e b
a
lan
c
ed voltag
e
sa
gs i
n
g
r
id
net
work. T
he
cu
rrent in
the
DF
IG
sho
o
ts up to
1.1 per unit
durin
g sa
g Period a
nd fin
a
lly settles d
o
wn to 1 pe
r unit as sho
w
n in
Figure 7 a
nd
Figure 8. Due
to voltage sa
g in gri
d
net
work, th
e in
cre
a
se i
n
current
raises the
DC
Link voltage
of conve
r
ter increa
se
s
a
s
sho
w
n
in
Figure 9
an
d cau
s
e
s
se
vere d
a
ma
ge
to
conve
r
ter
an
d trip the DFIG from the n
e
twork.
Th
e DC
Link volta
ge set at refe
ren
c
e voltag
e
of
1150 in the conve
r
ter whi
c
h is to be maintaine
d
a
t
all normal and abn
orm
a
l condition
s. The
proposed controller effect
ively control
s
dc link voltage whi
c
h oscillates around reference
se
t
value and fin
a
lly settles to
safe value
of 1180V
wh
i
c
h
help
s
the wi
nd gen
erator
to avoid trippi
ng
unde
r voltag
e dip co
nditio
n
. The active
powe
r
sli
ghtl
y
redu
ce
s fro
m
9MW to 8
M
W du
ring
sag
con
d
ition a
s
sho
w
n in
Fig
u
re 1
0
and
a
fter the sa
g is re
sto
r
ed at
t=0.1 Sec th
e active po
wer
contin
ue
s to gene
rate 9M
W to the gri
d
netwo
rk.
In this case the
prop
osed
co
ntrolle
r help
s
the
uninterru
pted
and relia
ble
power supply
to netwo
rk e
v
en unde
r ab
norm
a
l co
ndit
i
ons. At the GSC
the rea
c
tive
power is 0
M
VAR un
de
r n
o
rmal
c
onditi
ons.
The
re
a
c
tive po
we
r
g
enerated
by
grid
conve
r
ter i
n
creases to
1.5
M
VAR du
ring
the abn
or
m
a
l con
d
ition fo
r voltage supp
ort at the
DFI
G
terminal
s an
d
after t=0.1 sec the reactiv
e
power fi
nall
y
settles to 0MVAR as
sho
w
n in Figu
re
11.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 209 –
216
214
Figure 5. Voltage at the Gri
d
Termin
als u
nder
balan
ce
d sa
g
conditio
n
Figure 6. Voltage at Win
d
farm termi
nal
unde
r
balan
ce
d sa
g
conditio
n
Figure 7. Stator Cu
rrent un
der bal
an
ced
sag
condition
Figure 8. Rot
o
r Cu
rrent un
der bal
an
ced
sag
condition
Figure 9. DC
Link Voltag
e unde
r bala
n
ced sa
g
condition
Figure 10. Active power u
n
der bal
an
ced
sag
condition
Figure 11. Re
active po
wer
unde
r bala
n
ced sa
g co
ndit
i
on
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
De
cou
p
led F
eed Fo
rward
Voltage Ori
e
n
t
ed Controlle
r for DFIG und
er… (Dile
ep
Kum
a
r Varm
a)
215
Ca
se 2: Un
ba
lanced si
ngle
line to grou
nd
Fault
Due to re
mot
e
grid faults,
voltage dip a
ppea
r
at the different bu
se
s
of the powe
r
System
and results i
n
adverse eff
e
ct on the o
peratio
n of
Wind fa
rm. Whe
n
sin
g
le
line to gro
u
n
d
fault
take
s pla
c
e
a
t
remote g
r
id
at time t=0.0
6
se
co
nd
s an
d last
s for
40
0ms, the volt
age at
wind f
a
rm
drop
s do
wn t
o
80% of normal value as
sho
w
n in Fig
u
re 12 a
nd m
a
intain
s at rated value after the
fault is clea
re
d. Figure 13
sho
w
s unde
r
norm
a
l con
d
itions rea
c
tive power is
set at 0 Mvar and
durin
g faulty con
d
ition
s
little amou
nt of reacti
ve p
o
we
r is
su
pplied
by GSC to
su
pport th
e voltage
at the wind farm termi
nal
s. In this wa
y the pr
opo
sed cont
rol strategy supp
orts voltage at the
DFIG termi
n
a
l
s co
nsta
nt by controlli
ng th
e rea
c
ti
ve po
wer tran
sa
ction between t
he grid a
nd wind
turbine. Wh
e
n
one of
the pha
se
s
get
s effected
d
ue
singl
e line to
grou
nd fault
a
t
PCC the
cu
rrent
in unhealthy
pha
se incre
a
s
e
s
to abno
rmal value as
sho
w
n in Fig
u
re 14 a
nd tri
p
s the DFIG.
Bu
t
the Propo
sed
current co
ntrolle
r limits the cu
rre
nt to reach to abnorm
a
l value
and help
s
wind
turbine to
st
ay con
n
e
c
te
d to grid
eve
n
und
er fault
y
condition.
Whe
n
si
ngle
Line g
r
ou
nd
fault
happ
en
s to
o
c
cur at t=0.0
6
Se
cond
s Dc Li
nk Voltag
e sudd
enly
Jumps to l
a
rg
e value
sho
w
n in
Figure 15 an
d come
s to n
o
rmal value a
fter the faul
t is vanished. Duri
ng the fa
ulty period th
e dc
link volta
ge
o
scill
ates an
d
come
do
wn
t
o
set va
lue.
The P
r
op
ose
d
controller suppresse
s th
e d
c
link voltage to
large value a
nd avoid
s
the
DFIG to trip from gri
d
.
Figure 12. Voltage at the Wind fa
rm Wi
th LG
Fault
Figure 13. Re
active Powe
r
delivere
d
by Grid
side
conve
r
te
r With LG Fa
ult
Figure 14. Stator cu
rrent a
t
Wind farm Under
LG Fault
Figure 15. DC link voltag
e
with LG Faul
t
6. Conclusio
n
This pa
per h
a
s presented
a Control Scheme
for DFIG to enhan
ce the Performance of
DFIG unde
r
bala
n
ced and unb
alan
ced
fault C
ondition
s. T
he p
r
op
osed
Co
ntrolle
r
wa
s
impleme
n
ted
in Stator Voltage O
r
iente
d
referen
c
e fra
m
e for G
r
id
si
de Converte
r.
The propo
se
d
controlle
r effectively mitigates DC Lin
k
Volt
age, Stator Cu
rre
nt, Rotor
Cu
rre
n
t
and Voltage at
Wind Farm
termin
als und
er
a
bno
rmal Con
d
itio
n
s
. T
he Simulatio
n
re
sults
have
been
presen
ted
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 15, No. 2, August 2015 : 209 –
216
216
to sho
w
the effectivene
ss of the Propose
d
Cont
roll
er.From the results it is sho
w
n that the
prop
osed
co
ntrol
schem
e
for DFIG
results in
le
ss
Oscill
ation
s
in DC Lin
k
Voltage, Stator/rotor
Curre
n
ts and
stator a
c
tive and re
active power du
ring
the faulty period and all the
paramate
r
s of
DFIG lying
wi
thin the safe l
i
mits witho
u
t damagi
ng the
conve
r
ter
wh
ich h
e
lp
s the
DFIG to rema
in
in servi
c
e to
generate the active and
reactive
Po
wer to g
r
id
contin
uou
sly even und
er
grid
disturban
ce
condition
s. F
r
om the
re
sult
s it
wa
s
sh
o
w
n th
at g
r
id
cod
e
requi
re
ments set by
gri
d
cod
e
ope
rato
rs have be
en
fulfilled and allows the Wind turbin
e to stay in service und
er g
r
i
d
contin
gen
cie
s
.
Referen
ces
[1]
Hua Ge
ng, Co
ng Li
u, Geng
Yang. LV
RT
C
apa
bil
i
t
y
of DF
IG-Based W
E
CS un
der As
ymmetrical Gri
d
Fault Con
d
itio
n
.
Industrial Ele
c
tronics, IEEE Transactio
n
s
. 201
3; 60(6): 24
95-2
509.
[2]
Don
g
li
ang
Xie,
Z
hao
Xu, L
i
h
u
i Ya
ng, Ostergaar
d J, Yush
eng
Xue, Kit P
o
W
ong. A C
o
mpreh
ensiv
e
LVRT
Control
Strateg
y
for
DF
IG W
i
nd T
u
rbi
nes W
i
th
Enha
nce
d
Re
active Po
w
e
r
Supp
ort.
IE
EE
T
r
ansactio
n
s Pow
e
r Systems
.
2013; 2
8
(3): 3
302-
331
0.
[3]
J Matevos
y
a
n
, T
Ackermann,
S Bolik, L Sd
e
R
.
Co
mpar
ison
of Internatio
na
l regu
lati
ons fo
r connecti
o
n
of w
i
nd turbin
e
s
to the netw
o
rk
. In Proc. NWPC. Gothenb
ur
g, S
w
e
d
e
n
. 20
04; 1: 1-7.
[4]
Qiao, RG Harley
.
Grid c
onn
e
c
tion req
u
ir
e
m
ents an
d sol
u
ti
ons for DF
IG w
i
nd turbi
nes
. In Proc. IEEE
Energ
y
2
0
3
0
C
onf. Atlanta, GA, USA. 2008: 18.
[5]
Centra
l El
ectri
c
it
y
Reg
u
l
a
tor
y
Commiss
ion,
Minist
r
y
of P
o
w
e
r, Ce
ntral
Gove
rnm
ent of I
ndi
a, Indi
a
n
Electricit
y
Gri
d
Cod
e
. Ne
w
De
l
h
i, India: Ce
nt
ral Electricit
y R
egu
lator
y
Com
m
ission. 2
010.
[6]
J Lo
pez, P
Sa
nchis,
X R
obo
am, L M
a
rro
yo
. D
y
nam
ic b
e
h
a
vior
of th
e
do
ubl
y f
e
d
in
duct
i
on
ge
ner
ato
r
during three-phase volt
age dips IEEE
T
r
ans.
Energy C
onver
sation
. 20
07; 2
2
(3): 709-
71
7.
[7]
J Morren, SW
H de
Ha
nn.
Ri
de thr
oug
h
of w
i
nd
turb
ines
w
i
t
h
d
o
u
b
l
y
-fed
ind
u
ctio
n g
e
n
e
rator
duri
ng
a
voltage dip IEEE
T
r
ans.
Energ
y
Convers
i
on
.
200
5; 20(2): 43
5-44
1.
[8]
I Erlich, H Wrede, C F
e
ltes.
D
y
na
mic
be
havi
o
r of DF
IG-bas
ed w
i
n
d
turb
in
e
s
duri
n
g
gri
d
fa
ults.
I
n
P
r
o
c
.
Po
w
e
r C
onvert
e
rs. Conf. Nag
o
y
a, Japa
n. 20
07: 119
5-1
200.
[9]
Chi Ji
n, Pen
g
W
ang.
Enh
anc
ement of low
v
o
ltag
e rid
e
-thro
ugh
c
apa
bil
i
ty for w
i
nd turbi
n
e
driven
DF
IG
w
i
th active crow
bar and b
a
ttery energy stora
ge syste
m
. Pow
e
r an
d Ener
g
y
Soci
et
y
Ge
n
e
ral Me
etin
g
.
201
0; 1(8): 25-
29.
[10]
I Erlich, J Kretschman
n
, J F
o
rtmann, S Muel
l
e
r-E
ng
elh
a
rd,
H W
r
ede. Mod
e
lin
g of
w
i
nd tu
rbin
es bas
ed
on d
oub
l
y
-fed i
nducti
on g
e
n
e
r
a
tors for po
w
e
r s
y
stem stabi
l
i
t
y
stud
ies.
IEEE Trans. Power System
s
.
200
7; 22(3): 90
9-91
9.
[11]
J Yang, JE F
l
etcher, J ORei
ll
y
.
A ser
i
es d
y
n
a
mic res
i
sto
r
based c
onve
r
ter protection
scheme fo
r
dou
bl
y-fed
ind
u
ction g
e
n
e
rat
o
r duri
ng var
i
o
u
s fault con
d
iti
ons.
IEEE Trans. Energy Conversion
. 20
10
;
25(2): 42
2-4
3
2
.
[12]
AH Kas
e
m, EF EI-Saad
an
y,
HH EI-T
amal
y
,
MAA W
a
h
ab.
An im
prove
d
f
ault r
i
de-thr
o
u
g
h
strateg
y
f
o
r
dou
bl
y fed i
ndu
ction ge
ner
ator
-base
d
w
i
n
d
tu
rbin
es.
IET
Renew
Pow
e
r Gen
. 2008; 2(
4): 201-2
14.
[13]
S Foster, L
Xu
, B Fox. C
oor
d
i
nate
d
re
active
po
w
e
r co
ntrol
for facilitati
ng f
ault ri
de thr
o
u
gh of
do
ub
l
y
fed i
nducti
on
gen
erator
an
d
fixed
spe
e
d
i
nducti
on
ge
ner
ator-bas
ed
w
i
n
d
farms.
IET R
e
ne
w
Po
we
r
Gen
. 200
8; 4(2
)
: 128-13
8.
Evaluation Warning : The document was created with Spire.PDF for Python.