TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 64
6
1
~ 647
0
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.643
1
6461
Re
cei
v
ed Ma
y 3, 2014; Re
vised June
2
3
, 2014; Acce
pted Jul
y
10,
2014
PLC Us
ed Automation in Oil Industry for Multiple
Induction Motors
Nithin T Abraham*, Shaema Liz
b
eth Mathe
w
,
Hima S
Dept of Electric
al an
d Electro
n
i
cs Engi
neer
in
g, Karun
y
a U
n
i
v
ersit
y
, Co
imb
a
tore, India
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: nithinth
amar
aveli
l
@gm
a
i
l
.com
A
b
st
r
a
ct
Most of the
i
n
dustries
req
u
ir
e co
ntinu
ous
mo
nitori
ng
a
n
d
ins
pectio
n
at frequ
ent i
n
terva
l
s. T
her
e
are possi
bi
litie
s of errors at various stage
s due to
hu
man interv
entio
n and lack of
few features o
f
micr
ocontr
o
ll
er
s. Hence a
u
to
mati
on i
n
in
dus
tries usin
g
Pro
g
ra
mma
b
le Lo
gic
Co
ntroll
ers came
into pictu
r
e.
PLC is
us
ed f
o
r the
inter
n
a
l
storage
of i
n
st
ruction
fo
r i
m
pl
ementi
ng f
unct
i
ons
such
as
l
ogic, s
equ
enc
i
ng,
timi
ng, co
untin
g, and
arith
m
e
t
ic c
ontrol thro
ugh
dig
i
tal or
ana
log
inp
u
t a
nd o
u
tput
mod
u
les a
nd v
a
rio
u
s
other types
of mac
h
i
ne pr
oce
sses.
Industria
l
auto
m
ati
on is
larg
ely
b
a
sed
on PL
C-bas
ed
control syste
m
s
.
T
hey ar
e
used
to
mo
nitor
a
n
d
co
ntrol
a
pl
a
n
t or
eq
ui
p
m
en
t
in in
dustries
such as
w
a
ter
and
w
a
ste
co
n
t
rol,
ener
gy, oil
and
gas refin
i
n
g
a
nd trans
portati
on. Auto
mati
on
also i
n
creas
es
prod
uct qua
lit
y, productivity
an
d
decreases br
eakdown.
Conv
entional
equ
ipm
e
nts or system
s ar
e prone to
errors due to involvement of
hu
ma
ns for
d
a
ta co
llecti
o
n
and
proc
essi
n
g
us
ing
co
mp
licate
d
math
e
m
atic
al
expr
es
sions.
Co
mp
uter
integr
ated manufacturing,
com
p
uter num
erical control; robots, fl
exible m
a
nufactur
i
ng system
,
automated
insp
ection a
nd
process co
ntrol
are directin
g the techn
o
lo
gy tow
a
rd one go
al, the fully aut
omated factory
of
the futur
e
. Co
mi
ng
to In
ducti
on
motors, i
n
t
he c
onv
entio
n
a
l c
a
se
du
e to
lon
g
us
e
of a
particu
lar
in
du
ction
motor i
n
oi
l rig
related
pla
n
ts more
mecha
n
i
cal fau
l
ts aris
e due to ov
er
heati
ng a
nd
may lea
d
to fail
ure
w
h
ich affects
prod
uction. In case of usin
g tw
o or
more in
ductio
n
motors
and auto
m
ati
ng the duty cycl
e
shifting usi
ng
P
L
C,
the effectiveness of
the sy
stem
incre
a
ses
.
Also i
n
cas
e
of trippi
ng
of a
particu
lar
mot
o
r,
other
idl
e
moto
rs backs
u
p
th
e o
per
ation
the
r
eby
prev
e
n
tin
g
the
p
l
ant
to
go to
stan
dstill,
he
nce
incr
eas
i
n
g
the overa
ll pl
an
t efficiency.
Ke
y
w
ords
: aut
omation, PLC, la
dder logic, duty cycl
e shifting, tripping
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In early days
indu
strial op
e
r
ation
s
we
re
carrie
d out m
anually an
d manpo
we
r was be
hind
each a
nd
eve
r
y movem
ent
whi
c
h to
ok pl
ace
in
any
co
mpany.
Whe
n
the
num
ber of o
peration
s
of
a pro
c
e
ss g
o
t
increa
se
d, it becam
e difficult to
handl
e
the complexi
ty of hard wiring re
sulting i
n
increa
se in f
ault occu
rren
ce a
nd d
e
crease in
p
r
od
uctivity. Hen
c
e a
ne
w m
e
thod to
con
t
rol
indu
strial op
e
r
ation
s
usi
ng
relays
wa
s introdu
ce
d.
Relay
s
are
of on and off type, in whi
c
h the relay p
a
sses on the
co
ntrol in on
e d
i
rectio
n
for on
e
com
m
and
and
in
anoth
e
r
dire
ction fo
r the
opp
osite
co
mmand. But
usi
ng
relay
s
to
automate the
entire sy
ste
m
was
not feasibl
e
due
to
its com
p
lexity, high power
con
s
um
ption
and
difficulty in fault identificati
on. He
nce au
toma
tion with
a better te
ch
nology b
e
ca
me the ne
ed
of
the hou
r. Automation
was ma
de b
e
tter sl
owly
and
steadi
ly with the
introdu
ction
of
Programma
bl
e Logic
Controllers. PLC is an electro
n
ic device with variabl
e numb
e
r of input an
d
output p
o
rts
and thi
s
cha
r
acteri
stic en
a
b
les the
PL
C to control
an
d autom
ate
many op
erations.
The efficien
cy of automation ha
s also
increa
sed
with the use of
PLC.
PLC’s
are d
e
sig
ned to
withsta
nd hi
g
h
tempe
r
atures, humi
d
ity, vibration
s
, electri
c
al
noise a
nd
power i
n
terruption
s
g
e
n
e
rally e
n
cou
n
tered
in i
n
dustri
a
l e
n
vironm
ents. P
L
C’
s
prog
ram
m
ing
langu
age i
s
easy to u
nde
rstand
and to l
earn.
No
w in
PLC it is
po
ssible to
modif
y
a
control
syste
m
witho
u
t ch
angin
g
the
i
nput a
nd
out
put devi
c
e
s
but by mo
difying the
set
of
instru
ction
s
.
Thus the
PL
C b
a
sed
system is a fl
exi
b
le system
whi
c
h ca
n
b
e
u
s
ed
to co
ntrol
variou
s appli
c
ations
whi
c
h
vary quite wid
e
ly in their na
ture and
com
p
lexity.
Automation i
s
the u
s
e
of
cont
rol
syst
ems
(such a
s
nu
meri
cal
control, programmabl
e
logic control, and other i
ndu
stri
al con
t
rol system
s), in conce
r
n
with other appli
c
ation
s
of
informatio
n te
chn
o
logy (su
c
h a
s
comp
uter-aide
d
tech
nologi
es [CA
D
, CAM]), to
control ind
u
st
rial
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 64
61 – 647
0
6462
machi
n
e
r
y a
nd p
r
o
c
e
s
se
s, re
du
cing
the nee
d fo
r hum
an int
e
rvention. In
the sco
p
e
of
indu
striali
z
ati
on, auto
m
atio
n is
a
ste
p
b
e
yond
me
cha
n
izatio
n. Whe
r
ea
s m
e
chani
zation
p
r
ovid
ed
human
op
erators
with m
a
chi
nery to
assist th
em
with the
mu
scular requi
rements of
work,
automation
g
r
eatly red
u
ce
s the ne
ed fo
r huma
n
se
n
s
ory a
nd me
ntal req
u
ire
m
ents a
s
well. One
of the ea
rlie
st promi
s
e
s
of automation
was to
a
llo
w m
o
re free time,
without
any threat
of inco
me
reduction. A
nother maj
o
r shift in aut
omati
on i
s
t
he increased dem
and for flexibility and
conve
r
tibility in manufa
c
tu
ring p
r
o
c
e
sses. Pro
c
e
s
se
s an
d sy
ste
m
s
can al
so
be autom
ate
d
to
increa
se p
r
od
uctivity.
Automation p
l
ays an i
n
cre
a
sin
g
ly impo
rtant role i
n
the world
e
c
onomy a
nd i
n
daily
experie
nce. Enginee
rs strive to combine
auto
m
ated devices with ma
thematical a
n
d
orga
nizationa
l tools to
cre
a
te complex
system
s
fo
r
a rapidly
exp
andin
g
rang
e
of ap
plicatio
ns
and
huma
n
activities. Sp
eciali
ze
d ha
rdene
d comp
uters,
refe
rre
d
to a
s
p
r
o
g
ramma
ble l
o
gic
controlle
rs (P
LCs), are fre
quently use
d
to sync
hroni
ze the flow
of inputs fro
m
sen
s
o
r
s a
n
d
events
with t
he flo
w
of o
u
tput
s to
a
c
tuators a
nd
e
v
ents. Thi
s
l
ead
s to
pre
c
isely
controll
ed
action
s that
permit a
tigh
t control of
almost
any i
ndu
strial
pro
c
e
ss. Auto
m
a
tion ha
s
be
en
respon
sibl
e f
o
r th
e
shift in
the worl
d e
c
o
nomy fro
m
in
dustri
a
l j
o
b
s
t
o
servi
c
e j
o
b
s
in th
e 2
0
th
a
n
d
21st centuri
e
s. Automatio
n
has vari
ou
s other
a
d
va
ntage
s like
highe
r pro
d
u
c
tivity, superi
o
r
quality of en
d produ
ct, e
fficient u
s
ag
e of raw
m
a
terial
s a
n
d
improve
d
safety in wo
rking
con
d
ition
s
. The Figu
re 1
rep
r
e
s
ent
s the histo
r
y
of automation; t
h
is ma
nual
control forms
the
base of th
e p
y
ramid foll
owed by th
e rela
y and
ele
c
tro
n
ic l
ogi
c
cont
rol
whi
c
h
had
their
re
sp
ecti
ve
disa
dvantag
e
s
whi
c
h de
crease the pro
ductivity. PL
C marks the evolution of
automation which is
pea
ked by th
e Distri
buted
Control Syste
m
.
Figure 1. Hierarchy of System Cont
rol
Figure 2
rep
r
esents the
stru
ct
ure of
automation. I
n
this m
e
tho
d
, the control and
automation a
r
e do
ne by manual o
p
e
r
ations. Huma
n errors sub
s
eque
ntly affect quality of end
prod
uct. Com
panie
s
u
nde
rtake p
r
oje
c
t i
n
automatio
n
for variety of
good
rea
s
o
n
s
. Some of t
h
e
importa
nt re
aso
n
s for
a
u
tomating
are in
cre
a
sed
pro
d
u
c
tivity, high
cost
of labo
ur, la
bou
r
sho
r
tage,
safety, high
co
st of ra
w mat
e
rial
s, imp
r
ov
ed p
r
o
d
u
c
t q
uality, red
u
ce
d ma
nufa
c
ture
lead tim
e
, re
ductio
n
in
p
r
oce
s
s inve
ntory a
nd
high
co
st of
non
-a
utomation. Al
l of the
s
e
factors
ac
t together
to make produc
tion
a
u
to
mation a
fea
s
ible
an
d att
r
active
altern
ative to man
ual
method
s of manufa
c
ture. T
he type of
automation tool opted for test
automation in this proje
c
t is
PLC s
i
nc
e
a
PLC i
s
use
d
to
control, time an
d re
gulate a
seq
uen
ce.
PL
C
is effici
ent a
n
d
eco
nomi
c
al
consi
deri
ng th
e requi
rem
e
n
t
s of the proje
c
t.
Figure 2. Structure of Auto
mation
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
PLC Used Au
tom
a
tion in Oil Industry for
Multiple Indu
ction Moto
rs
(Nithin T Abra
ham
)
6463
2. Automa
tio
n
of Inductio
n
Machines
Automation i
s
the u
s
e of control sy
ste
m
s an
d information techn
o
logie
s
to re
duce the
need fo
r hum
an wo
rk in the pro
d
u
c
tion
of good
s and
se
rvi
c
e
s
. In the scop
e of indu
striali
z
atio
n,
automation i
s
a step beyo
n
d
me
chani
zat
i
on. Whe
r
e
a
s mech
aniza
tion provided h
u
man op
erators
with machine
r
y to assi
st them with th
e musc
ula
r
requireme
nts
of work, aut
omation g
r
ea
tly
decrea
s
e
s
th
e ne
ed fo
r h
u
m
an
sen
s
o
r
y
and m
ental
requireme
nts
as
well. Auto
mation pl
ays
an
increa
singly i
m
porta
nt role
in the world
eco
nom
y and
in daily experien
c
e. Auto
mation ha
s h
ad a
notable im
pa
ct in a wi
de
rang
e of in
dustri
e
s
bey
ond ma
nufa
c
turing
whe
r
e
it began. O
n
ce
telepho
ne op
erato
r
s h
a
ve
been repla
c
ed largel
y by automated t
e
leph
one
swi
t
chbo
ard
s
a
n
d
ans
we
ring
m
a
chi
n
e
s
.
Med
i
cal pro
c
e
s
se
s su
ch as
p
r
i
m
ary
scree
n
i
ng in
ele
c
tro
c
ardiog
ra
phy or
radio
g
raphy
and la
boratory analysi
s
of
human
gen
es, sera, cell
s,
and tissu
e
s
a
r
e
carried
out
at
much
greate
r
spe
ed a
nd
accuracy
by automat
ed sys
tems
. Automated teller
mac
h
ines
have
redu
ce
d the
need for b
ank visit
s
to
obtain ca
sh
and ca
rry
out tran
sa
ctions. In ge
n
e
ral,
automation
h
a
s
bee
n respon
sible fo
r
the shift in
the
worl
d e
c
o
nomy from
i
ndu
strial j
o
b
s
to
servi
c
e job
s
i
n
the 20th an
d 21
st
centu
r
i
e
s.
In oil in
du
stri
es
crud
e oil
i
s
the
p
r
ima
r
y re
so
urce
available. F
r
om
this
crud
e oi
l we
a
r
e
pro
c
e
ssi
ng variou
s petrol
eum pro
d
u
c
ts like die
s
el,
petrol, kero
sen
e
etc. through a process
called F
r
actional
Distillation. In these
oil
industries
it
is very much i
m
portant to have 24*
7
(non-
stop op
eration) ru
nnin
g
m
o
tors
so that
cru
de o
il
can
be pump
ed from its so
urce
and is
store
d
in
a sto
r
in
g tan
k
, from
wh
ere
it is ta
ke
n fo
r fra
c
tional
di
stillation. So o
u
r
proj
ect
is to auto
m
ate t
h
is
pro
c
e
ss
usi
n
g PLC. Here
the duty cycle
s
of
motors are autom
atically shifte
d and
whe
n
any
motor get
s tri
pped, then th
e backu
p motor will o
c
cupy
its position.
Figure 3. Block
Diag
ram o
f
Application i
n
Oil Indust
r
y
As sho
w
n i
n
Figure 3, a
2
30V, 50
Hz,
si
ngle p
h
a
s
e A
C
sup
p
ly is
gi
ven to the P
L
C a
s
a
sup
p
ly voltage. Also, a three pha
se
sup
p
ly is giv
en to the motors t
h
rou
gh the co
ntactor/
overlo
ad
set. Two l
e
ve
l swit
che
s
, on
e at the oil re
serve to
se
nse the minimu
m level of cru
de oil an
d on
e
at the storage tank to sense the maxim
u
m level
to avoid spillage respectively,
are given as an
input to the
PLC. As sho
w
n in Fi
gure 4,
the PL
C u
s
e
d
he
re
has g
o
t only 8 i
npu
ts an
d 4
outp
u
ts
in the main b
ody. Since, we ne
ed a to
tal of
six outputs we are i
n
se
rting an
other inp
u
t/output
card to the
main b
ody to
meet the
re
quire
ment. In
the proje
c
t
we a
r
e
demo
n
stratin
g
with
one
motor and th
ree in
can
d
e
s
cent bulb
s
d
ue to cost
co
nstrai
nts. A 230V, 50Hz, single pha
se
AC
sup
p
ly is
give
n to the PL
C
as th
e supply
voltage a
nd
a 415V,
50
Hz, thre
e p
h
a
s
e supply i
s
gi
ven
to the moto
r
throug
h the
contacto
r/overl
oad
set. Out
put.5 (Q
5)
an
d output.6
(Q
6) a
r
e
wa
rnin
g
and critical in
dicatio
n
lamp
s re
spe
c
tively.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 64
61 – 647
0
6464
Figure 4. Circuit Diagram
The main p
o
w
er
ON/OF
F
is given to the PLC a
s
in
put at I1. The trip sign
al from the
conta
c
tor/ove
r
load i
s
given
at I2. At
I3, I4 and I5
ma
n
ual trip si
gnal
s are given. T
he sig
nal
s fro
m
low an
d hig
h
level swit
che
s
are given a
t
I6 and I7
re
spe
c
tively. In the output si
de, the sig
nal
to
the conta
c
to
r/overloa
d
fro
m
the PLC is taken fro
m
Q1. Similarly, signal
s to ou
tputs 2, outp
u
t 3,
output 4, o
u
tp
ut 5 an
d o
u
tp
ut 6 a
r
e ta
ken
from the
PL
C outp
u
t term
inals
Q2, Q
3
,
Q4, Q5
and
Q6
respe
c
tively is sh
own in Table 1.
Table 1. Para
meter detail
s
of Automation
3. PLC Progr
amming
The CPU co
n
t
ains
a
n
“Exe
cutive” pro
g
ra
m
that
tells th
e PLC
ho
w to
execute
the
control
instru
ction
s
, how to com
m
unicate wit
h
other
devi
c
es, other PL
Cs, Pro
g
ra
m
m
ing devices, I/O
device
s
, et
c. The
prog
ra
m al
so tell
s the PL
C
h
o
w to
pe
rform ho
use
k
e
e
p
ing
activitie
s
,
diagnosti
cs, etc. This program is
stored i
n
“non-volatil
e” memory
i.e., the program will not be lost
if power is removed. T
h
i
s
p
r
o
g
ra
m
re
ceive
s
it
s
inp
u
t
f
r
om
v
a
rio
u
s
so
ur
ce
s li
ke
s
w
it
ch
es
and
pushbutton
s
, sen
s
in
g devices, limit switches, photo
e
le
ctri
c sen
s
o
r
s, proximit
y senso
r
s, conditi
on
s
e
ns
or
s
,
pr
es
su
r
e
sw
itc
h
e
s
, le
ve
l sw
itc
h
es
, te
mp
er
a
t
u
r
e
sw
itche
s
, va
cu
u
m
s
w
itc
h
es
, floa
t
swit
che
s
a
n
d
en
code
rs. T
he p
r
og
ram i
s
exe
c
uted
a
nd the
outpu
t is controlle
d in
return.
The
va
r
i
o
u
s
ou
tp
uts
ar
e
va
lves
, mo
to
r s
t
ar
te
rs
, so
le
no
ids
,
a
c
tu
a
t
or
s
,
c
o
n
t
r
o
l
r
e
la
ys
, ho
r
n
s
&
a
l
a
r
ms
,
stack lig
hts, fans,
cou
n
ter/t
o
talize
r
, pum
ps a
nd p
r
inte
rs. PL
C p
r
og
rams
are typi
cally written in
a
spe
c
ial a
pplication on a pe
rso
nal comp
u
t
er,
and then
download
ed
by a di
rect
-co
nne
ction cabl
e
or ove
r
a n
e
twork to
the
PLC. Th
e p
r
ogra
m
i
s
stored in
the PL
C eith
er i
n
b
a
ttery-ba
c
ked
-
u
p
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
PLC Used Au
tom
a
tion in Oil Industry for
Multiple Indu
ction Moto
rs
(Nithin T Abra
ham
)
6465
RAM or so
m
e
other non
-volatile flash
memory
. Often, a single
PLC can be
programme
d
to
repla
c
e
thou
san
d
s of rel
a
ys. Th
e Int
e
rnat
io
nal El
ectro
te
chni
cal Commi
ssi
on (IE
C
) ha
s
formatted five different languag
es by which
a PLC
can be pro
g
ra
mmed. The five programm
i
ng
techni
que
s a
r
e: Fun
c
tion Block
Diag
ra
m (FBD), St
ruct
u
r
e
d
Tex
t
(S
T),
I
n
st
ru
ct
ion List
(I
L
)
,
Ladd
er Di
agram (L
D), Seq
uential Fun
c
ti
on Ch
art (SF
C
).
Early PLCs
did not
have
accom
panyi
ng p
r
og
ramm
ing termi
nal
s that we
re
capabl
e of
grap
hical rep
r
esentation o
f
the logic, and so the
log
i
c wa
s inste
a
d
represente
d
as a se
rie
s
of
logic expression
s i
n
so
me versio
n
of Bool
e
an
format,
simil
a
r to
Boole
an al
geb
ra.
As
prog
ram
m
ing
terminal
s evolved, it became mo
re
co
mmon for la
d
der lo
gic to b
e
use
d
, for the
aforem
ention
ed re
ason
s. Ne
wer fo
rma
t
s su
ch
a
s
S
t
ate Logic
a
nd Fun
c
tion
Block
(which
is
simila
r to th
e
way lo
gic is d
epicte
d
whe
n
usi
ng
digi
tal i
n
tegrate
d
lo
gi
c
circ
uits)
exist, but they
are
still not a
s
p
opula
r
a
s
la
d
der l
ogic. A
prima
r
y re
ason for thi
s
i
s
that PLCs so
lve the logi
c i
n
a
predi
ctabl
e a
nd re
peatin
g
seq
uen
ce, an
d ladde
r logi
c allows the p
r
ogra
mme
r (th
e
perso
n writing
the logi
c) to
see
any i
s
su
es
with th
e ti
ming
of
the l
ogic sequ
en
ce mo
re
ea
sil
y
than
woul
d
be
possibl
e in
other fo
rmat
s.
An argume
n
t
that aide
d th
e initial a
dopt
ion of la
dde
r
logic wa
s th
a
t
a
wide va
riety of engine
ers
and te
chni
cia
n
s
would
be
able to un
de
rstand
and u
s
e it without m
u
ch
addition
al trai
ning, be
ca
use of the
re
se
mblan
c
e
to f
a
miliar
ha
rd
ware
syste
m
s.
This argum
e
n
t
has b
e
come
less
releva
nt given tha
t
most ladd
er logi
c p
r
o
g
ramm
ers h
a
ve a software
backg
rou
nd i
n
more conv
entional
pro
g
r
ammin
g
lan
guag
es, a
nd
in pra
c
tice im
plementatio
n
s
of
ladde
r lo
gic
have
cha
r
a
c
teristi
c
s such
as sequ
ential exe
c
ution
and
su
ppo
rt
for control fl
ow
feature
s
that
make th
e an
alogy to hard
w
are
some
what inaccu
rat
e
. Ladde
r log
i
c is
widely u
s
ed
to prog
ram P
L
Cs, whe
r
e seque
ntial con
t
rol of a
pro
c
ess or ma
nuf
acturi
ng op
eration is re
qui
red.
Ladd
er logi
c is useful for
si
mple but criti
c
al co
nt
rol sy
stem
s, or for reworkin
g old
hard
w
ire
d
rel
a
y
circuits. A
s
progra
mmabl
e l
ogic
cont
rolle
rs b
e
came m
o
re
sop
h
isti
cated it has
al
so b
een u
s
e
d
in
very compl
e
x automation systems. Ofte
n the ladde
r logic p
r
og
ram
is use
d
in co
njun
ction with
a
HMI program
operating on
a com
put
er
workstation.
Ladd
er lo
gic
can
be thou
g
h
t of as a rul
e
-
based la
ngu
a
ge, rath
er th
an a p
r
o
c
e
d
u
r
al lan
gua
ge.
A "rung" in
the lad
der re
p
r
esents a rul
e
.
Whe
n
im
plem
ented
with
rel
a
ys a
nd
othe
r ele
c
trom
ech
anical d
e
vice
s, the
vario
u
s rul
e
s "execute"
simultan
eou
sl
y and imme
d
i
ately. When
impleme
n
te
d in a
pro
g
rammabl
e logi
c controller, t
he
rule
s a
r
e
typically exe
c
ute
d
sequ
entiall
y by software
,
in a
co
ntin
u
ous loo
p
(sca
n). By exe
c
ut
ing
the loop fast enough, typically many
times per
se
con
d
, the effect of simultaneo
us
and
immediate
executio
n is
rel
a
tively achiev
ed to with
i
n
the toleran
c
e
of the time re
quire
d to exe
c
ute
every run
g
in
the "loop" (t
he "scan tim
e
"). It is
som
e
wh
at simila
r to other rule
based lan
gua
ges,
like sp
re
ad she
e
ts or S
Q
L. Ho
weve
r, prop
er
u
s
e of progra
mmable cont
rolle
rs requi
res
unde
rsta
ndin
g
the limitations of the exe
c
ution o
r
de
r o
f
rungs.
The lan
gua
g
e
itself ca
n
be seen a
s
a set of con
nectio
n
s b
e
twee
n logi
cal
che
c
kers
(co
n
tact
s) a
n
d
actuato
r
s
(coils). If a path can
be tra
c
e
d
betwe
en the left side of the run
g
and t
he
output, thro
u
gh a
s
serte
d
(true o
r
"cl
o
se
d") conta
c
ts,
the ru
ng i
s
true an
d the
o
u
tput coil
sto
r
age
bit is a
s
sert
e
d
(1
) o
r
true.
If no path
ca
n be t
r
a
c
ed, t
hen the
outp
u
t is fal
s
e
(0
) and th
e "coil
"
b
y
analo
g
y to el
ectro
m
e
c
ha
ni
cal relays i
s
consi
dered "d
e-en
ergized". The an
alogy
betwe
en lo
gical
prop
ositio
ns
and relay co
n
t
act statu
s
is
due to
Cla
u
d
e
Shanno
n. L
adde
r logi
c h
a
s conta
c
ts t
h
a
t
make
o
r
b
r
ea
k
cir
c
uit
s
t
o
c
ont
rol
coil
s.
E
a
ch
c
o
il
o
r
co
ntact
corre
s
p
ond
s to th
e st
atus
of a
sing
le
bit in the prog
ramma
ble co
ntrolle
r's m
e
mory. Unli
ke
electrome
c
h
a
n
ical relays,
a ladde
r prog
ram
can
refe
r an
y numbe
r of
times to th
e statu
s
of
a sin
g
le bit,
equivalent to
a relay
with
an
indefinitely la
rge
num
be
r o
f
conta
c
t
s
. S
o
called
"cont
acts"
may
ref
e
r to
phy
sical
("ha
rd"
)
in
pu
ts
to the prog
ra
mmable
cont
rolle
r from p
h
ysical dev
ices such as
p
u
sh
button
s
a
nd limit swit
ches
via an
integ
r
ated o
r
external in
put m
o
dule, o
r
ma
y
rep
r
e
s
ent th
e
statu
s
of int
e
rnal
stora
g
e
bits
whi
c
h may b
e
gene
rated
e
l
se
whe
r
e in the pro
g
ra
m. Each rung of
ladder la
ngu
age typically has
one coil at th
e far right. Some manufa
c
t
u
re
rs may all
o
w more than
one output coil on a rung.
--(
)-- a
reg
u
lar
coil, en
ergize
d wh
enev
e
r
it
s rung i
s
clo
s
ed --(\)-- a
"n
ot" coil, en
ergize
d when
e
v
er
its ru
ng i
s
o
pen
--[ ]-- A
regul
ar co
nta
c
t, cl
o
s
e
d
wh
enever
its co
rre
sp
ondi
ng coil or an
i
n
put
whi
c
h control
s
it is energi
zed.
--[\]-- A "not" contact,
open whenever its corresponding coil or
an
input
whi
c
h
control
s
it i
s
e
nergi
ze
d. Th
e
"coil"
(outp
u
t
of a
ru
ng) m
a
y rep
r
e
s
e
n
t
a phy
sical o
u
tpu
t
whi
c
h o
p
e
r
at
es
som
e
d
e
vice
co
nne
cte
d
to t
he
prog
ramma
ble
co
ntrolle
r, or m
a
y rep
r
e
s
ent
an
internal
stora
ge bit for use
else
wh
ere in
the prog
ram.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 64
61 – 647
0
6466
4. Testing an
d Resul
t
s
Initially the auto swit
ch (I1
)
is switch
ed
on.
The moto
rs
won’t sta
r
t its operation
until the
minimum level sw
itch
(
I
6)
tur
n
s
o
n
after se
nsi
ng
wh
e
t
her th
e mini
mum level
is
pre
s
ent.
On
ce I6
turns o
n
, the
duty cycl
e of
motors
start
s
with
mo
tor1
(Q1) and mot
o
r2 (Q2) start
i
ng initially. A
s
per th
e time
set in the
timer, the d
u
ty cycle i
s
shifted from
mot
o
r1
(Q1
)
-mot
or2
(Q2
)
the
n
to
motor2
(Q2
)
-motor3
(Q3
)
, motor3 (Q3)-motor4 (Q
4)
, motor
4
(Q4)-
motor-
1 (Q1)
, motor1 (Q1)-
motor-2 (Q
2) and so on. At any poi
nt of the workin
g if the maximum level switch
(I7)
sen
s
e
s
a
maximum level (I7.ON),
the motors
are
turned off. Onc
e
I7 is
off,
again the duty
c
y
c
l
e continues
,
but the duty
cha
nge
s by one step, this i
s
don
e to
increa
se the efficien
cy. The simulation out
put
view is a
s
sh
own in Fig
u
re
5.
Figure 5. Simulation Outp
u
t
View
At the initial start of the
working, the
mot
o
rs
2 a
nd 3
st
art in pl
ace of
1 an
d 2. Thi
s
is d
ue
to the adding
of code for
duty chan
ge
after the
maximum level switch O
N
co
ndition. But this
won’t affect the plant operation as this
will take
place during the
commi
ss
ioni
ng stage. Duri
ng
the re
st of th
e ope
ration, t
he moto
rs
shi
ft in the
exact
orde
r. In bet
wee
n
the o
p
e
r
ation, differe
n
t
trip con
d
ition
s
ari
s
e du
e to over voltage,
over cu
rre
nt, frequen
cy variation
s
, etc.
Table 2. Ca
se.1: Motor 1, Motor 2 (Duty
)
/Motor 3, Mo
tor 4 (Standb
y)
Figure 6. Trip
Conditio
n
: Case.1
As sho
w
n i
n
Figure 6, initi
a
lly whe
n
m
o
tor1
and
moto
r2
start
s
runni
ng, there i
s
a
cha
n
ce
for motor1 to get tripped, when moto
r3 take
s over
a
n
d
the operatio
n contin
ue
s. This ha
s an
other
possibility wh
ere eithe
r
mo
tor2 or m
o
tor
3 may get
trip
ped in which ca
se the op
eration is carrie
d
on by
motor3
-motor4 a
nd
motor2
-moto
r
4 resp
ectivel
y
. Also in
the
initial
ca
se
motor2
may
get
tripped
in
ste
ad of m
o
tor1
wh
ere
moto
r 3 ta
ke
s
over a
nd
havin
g po
ssibilitie
s of m
o
tor1
and
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
PLC Used Au
tom
a
tion in Oil Industry for
Multiple Indu
ction Moto
rs
(Nithin T Abra
ham
)
6467
motor3
gettin
g
tripp
ed
wh
ere
ope
ration
is
ca
rrie
d
o
n
by moto
r3
-motor4
and
motor1
-moto
r
4
respe
c
tively.
These ca
se
s
are tabul
ated
as sho
w
n in
Table 2.
Figure 7. Trip
Conditio
n
: Case.2
As sho
w
n i
n
Figure 7, initi
a
lly whe
n
m
o
tor2
and
moto
r3
start
s
runni
ng, there i
s
a
cha
n
ce
for motor2 to get tripped, when moto
r4 take
s over
a
n
d
the operatio
n contin
ue
s. This ha
s an
other
possibility
wh
ere
eithe
r
m
o
tor3
or moto
r4 may
get tri
pped
in
whi
c
h case th
e o
p
e
ration
i
s
carried
on by
motor4
-motor1 a
nd
motor3
-moto
r
1 resp
ectivel
y
. Also in
the
initial
ca
se
motor3
may
get
tripped i
n
ste
ad of moto
r2
whe
r
e m
o
to
r4 ta
ke
s
ove
r
and
having
possibilitie
s of motor2
a
nd
motor4
gettin
g
tripp
ed
wh
ere
ope
ration
is
ca
rrie
d
o
n
by moto
r4
-motor1
and
motor2
-moto
r
1
respe
c
tively.
These ca
se
s
are tabul
ated
as sho
w
n in
Table 3.
Table 3. Ca
se.2: Motor 2, Motor 3 (Duty
)
/Motor 4, Mo
tor 1 (Standb
y)
Figure 8. Trip
Conditio
n
: Case.3
As sho
w
n i
n
Figure 8, initi
a
lly whe
n
m
o
tor3
and
moto
r4
start
s
runni
ng, there i
s
a
cha
n
ce
for motor3 to get tripped, when moto
r1 take
s over
a
n
d
the operatio
n contin
ue
s. This ha
s an
other
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 64
61 – 647
0
6468
possibility
wh
ere
eithe
r
m
o
tor4
or moto
r1 may
get tri
pped
in
whi
c
h case th
e o
p
e
ration
i
s
carried
on by motor1
-motor2 and
motor4
-moto
r
2 respe
c
tively.
Table 4. Ca
se.3: Motor 3, Motor 4 (Duty
)
/Motor 1, Mo
tor 2 (Standb
y)
Also in the in
itial case motor4 may get
tripped in
stea
d of motor3
whe
r
e moto
r1 take
s
over an
d havi
ng po
ssibilitie
s of moto
r3 a
nd moto
r1 g
e
tting tripped
whe
r
e o
p
e
r
ati
on is
ca
rri
ed
on
by motor1-
motor2
an
d
motor3
-moto
r
2 re
sp
ectivel
y
. These
cases
are
tabul
a
t
ed a
s
sho
w
n in
Table 4.
Figure 9. Trip
conditio
n
: Ca
se.4
As sho
w
n i
n
Figure 9, initi
a
lly whe
n
m
o
tor4
and
moto
r1
start
s
runni
ng, there i
s
a
cha
n
ce
for motor4 to get tripped, when moto
r2 take
s over
a
n
d
the operatio
n contin
ue
s. This ha
s an
other
possibility
wh
ere
eithe
r
m
o
tor1
or moto
r2 may
get tri
pped
in
whi
c
h case th
e o
p
e
ration
i
s
carried
on by
motor2
-motor3 a
nd
motor1
-moto
r
3 resp
ectivel
y
. Also in
the
initial
ca
se
motor1
may
get
tripped i
n
ste
ad of moto
r4
whe
r
e m
o
to
r2 ta
ke
s
ove
r
and
having
possibilitie
s of motor4
a
nd
motor2
gettin
g
trip
ped
wh
ere
op
eratio
n
is carr
ied
o
n
by m
o
tor2
- motor3
and
motor4-m
otor3
respe
c
tively.
These ca
se
s
are tabul
ated
as sho
w
n in
Table 5.
Table 5. Ca
se.4: Motor 4, Motor 1 (Duty
)
/Motor 2, Mo
tor 3 (Standb
y)
List of vario
u
s
inp
u
ts an
d
outputs to
an
d from the P
L
C a
r
e
sho
w
n in Tabl
e 6
and Ta
ble
7 r
e
spec
tively.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
PLC Used Au
tom
a
tion in Oil Industry for
Multiple Indu
ction Moto
rs
(Nithin T Abra
ham
)
6469
Table 6. Vari
ous PL
C Inpu
ts
Sl. No
Nota
tio
n
Descrip
tion
1 I
1
Main po
w
e
r
ON
2 I
2
Trip signal from
Motor.1
3 I
3
Trip signal from
Motor.2
4 I
4
Trip signal from
Motor.3
5 I
5
Trip signal from
Motor.4
6 I
6
Signal from low
l
e
vel sw
itch
7 I
7
Signal from high level sw
itch
Table 7. Vari
ous PL
C Out
puts
Sl. No
Nota
tio
n
Descrip
tion
1 Q
1
Output signal to
motor.1
2 Q
2
Output signal to
motor.2
3 Q
3
Output signal to
motor.3
4 Q
4
Output signal to
motor.4
5 Q
5
Output signal to
w
a
rning lamp
6 Q
6
Output signal to
critical
lamp
In the hardware a
s
sho
w
n in Figure
10 we have
use
d
a plywood pan
el to set the
comp
one
nts. Due to cost
con
s
trai
nts,
we ar
e usi
n
g
one three
p
hase load in
stead of fou
r
and
repla
c
in
g the
others
with
incan
d
e
s
ce
nt bulbs. Th
e PLC and
load is inte
rface
d
throu
g
h
a
conta
c
tor/ove
r
load. Al
so
to dem
on
strat
e
the
va
riou
s tri
p
conditi
ons we h
a
ve
used
ON/O
FF
swit
che
s
.
We
have
used
o
ne level
swit
ch i
n
ste
ad
of two
and
re
pl
ace
d
the
oth
e
r
with
ON/O
FF
s
w
it
c
h
. We have us
ed two lamps
to indicate wa
rni
ng, i.e. when
two motors out of four are
tripped a
nd critical, i.e. whe
n
thr
ee out of
four motors
are trip
ped.
Figure 10. Ha
rdware Model
of Automation of Induction
Motors
4. Conclusio
n
Thus we h
a
ve de
sig
ned
an a
u
tomate
d mod
e
l u
s
in
g Pro
g
ra
mm
able
Logi
c
Controlle
r
repla
c
in
g ma
nual
cont
rol
of motors. T
h
is
autom
ate
d
mod
e
l h
a
s lower fa
ult
occurre
n
ce a
n
d
requi
re
s ve
ry less
huma
n
assi
stan
ce.
Even du
rin
g
a fa
ult in
a pa
rticul
ar
motor th
e pl
ant
operation i
s
n
o
t distu
r
be
d a
s
a
nothe
r b
a
ckup
mo
to
r ta
kes
over th
ere
b
y increa
sin
g
the effici
ency
of the pl
ant
as
a
whol
e. In this p
r
oje
c
t
initia
lly a
st
udy was do
n
e
on
the
cu
rrent sce
nari
o
of
indu
strie
s
wh
ere the
motors were
not au
tomated.
In such i
ndu
strie
s
si
nce a pa
rt
icula
r
moto
r
wa
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 64
61 – 647
0
6470
use
d
for a l
a
rge
amo
unt
of time the
motor
su
ffe
rs mechani
cal
faults by
ove
r
heatin
g d
u
e
to
contin
uou
s o
peratio
n. To
adopt
autom
ation, a
te
sting kit
wa
s d
e
sig
ned usi
n
g
PLC
an
d
the
prog
ram
m
ing
wa
s don
e
b
a
se
d o
n
the
requireme
nts.
The
p
r
og
ra
mming
wa
s d
one
usi
ng l
a
dder
logic in Si
em
ens
LOG
O
! Soft (Versi
on
7.0). Du
e
to
co
st co
nstrai
nts we de
sig
ned the
kit u
s
ing
one motor a
n
d
three incan
desce
nt bulb
s
repl
aci
ng the other thre
e motors. Programmabl
e Log
ic
Controlle
rs are wi
dely u
s
e
d
in i
ndu
strial
co
ntrol
an
d
automation
b
e
ca
use they
are
ea
st to i
n
stall
and flexible in application
s
. Cu
stom d
e
sig
n
in of
pa
rticula
r
co
ntrol panel
s co
st more an
d it is
difficult to ad
opt ch
ang
es based o
n
future
re
qu
ir
eme
n
t
s
w
h
er
ea
s
w
h
en
us
in
g
PL
C
,
w
e
c
an
easily m
a
ke
cha
nge
s b
a
sed on
re
quirements in
th
e program. T
hus i
n
ma
ny ways
autom
a
t
ed
testing
kit i
s
much
hig
her
in pe
rform
a
n
c
e th
an th
e
manual
control an
d he
nce
automatio
n i
s
a
feasibl
e
and
attractive alte
rnative to ma
nual meth
od
s of co
ntrol.
This te
chn
o
lo
gy has a lot
of
advantag
es
and can b
e
worke
d
up
on
in the future
. Speed sen
s
ing a
nd
con
t
rol ca
n also
be
integrate
d
into this tech
nol
ogy. This tec
hnolo
g
y can
also b
e
imple
m
ented with
Lab VIEW.
Referen
ces
[1]
L G
y
ugy
i
, BR
Pelly
.
Static Pow
e
r F
r
equenc
y Chan
gers: T
heor
y, Perfor
mance a
nd App
l
icatio
n
. Ne
w
York: Wile
y
,
1
9
76.
[2]
Nithin T
Abraham, K Vinoth K
u
mar, Vick
y
jose, Dona maria Math
e
w
, S
s
u
resh kumar.
SAR Algorithm
Method
in P
h
o
t
ovoltaic Syst
e
m
s Us
in
g MPP
T
.
Internation
a
l j
ourn
a
l
of P
o
w
e
r
electro
n
i
cs and
driv
es
s
y
stems (IJPEDS). 2013; 3(4
)
: 438-44
3.
[3]
M Ventur
ini,
A Alesi
n
a
. T
h
e g
ener
ali
z
e
d
transfor
m
er:
A new
b
i
dir
e
c
t
iona
l si
nuso
i
d
a
l w
a
vefo
r
m
freque
ncy con
v
erter w
i
th continuo
usly ad
jus
t
able i
nput po
w
e
r factor
.
Pro
c
. IEEE PESC
.
1980: 242
-
252.
[4]
A Z
u
ckerberg
e
r
, D W
e
instock, A Alexan
drov
itz.
Single-
pha
se matrix co
nv
erter.
Proc. Ins
t. Electrical
Engi
neer
in
g El
ectric Po
w
e
r A
pp
lic
atio
n, 199
7; 144: 23
5-24
0.
[5]
Uffe Borup Je
nsen, Morte
n
Peter Rasmus
sen, T
onn
y
Mo
rtensen
. A Ne
w
Control Met
hod for 4
00
H
z
Ground Pow
e
r
Units for Airpl
a
nes.
IEEE 199
8: 464-4
70.
[6]
R Baharom, Hasim MK Ham
z
ah, Omar.
A new
sing
le-p
h
a
se co
ntroll
ed
rectifier usi
ng
SPMC
. IEEE
PECon. 20
06:
453-
458.
[7]
Nithin T
Abrah
a
m, Shaem
a L
i
zbeth Mat
h
e
w
,
CA Prade
ep
Kumar.
Desi
gn
and I
m
pl
e
m
e
n
t
ation of PV
Poultry Inc
u
b
a
t
or Usi
ng P
L
C
.
T
E
LKOMNIKA Indo
nes
ian
Journ
a
l
of
El
e
c
trical E
ngi
ne
erin
g. 20
14;
12(7): 49
00-
49
04.
[8]
R Arulmozh
i
y
a
l
, K Baskaran. Impleme
n
tatio
n
of a
F
u
zz
y
PI Contro
ller for
Spee
d Co
ntrol
of Induction
Motors Using FPGA.
Journal o
f
Pow
e
r Electronics.
201
0; 10: 65-7
1
.
[9] D
Z
hang
, et al.
Common M
ode C
i
rcul
atin
g Curre
nt Con
t
rol
of Interlea
ved T
h
ree-Pha
s
e T
w
o-Le
v
e
l
Voltag
e-So
urce Conv
erters
w
i
t
h
Dis
c
ontin
uous S
pace-V
e
ctor Mod
u
lati
on.
IEEE Ener
gy Conv
ersion
Con
g
ress an
d
Expositi
on.
20
09; 1-6
:
39
06-3
912.
[10] Z
Yinhai
, et al
.
A Novel SVPWM Modulati
on Schem
e.
Appli
ed Pow
e
r
Electron
ics Co
nferenc
e an
d
Exposition. APEC 2009. Tw
e
n
ty-Fourth Annual IEEE
. 200
9
:
128-13
1.
Evaluation Warning : The document was created with Spire.PDF for Python.