TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 80
6
0
~ 806
8
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.65
14
8060
Re
cei
v
ed
Jul
y
22, 201
4; Revi
sed O
c
tob
e
r 6, 2014; A
c
cepted
No
ve
m
ber 2, 2014
Analysis of Variable Speed Chopper Fed Brushless
Direct Current Motor
Je
y
a
Selv
an
Renius, Vino
th Kuma
r K*,
Raja Guru,
Arnold Fre
d
derics
Dep
a
rtment of EEE, School of
Electrical Sci
e
nces, Karun
y
a
Univers
i
t
y
,
Coimb
a
tore –
641
11
4,
T
a
milnad
u, India
*Corres
p
o
ndi
n
g
author, e-ma
i
l
id: kvinoth
_
ku
mar84@
ya
h
o
o
.
in
A
b
st
r
a
ct
T
h
is pa
per pr
o
v
ides th
e d
e
tai
l
ed
ana
lysis
of the DC-D
C
c
hop
per fe
d Br
ushl
ess DC
motor driv
e
used for low
-
p
o
w
e
r appl
icatio
ns. T
he variou
s metho
d
s us
e
d
to impr
ove th
e pow
er qua
lit
y at the ac mai
n
s
w
i
th lesser
n
u
mber
of co
mp
on
ents ar
e
disc
ussed.
T
he
most effe
ctive
meth
od
of p
o
w
e
r q
ualit
y
improve
m
ent i
s
also si
mul
a
te
d usi
ng MAT
L
AB Simuli
nk
. Impr
ove
d
meth
od of sp
ee
d co
ntrol by c
ontrol
l
i
n
g
the dc link vol
t
age of Voltag
e Sour
ce Inve
rter is also di
scussed w
i
th reduc
ed sw
itchin
g losses. T
h
e
contin
uo
us an
d disco
ntinu
o
u
s
mod
e
s of o
perati
on of the
converters ar
e also d
i
scuss
ed bas
ed o
n
the
improve
m
ent i
n
pow
er qua
lit
y. T
he
performance of the
most effective
soluti
on is si
mu
lated i
n
MATLAB
Simuli
nk env
iro
n
ment an
d the
obt
ai
ne
d result
s are prese
n
te
d.
Ke
y
w
ords
: bri
dge
less p
o
w
e
r factor correcti
on (PF
C
),
commo
n
-
m
o
de n
o
i
s
e, contin
uous
-cond
uction
mo
d
e
(CCM), disco
n
t
inuo
us - co
n
ductio
n
mo
de
(
DCM)/CCM
bou
nd
ary, po
w
e
r factor corrected
(PF
C
), pow
er quality
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Low po
we
r
motor
drive
s
su
ch
a
s
f
ans,
wate
r
pump
s
, blo
w
ers,
mixers,
HVAC
transmissio
n, motion cont
rol etc. use BLDC mo
to
r for their efficient ope
rati
on. Since BL
DC
offers hig
h
efficien
cy, low electroma
gne
tic interfere
n
ce, low mainte
nan
ce and hi
gh flux densit
y
per
unit volu
me, we
u
s
e
BLDC for lo
w po
wer ap
p
lications. BL
DC motors
are
very po
pula
r
i
n
a
wide vari
ety
of applicatio
n
s
. Comp
are
d
with a DC motor, the BLDC motor u
s
e
s
an ele
c
tric
comm
utator rather than
a mech
ani
cal commutator,
so
it is more re
liable than th
e DC m
o
tor. In a
BLDC moto
r,
rotor mag
net
s g
ene
ra
te th
e roto
r’s mag
netic flux, so
BLDC moto
rs achieve hi
gh
er
efficien
cy. T
herefo
r
e, BL
DC moto
rs
may be
us
e
d
in
high
-en
d
white g
o
o
d
s
(refrige
rat
o
rs,
wa
shin
g ma
chine
s
, dishwa
she
r
s,
etc.), h
i
gh-e
nd p
u
mp
s, and
fan
s
a
nd in
other
a
pplian
c
e
s
whi
c
h
requi
re hi
gh reliability and efficien
cy.
In this re
sp
e
c
t, the BLDC motor is
equ
ivalent
to a reversed
DC
comm
utator
motor, in
whi
c
h th
e m
a
gnet
rotate
s
while
the
con
ducto
rs remai
n
statio
na
ry. In the
DC
co
mmutator mo
tor,
the curre
n
t polarity is altered by the co
mmutator an
d bru
s
he
s.
Ho
wever, in
the b
r
ushle
s
s
DC
motor, p
o
l
arity
reversal
is pe
rformed
by power tra
n
si
stors
swit
chin
g in synchro
n
ization with the rotor po
si
tion.
Therefo
r
e, B
L
DC motors
often inco
rp
o
r
ate
either i
n
tern
al
or exte
rnal
p
o
sition
se
nso
r
s to
se
nse th
e actu
al rotor positio
n, or t
he po
sition
can
be dete
c
ted
without sen
s
o
r
s.
The choi
ce of
mode of o
p
e
r
ation
of a PF
C converte
r i
s
a
critic
al issue be
cau
s
e it
dire
ctly
affects the cost and ratin
g
of the co
mpone
nts
u
s
ed in the PFC co
nverte
r. The contin
u
ous
con
d
u
c
tion mode (CCM
)
and
di
sconti
nuou
s co
ndu
ction m
ode
(DCM
)
are
th
e two
mod
e
s of
operation in
whi
c
h a PF
C conve
r
ter i
s
d
e
sig
ned to
op
erate. In CCM, the curren
t in the induct
o
r
or the
voltage
acro
ss the i
n
termedi
ate
ca
pacito
r
remai
n
s
co
ntinuou
s, but it
req
u
i
r
es
the se
nsi
ng
of two voltages (dc lin
k voltage an
d supply volt
age
) and in
put si
de cu
rrent for PFC op
erat
ion,
whi
c
h i
s
not
cost-effe
ctive. On the
other
hand,
DC
M requires a
sin
g
le voltage
sensor fo
r d
c
li
nk
voltage control, and inh
e
re
nt PFC is a
c
h
i
eved at the
a
c
main
s, but
at the co
st of highe
r st
re
sses
on the PFC converte
r switch; hen
ce, DCM is
p
r
eferred for low-p
o
w
er a
ppli
c
atio
ns.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of V
a
riabl
e Spee
d Cho
ppe
r Fe
d Brushl
e
ss
Dire
ct Cu
rren
t Motor (Jeya Selvan
Reni
u
s
)
8061
Figure 1. Block di
agram of
PFC cho
ppe
r-fed BL
DC m
o
tor drive
BLDC
with di
ode b
r
idg
e
re
ctifier
with a
high
valu
e DC lin
k capa
cit
o
r ha
s
a THD (T
otal
Harmoni
c
Distortion)
of 65
% and po
we
r factor
as lo
w a
s
0.8. So
the po
wer fa
ctor i
s
corre
c
ted
usin
g the PFC co
nverte
rs. Both contin
uou
s and
di
scontin
uou
s
mode
s of the conve
r
ters are
discu
s
sed a
nd the di
scontinuo
us m
ode of c
ond
uction i
s
be
st suited fo
r the low po
we
r
appli
c
ation
s
.
Since th
e di
scontin
uou
s
condu
ction
re
quire
s
only a
singl
e voltag
e se
nsor fo
r
DC
link voltage
control. But co
nventi
onal P
F
C uses m
o
re numbe
r of comp
one
nts that increa
se
s the
co
st of the control
circuit. Also the co
nvent
ional P
F
C u
s
ed P
W
M-VSI for sp
eed control with
con
s
tant DC l
i
nk voltage
which p
r
od
uce
s
high
er switching lo
sses.
Thus the a
nal
ysis is ma
de for differe
nt met
hod
s that improve the p
o
we
r quality at the ac
mains. Fo
r furthe
r improvement in efficiency,
bri
dgel
ess (BL
)
co
n
v
erters are u
s
ed
whi
c
h all
o
w
the eliminatio
n of DBR in the front end
. A buck–
b
o
o
st co
nverte
r configu
r
atio
n is best suited
among
vari
ou
s BL
convert
e
r to
pologi
es
for a
pplicatio
ns
req
u
iri
ng
a
wid
e
rang
e o
f
dc li
nk volta
g
e
control (i.e.,
buckin
g
an
d
boo
sting mo
d
e
). The
s
e
ca
n provide the
voltage bu
ck or voltag
e b
oost
whi
c
h limits the ope
rating
rang
e of dc link volt
age co
ntrol. A new family of BL SEPIC and Cu
k
conve
r
ters h
a
s be
en rep
o
rted b
u
t re
quire
s a la
rg
e numb
e
r of
comp
onent
s and ha
s lo
sse
s
asso
ciated wi
th
it.
This pa
pe
r prese
n
ts a deta
iled analysi
s
of
chop
per-fe
d
BLDC m
o
to
r drive with v
a
riabl
e
dc lin
k voltag
e of VSI
for improve
d
po
wer
quality at ac main
s with redu
ced
comp
onent
s.
2. Exsisting Topologies
The conventi
onal PFC
uses Pul
s
e
Wi
dth M
odul
ate
d
Voltage So
urce Inverte
r
(PWM-
VSI) for spee
d cont
rol with
con
s
tant DC link voltage. This
cau
s
e
s
highe
r switchi
ng losse
s
. Th
e
swit
chin
g losse
s
in this
convention
a
l approa
ch in
crea
se
s a
s
a
squ
a
re fu
ncti
on of switchi
ng
freque
ncy.
T. Gopala
r
at
hnam a
nd
H.A. Toliyat [1
] in 2003 p
r
opo
sed a Si
ngle End
ed
Primary
Inducta
nce Converte
r (SE
P
IC) b
a
se
d
BLDC which
also
ha
s hi
g
her l
o
sse
s
in
the VSI due
to
conve
n
tional
PWM
swit
chi
ng an
d la
rge
numb
e
r
of
current an
d v
o
ltage
sen
s
o
r
s
are
u
s
ed t
hat
addition
ally adds to the co
st of the conv
erter.
S. Singh an
d
B. Singh [2] i
n
20
11 p
r
o
p
o
s
ed
a p
ape
r
about Bu
ck-B
oost
co
nverte
r ba
se
d
on con
s
tant
DC li
nk volta
ge an
d al
so
u
s
e P
W
M-VSI
for spee
d con
t
rol which ag
ain in
crea
se
s the
swit
ching losses.
S. Singh and B. Singh [3] a
gain in 2012
prop
osed a cuk co
nverte
r fed BLDC motor with
a variable
DC link voltag
e
that redu
ce
s the swit
chin
g losse
s
sin
c
e it use
s
only
the fundame
n
tal
swit
chin
g freq
uen
cy. Speed
control is pe
rformed
by
co
ntrolling th
e voltage
at the
DC b
u
s
of VSI.
In this pap
er,
Contin
uou
s Condu
ction M
o
de (CCM
) is
use
d
. But the major di
sadv
antage i
s
that
it
requi
re
s thre
e sen
s
o
r
s. So
it is not enco
u
rag
ed for lo
w-co
st and lo
w-p
o
wer ratin
g
appli
c
ation
s
.
Since o
n
ly the bri
dge
co
nverters a
r
e
use
d
in all the above u
s
ed topolo
g
ie
s, it also
contri
buted
fo
r the
swit
chin
g losse
s
. Th
u
s
the
br
id
gele
s
s topolo
g
ie
s are
preferre
d. The
differe
nt
bridg
e
le
ss to
pologi
es a
r
e
analysed ba
sed on the po
wer q
uality of the ac main
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8060 – 80
68
8062
3. Bridgeles
s
Conv
erter Topologies
The bri
dgel
e
ss
conve
r
ters elimin
ate the us
e of di
ode rectifiers. The diode
rectifie
rs
cau
s
e mo
re
switchi
ng stresse
s
. This i
s
n
o
t
good for th
e prop
er fun
c
tioning of the conve
r
ter.
3.1. Boos
t Conv
erters
Y. Jang an
d M.M. Jovano
vic [4] in the
year 201
1 propo
sed a
co
nce
p
t based
on boo
st
conve
r
ter fed
BLDC m
o
tor drive. The b
a
si
c topolo
g
y of the bridg
e
less PFC
b
oost rectifier
is
sho
w
n i
n
Fig
u
re
2. Com
p
ared
to conv
entional PF
C boo
st re
ctifie
r on
e dio
de i
s
elimin
ated f
r
om
the line-cu
rrent path, so t
hat the line cu
rrent
simultane
o
u
sly flows throu
gh only
two
semi
con
d
u
c
tors,
re
sulting
in red
u
ced
con
d
u
c
tion lo
sses.
Ho
wev
e
r, the bri
d
g
e
less PF
C b
oost
rectifie
r in
Fi
gure
2
ha
s
significa
ntly la
rge
r
comm
on
-mod
e n
o
ise
than
the
co
nventional
PFC
boo
st re
ctifie
r. In fact, in
the conventi
onal PF
C b
o
o
st rectifie
r,
the outp
u
t ground
is
alwa
ys
con
n
e
c
ted to
the ac
so
urce
throug
h the f
u
ll-b
r
i
dge
re
ct
ifier wh
erea
s, in
the bri
dgel
ess PFC
boo
st
rectifie
r in Fi
g
u
re
2, the o
u
tput
groun
d is con
n
e
c
ted to
the a
c
sou
r
ce only d
u
rin
g
a po
sitive hal
f-
line cycl
e, through the b
o
d
y
diode of switch, wh
ile
durin
g a ne
g
a
tive half-line
cycle the o
u
t
pu
t
grou
nd i
s
pul
sating
relativ
e
to the ac
source
with a
high fre
que
ncy (HF)
and
with an amplitu
de
equal to the
output voltage. This HF
pulsating
vo
ltage sou
r
ce
charge
s an
d discha
rge
s
th
e
equivalent p
a
r
asiti
c
capa
cit
ance betwee
n
the out
put
grou
nd a
nd t
he a
c
line g
r
ound, resultin
g in
a signifi
cantly
incre
a
sed co
mmon-mod
e
noise.
Figure 2. Brid
gele
ss PF
C Boost converte
r
The
b
r
idg
e
le
ss boo
st con
v
erter
p
r
ovid
es
o
n
ly voltage bo
ost
whi
c
h limit
s the
operating
rang
e of DC li
nk voltage
co
ntrol. Thu
s
we move for an
other topol
og
y.
3.2. Cuk Co
n
v
erters
L. Hub
e
r, Y.
Jan
g
an
d M.
M. Jovan
o
vic [5
] in the ye
ar 2
008
prop
ose
d
a
pap
er based
on
cu
k
conve
r
ter ba
sed
BL
DC. In this secti
on, the to
pol
ogy de
rivatio
n
of the
p
r
op
ose
d
conve
r
ter i
s
pre
s
ente
d
. Fi
gure
3
shows a m
odified
Cuk
co
nverte
r
also
kno
w
n
a
s
a
“Self
-
lift Cu
k” co
nvert
e
r.
Referrin
g to
Figure 3, the
conve
r
ter ca
n be
manip
u
l
a
ted to p
r
od
uce
a p
o
sitiv
e
output volt
age
from a
ne
gat
ive input volt
age. Simila
rl
y, for a
co
nverter it is po
ssi
ble to
p
r
o
duce a
ne
ga
tive
output voltag
e from
a
ne
gative inp
u
t
voltage. No
te
that the
co
nverters
hav
e simil
a
r out
put
cha
r
a
c
teri
stics and they are identic
al ex
cept for their input voltage polarity an
d swit
ch drain-to
sou
r
ce conn
ection. Th
erefore,
it is
possibl
e to combi
ne the
two co
nvert
e
rs i
n
to a si
ngle
bridg
e
le
ss a
c
-d
c PFC
co
nverter conta
i
ning a bi-d
i
r
ection
al swit
ch and a
n
alternating in
p
u
t
voltage
sou
r
ce. Likewi
se, t
he
conve
r
ter
can
be
comb
ined i
n
to a
si
ngle
brid
gele
s
s a
c
-dc PF
C
conve
r
ter whi
c
h offers an
inverted outp
u
t volt
age polarity. Unlike
the conventio
nal brid
gele
s
s
PFC conve
r
ters, all comp
onent
s
in
th
e prop
osed co
n
v
erter
are
full
y utilized
as there
a
r
e n
o
i
d
le
comp
one
nts
durin
g both t
he po
sitive and neg
ative ac
-li
ne cy
cle.
Also, no ad
ditional dio
d
e
s
or
cap
a
cito
rs a
r
e added to the topology to filter
out co
mmon mod
e
noise sin
c
e the output is
not
floating.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of V
a
riabl
e Spee
d Cho
ppe
r Fe
d Brushl
e
ss
Dire
ct Cu
rren
t Motor (Jeya Selvan
Reni
u
s
)
8063
Figure 3. Modified Cu
k co
nverter
with Neg
a
tive output polarity
This
co
nverte
r al
so
ha
s a
seri
ou
s di
sa
d
v
antage of
switchi
ng lo
sses. So thi
s
to
pology i
s
also n
o
t use
d
now.
3.3. Buck
-bo
o
st Conv
erter
W. Lei, L. Hongp
eng, J.
Shigong a
n
d
X.
Dianguo
[6] in the year 2
008 p
r
o
posed a
scheme
with
buck-boo
st converte
r
fed
BLDC [. Acco
rding
to the
a
bove an
alysi
s
, Switche
s
S
_
1
and S_
3
sho
u
ld h
a
ve a
sy
mmetrical bl
o
cki
ng volta
g
e
ch
ara
c
te
risti
c
. So, the
RB
-IGBT (Reve
r
se
Blocki
ng IGB
T
) is
used. It can bl
ock
both forw
a
r
d
and reverse
voltage du
ri
ng its off sta
t
e.
Comp
ari
ng IGBT with a serie
s
co
nne
ct
ed diod
e, e
limination of th
e se
ries
diod
e help
s
to re
duce
losse
s
by
de
crea
sing
the
o
n
-state
voltag
e a
c
ro
ss th
e
swit
chin
g el
e
m
ent. Compa
r
ing
with
b
r
id
ge
buck boo
st PFC conve
r
ter
b
r
idg
e
le
ss
bu
ck-bo
o
st
PFC
conve
r
ter h
a
s on
e
more
switch
and
cap
a
cit
o
r,
t
w
o le
ss
sl
ow
di
ode
s.
H
o
w
e
v
e
r,
comp
arin
g the
co
ndu
ct
ion p
a
th of th
ese
two
ci
rcu
i
ts,
at every moment, three semico
ndu
cto
r
device
s
are
only cond
ucti
ng for brid
gel
ess bu
ck-bo
o
s
t
PFC
conve
r
t
e
r, b
u
t four
semico
ndu
cto
r
s a
r
e
cond
ucting for bri
d
g
e
bu
ck-b
oo
st PFC
co
nvert
e
r.
Therefore,
co
ndu
ction lo
ss
can b
e
red
u
ced, esp
e
ci
ally in low line vo
ltage.
Figure 3. Brid
gele
ss PF
C Buck-Bo
o
st co
nverter
The ab
ove PFC bu
ck-boo
st co
nverte
r use
s
th
ree
switch
es
whi
c
h is cost effe
ctive and
also in
crea
se
s the switchi
ng losse
s
. T
hus thi
s
met
hod of po
we
r quality improvement al
so
has
some limitatio
ns. So we go
for som
e
othe
r topology for
better po
we
r quality.
3.4. Sepic PFC Re
cti
f
ier
A.A. Fardoun
, E.H. Ismail, A.J. Sabzali a
nd
M.A. Al-Saffar [7] in the year 201
2 propo
sed
a method
of
SEPIC PFC
rec
t
ifier for B
L
DC. Figu
re
4 shows the
power s
t
age
of a
bridgeles
s
SEPIC PFC rec
t
ifier. In this
c
i
rcuit, the SEPIC c
onv
erter is
c
o
mbined with
the input rec
t
ifier and
operates like a conventi
onal SEPIC PFC
converte
r. The operation of
this converter is
symmetri
c
al i
n
two half-li
ne cycl
es of
input
voltage. Therefo
r
e,
the convert
e
r ope
ratio
n
is
explained
du
ring o
ne
swit
chin
g pe
riod
in the po
siti
ve half-lin
e cy
cle of the i
n
p
u
t voltage. It is
assume
d that
the co
nverte
r operates i
n
DCM. It
mea
n
s that the o
u
t
put diode tu
rns off befo
r
e
th
e
main
swit
ch i
s
turned
on.
In ord
e
r to
si
mplify t
he an
alysis, it i
s
suppo
se
d that
the conve
r
te
r is
operating
at a
stea
dy
stat
e, and
all
ci
rcuit elem
ents a
r
e
ideal.
In a
ddi
tion, the
outp
u
t ca
pa
citan
c
e
is a
s
sumed
sufficiently large to be
co
n
s
ide
r
ed
as
a
n
ideal
dc vo
ltage source
(V_0). Al
so, the
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8060 – 80
68
8064
input voltage
is a
s
sum
ed
con
s
tant
and
equ
al to
Va
c (t_
0
) in a
switchi
ng
cycl
e. Base
d o
n
the
aforem
ention
ed assum
p
tio
n
s, the
ci
rcuit operatio
n in a swit
chin
g cycle ca
n be d
i
vided into three
mode
s.
The ci
rcuit diagram gives the Single E
nded Primary Inductance
Converter (SEPIC)
conve
r
ter fed
BLDC m
o
tor f
o
r the im
provement in the power qu
ality.
Figure 4. Bridgeles
s
SEPIC PFC converter
Thus the SE
PIC conve
r
te
r is efficient b
u
t it
require
s large n
u
mbe
r
of compon
e
n
ts. So
it
is
not c
o
s
t
effec
t
ive.
These are
some of
the b
r
idgel
ess
P
F
C conv
e
r
ter t
e
ch
niqu
es fo
r the
imp
r
ov
ement
o
f
power
quality
in the
a
c
mai
n
s. But
all the
s
e te
ch
ni
qu
e
s
h
a
ve
some
limitations. T
hey al
so
ca
n
not
be use
d
for lo
w power ap
pli
c
ation
s
. So the prop
osed techni
que bel
o
w
is de
sign
ed
in such a way
that is best suited for low
power ap
plications.
4. Proposed
Topolog
y
Figure 5
sho
w
s the
prop
ose
d
BL
bu
ck–b
oo
st conv
erter-ba
se
d
VSI-fed BLDC m
o
tor
drives.
The
p
a
ram
e
ters of
the BL bu
ck–
boo
st co
nvert
e
r a
r
e
de
sign
ed such that
it operates i
n
discontin
uou
s inducto
r cu
rrent mode (DI
C
M) to a
c
hie
v
e an inhere
n
t powe
r
fact
or co
rrectio
n
at
ac m
a
in
s. Th
e sp
eed
co
ntrol of BL
DC
motor i
s
a
c
hi
eved by the
dc lin
k voltag
e co
ntrol
of VSI
usin
g a BL buck–
boo
st converte
r. This red
u
ces th
e swit
chin
g losse
s
in VSI due to the low
freque
ncy o
p
e
ration
of VSI for the el
ect
r
onic
co
mmut
a
tion of the B
L
DC moto
r. T
he pe
rforman
c
e
of the propo
sed d
r
ive is
evaluated
fo
r a
wide
ran
ge
of spe
ed
cont
ro
l with imp
r
ove
d
po
we
r qu
ality
at ac main
s. Moreove
r
, the effect of sup
p
ly
voltage variation a
t
universal a
c
main
s is a
l
so
studie
d
to d
e
m
onst
r
ate th
e pe
rform
a
n
c
e of the d
r
ive
in practi
cal
supply conditi
ons. Volta
ge
and
c
u
rr
en
t s
t
re
ss
es
on
th
e
PF
C
c
o
n
v
er
te
r sw
itc
h
are
also
evaluate
d
for
determi
ning th
e swit
ch
rating an
d he
at sink d
e
si
gn
.
Finally, a software implem
entation of th
e pro
p
o
s
ed B
L
DC motor d
r
ive is carried
out to
demon
strate
the fea
s
ibility of the
pro
p
o
se
d d
r
iv
e
o
v
er
a wid
e
range
of spe
ed control wi
th
improve
d
po
wer q
uality at ac main
s.
The
pro
p
o
s
e
d
ci
rcuit di
agram of th
e Bu
ck-bo
o
st
con
v
erter fe
d BL
DC moto
r i
s
sho
w
n
i
n
the Figure 5.
Figure 5. Pro
posed Ci
rcuit diagram of
the Buck-b
oo
st conve
r
ter fed
BLDC
The above
circuit is pe
rfectl
y suitable for
the low po
we
r appli
c
ation
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of V
a
riabl
e Spee
d Cho
ppe
r Fe
d Brushl
e
ss
Dire
ct Cu
rren
t Motor (Jeya Selvan
Reni
u
s
)
8065
5. Opera
t
ing Principle of the Propose
d
PFCBL
Buc
k– Boo
s
t
Co
nv
erter
The o
p
e
r
atio
n of the PF
C BL bu
ck–b
o
o
st
conve
r
ter is
cla
ssifie
d
into two
pa
rts
whi
c
h
inclu
de
th
e
o
peratio
n duri
ng the positiv
e and negat
i
v
e half cycle
s
of supply voltage and d
u
ring
t
he compl
e
t
e
swit
chin
g cy
cl
e.
5.1. Opera
t
ion during Pos
i
tiv
e
and Ne
gativ
e
Half Cy
c
l
es of Supply
Voltage
In the proposed sch
eme of the BL
buck–boo
st conve
r
ter, swit
che
s
ܵ
ଵ
and
ܵ
ଶ
operate
for
the positive a
nd neg
ative half cycl
e
s
of the su
pply voltage, re
spe
c
ti
vely. During t
he po
sitive half
cycle of the sup
p
ly voltage, switch
ܵ
ଵ
, indu
ctor
ܮ
ଵ
, and diode
s
ܦ
ଵ
an
d
ܦ
are ope
ra
ted to
transfe
r en
ergy to dc link capa
citor
ܥ
ௗ
as shown in Figu
re 6(a
)
-(c).
Similarly, for the negative
half cycl
e
of the su
pply voltage, swit
ch
ܵ
ଶ
, inducto
r
ܮ
ଶ
, and
diode
s
ܦ
ଶ
and
ܦ
condu
ct as sh
own in Figure
7(a)-(c). In
th
e disco
ntinuo
us mode of operatio
n of
the BL bu
ck–boo
st conv
erter, the
cu
rre
nt in ind
u
c
tor
ܮ
be
com
e
s di
scontin
u
ous fo
r
ce
rtain
duratio
n in a swit
chin
g peri
od.
5.2. Opera
t
ion During Co
mplete S
w
i
t
c
h
ing C
y
cle
Thre
e mode
s of operation
during a
co
mplete
switching cy
cle are discu
s
sed
for the
positive half cycle of sup
p
ly
voltage as shown hereina
fter.
Mode I:
In this mode,
switch
ܵ
ଵ
co
nd
ucts to charg
e
the indu
cto
r
ܮ
ଵ
; hence, an
inducto
r cu
rrent
݅
ଵ
increa
se
s in
this mode
a
s
sh
own in F
i
g. 6(a).
Diod
e
ܦ
compl
e
tes the input sid
e
circuitry,
whe
r
ea
s the
dc lin
k ca
pa
ci
tor
ܥ
ௗ
is discha
rged by the VSI-fed BLDC
motor.
Mode II:
As sh
own in
Figure 6(b), i
n
this mo
de o
f
operatio
n, switch
ܵ
ଵ
is turned off, and the stored
energy in in
ducto
r
ܮ
ଵ
is tra
n
sferre
d to
dc lin
k
capa
citor
ܥ
ௗ
until the indu
ctor i
s
compl
e
tely
discha
rge
d
. The cu
rrent in indu
ctor
ܮ
ଵ
redu
ce
s and rea
c
hes
zero.
Mode III:
In this
mode, induc
t
or
ܮ
ଵ
enters
disco
n
tin
uou
s condu
ct
ion, i.e., no e
nergy i
s
left in the
indu
ctor; hen
ce, cu
rre
nt
݅
ଵ
become
s
ze
ro for the rest of the
switchi
ng perio
d. As shown in Fig.
6(c), none of
the switch o
r
diode is
co
ndu
cting in this mod
e
, and dc link cap
a
citor
ܥ
ௗ
sup
p
lie
s
energy to th
e load;
hen
ce, voltage
ܸ
ௗ
across
dc lin
k
capa
cito
r
ܥ
ௗ
s
t
a
r
ts
de
cr
ea
s
i
ng
. T
h
e
operation is
repeate
d
wh
e
n
swit
ch
ܵ
ଵ
is turned on a
gain
after a com
p
l
e
te swit
chin
g cycle.
(a) Mo
de 1
(b) Mo
de 2
(c) Mode 3
Figure 6. Ope
r
ation of the p
r
opo
se
d co
nverter in
different mode
s (a
)-(c) for a po
sitive half cycle
of the supply
voltage
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8060 – 80
68
8066
(a) Mo
de 1
(b) Mo
de 2
(c) Mode 3
Figure 7. Ope
r
ation of the p
r
opo
se
d co
nverter in
different modes
(a
)-(c) for a ne
g
a
tive half
cycle of the supply voltage
6. Simulation Circuit
The propo
se
d brid
gele
ss
buck-
boo
st converte
r fed
BLDC
with variabl
e DC li
nk voltage
of VSI
to improve the po
wer q
uality at ac ma
ins
with red
u
ced
compo
nent
s is simulate
d
in
MATLAB and
the results are sho
w
n b
e
lo
w.
Figure 8. Simulation ci
rcuit of Buck-bo
o
st
converte
r fed
BLDC in MA
TLAB Simulink
The above
circuit con
s
i
s
ts
of the main bloc
ks
which are used fo
r the BLDC
control. The
s
u
b-
b
l
ock
s
are
p
r
es
e
n
t
ed
be
lo
w
.
T
h
e
main
s
u
b-
blo
c
k is the bu
ck-bo
o
st co
nverte
r block.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Analysis of V
a
riabl
e Spee
d Cho
ppe
r Fe
d Brushl
e
ss
Dire
ct Cu
rren
t Motor (Jeya Selvan
Reni
u
s
)
8067
Figure 9. Simulation sub-bl
ock of buck-b
oost converte
r
The p
r
o
p
o
s
e
d
metho
d
i
s
simulate
d in
MATLAB as
given a
bove
and th
e resu
lts are
evaluated.
7. Simulated Results
The sim
u
late
d results for
variou
s pa
rts of
the propo
sed
circuit are sho
w
n b
e
low. The
perfo
rman
ce
of the propo
sed BLDC mot
o
r driv
e i
s
si
mulated in M
A
TLAB/Simulink environm
ent
usin
g the Si
m-Power Sy
stem toolb
o
x. The per
fo
rmance evalu
a
tion of the
prop
osed d
r
i
v
e is
categ
o
ri
zed i
n
term
s of th
e pe
rform
a
n
c
e of
the BL
DC moto
r an
d
BL bu
ck–boo
st co
nverte
r
and
the achi
eved
powe
r
qu
ality indice
s obt
ained at a
c
mains. T
he p
a
ram
e
ters a
s
so
ciated
with
the
BLDC
motor su
ch a
s
sp
eed (N), ele
c
trom
agn
etic torque
(
ܶ
), a
nd stato
r
cu
rre
nt (
݅
) ar
e
analysed for the pro
per fun
c
tionin
g
of th
e BLDC
moto
r. Paramete
rs such a
s
su
p
p
ly voltage (
ܸ
௦
),
sup
p
ly
cur
r
e
n
t
(
݅
௦
), dc lin
k voltage (
ܸ
ௗ
), inducto
r’s
cu
rrents (
݅
ଵ
,
݅
ଶ
,
)
,
swit
ch v
o
lt
age
s (
ܸ
௦௪ଵ
,,
ܸ
௦௪ଶ
), and swit
ch
currents(
݅
௦௪ଵ
,
݅
௦௪
ଶ
) of the PFC
BL buck–bo
o
s
t conve
r
ter are evaluate
d
to
demon
strate its prop
er fun
c
tioning.
(a) Stator
cu
rrent and el
ect
r
omotive force
output wavef
o
rm
(b)
Rotor Sp
e
ed output wa
veform
(c) Electroma
gnetic To
rq
ue
output wavef
o
rm
(d) Li
ne to lin
e voltage out
put waveform
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8060 – 80
68
8068
(e) Va
riabl
e DC voltag
e o
u
tput waveform
(f) Puls
e wav
e
form for VSI
(g) Pul
s
e
s
for buck-b
o
o
s
t converte
r
7. Conclusio
n
A PFC BL bu
ck–bo
ost
con
v
erter-ba
sed
VSI-fed BLDC moto
r driv
e ha
s be
en p
r
opo
se
d
targeting lo
w powe
r
appli
c
ation
s
. A new metho
d
of spee
d co
ntrol ha
s be
en utilize
d
b
y
controlling th
e voltage at
dc b
u
s
and
operati
ng th
e VSI at fundamental f
r
e
quen
cy for t
h
e
electroni
c
co
mmutation
of the BL
DC m
o
tor fo
r
red
u
cing the
switching l
o
sse
s
i
n
VSI. The f
r
ont-
end BL bu
ck
boo
st conve
r
ter ha
s bee
n operated in DI
CM for achie
v
ing an inhe
rent power factor
corre
c
tion at
ac main
s. A satisfa
c
to
ry perform
an
ce h
a
s be
en a
c
hi
eved for spe
ed co
ntrol an
d
sup
p
ly voltag
e vari
ation
wi
th po
we
r q
u
a
lity i
ndice
s. More
over,
vo
ltage
a
nd cu
rrent stre
sse
s
on
the PFC switch have be
e
n
evaluated for dete
r
mini
n
g
the pra
c
tical application
of the propo
sed
scheme. Th
e
propo
se
d scheme ha
s sh
own
satisfa
c
t
o
ry perfo
rma
n
ce, an
d it is a recomme
n
d
e
d
solutio
n
appli
c
abl
e to low-power BL
DC
motor d
r
ives.
Referen
ces
[1]
T
Gopalarath
n
a
m, HA
T
o
li
yat. A ne
w
top
o
lo
g
y
for unip
o
l
a
r brushl
ess dc motor drive
w
i
t
h
hig
h
po
w
e
r
factor.
IEEE Tr
ans. Power Electron.,
2003; 1
8
(6): 139
7–
140
4.
[2]
S Singh, B Singh
. Pow
e
r q
uality i
m
prov
e
d
PMBLDCM
drive for a
d
jus
t
able s
pee
d a
pplic
atio
n w
i
t
h
reduc
ed se
nso
r
buck-bo
ost PF
C converter
. Proc. 4th ICET
ET
. 2011; 180
–18
4.
[3]
S Singh, B Sin
gh. A voltag
e-c
ontrol
l
ed PF
C
Cuk c
onv
erter base
d
PMBLD
C
M drive for ai
r conditi
on
ers
.
IEEE Trans. In
d. Appl.,
201
2; 48(2): 83
2–
838
.
[4]
Y Jang, MM Jovan
o
vi´c. Brid
gel
ess hig
h
-p
o
w
e
r-factor buc
k converter.
IEEE Trans. Power Electron.,
201
1; 26(2): 60
2–6
11.
[5]
L Hu
ber, Y
Ja
ng, MM Jov
a
n
o
vi´c. Perform
ance
ev
a
l
u
a
tio
n
of
brid
gel
ess
PF
C bo
ost re
ctifiers.
IEEE
T
r
ans. Pow
e
r Electron.
, 20
08
; 23(3): 138
1–1
390.
[6]
W
W
e
i, L Hongpe
ng, J Shig
ong,
X Dia
ng
u
o
.
A novel br
i
dge
less b
u
ck-boost PF
C co
nverter.
IEEE
PESC/IEEE Pow
e
r Electron. Spec
. Conf., 2008; 1304–1308.
[7]
AA F
a
rdou
n, EH Ismail, AJ Sabzal
i, MA Al-Saffa
r. Ne
w
efficient bri
d
g
e
le
ss Cuk rect
ifiers for PFC
app
licati
ons.
IEEE Trans. Power Electron.,
20
12; 27(7): 3
292
–33
01.
Evaluation Warning : The document was created with Spire.PDF for Python.