TELKOM
NIKA
, Vol. 11, No. 4, April 2013, pp. 2141
~21
4
7
ISSN: 2302-4
046
2141
Re
cei
v
ed
Jan
uary 16, 201
3
;
Revi
sed Fe
br
ua
ry 26, 20
13; Accepted
March 6, 201
3
Influence of Fuel Injection on Gasoline Engine
Performance
1
Zong-zhen
g
Ma,
2
Xin-li Wang
1,2
Department of Mechan
ical
Engi
neer
in
g, Hena
n In
stitute of Engin
eer
i
ng,
Z
hengzh
ou, C
h
in
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: zongzh
e
n
g
m
a
@1
63.com
A
b
st
r
a
ct
Becau
s
e
of the m
o
st com
m
on m
e
thod of pre
p
a
r
ing
the fuel-air
m
i
xture for
g
a
soli
ne-
fueled en
gine
s is po
rt fuel injectio
n (PFI). For r
edu
cin
g
the wall-film
entering the
cyli
nde
r in liq
uid
pha
se, the
p
henom
ena
of
wall
-film
entering
the
cyli
nder in
liqui
d
pha
se
shoul
d be
at m
i
ni
m
u
m
leve
r o
r
be a
v
oid
ed. So th
e first thing f
o
r lea
r
nin
g
th
e wall
-film
is to detect the
wa
y of the
wall-
film
entering t
he
cyli
nde
r. T
herefo
r
e, th
e
wa
y of
the
wall-film
enter the
cyli
nde
r i
n
liquid
ph
ase
is
detecte
d b
y
changi
ng the t
e
m
perature o
f
the wall
-film
locatio
n
an
d
tim
e
for wall-f
ilm
evapo
rate
d.
Then the
wa
y is validated
by e
x
p
e
rim
e
n
t
test bed an
d it is im
proved that the way i
s
fea
s
ible
. At
the en
d the
i
n
fluen
ce
of in
jection
tim
i
ng and
fuel
rati
o on
en
gine
perfo
rm
ance
is
studie
d
b
a
sed
on the test b
ed.The
re
sult
s sho
w
that regardle
ss
of t
he expan
sio
n
stro
ke
or t
he inta
ke st
roke
fuel injection
the injection
ti
m
i
ng delay w
ill decre
se
the engine
power an
d m
a
ke em
issi
on
deterio
ratio
n
m
eanwhile th
e twice fuel in
jection
c
an im
pro
v
e the fu
el
film
evaporat
ion re
sultin
g
of
high-sp
eed ai
rflow of intake cha
r
ge.
Key
w
ords
: g
a
soli
ne engi
n
e
; wall-film
; body tem
perature; fuel evap
oration
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
Curre
n
tly, the most comm
o
n
method of prepa
ri
n
g
the fuel-ai
r
mixture for gasoline
-
fueled
engin
e
s i
s
po
rt fuel injectio
n (PFI) [1, 2]. For t
he ca
r g
a
soli
ne engi
n
e
, espe
cially for col
d
sta
r
t or
warm-u
p ph
a
s
e, the fuel
d
epo
sited
di
re
ctly in the inta
ke p
o
rt
can
b
e
problem
atic whe
n
the int
a
ke
valve and
po
rt wall
s a
r
e
no
t sufficie
n
tly warm [3,4]. T
he liq
uid fu
el
spray of
30
μ
or l
a
rg
er drop
let
hits o
n
the
wall of the
inta
ke
po
rt an
d t
he
su
rface of
the inta
ke
va
lve whi
c
h
cau
s
ed
fuel
wetti
ng
and fuel liq
ui
d film flowed
into the cylin
der
without
vapori
z
e
d
[5]. The mo
re
wo
rse i
s
that nei
ther
comp
re
ssion
heating
no
r combu
s
tion
co
mpletely vap
o
rizes liqui
d fuel films in t
he
comb
ustio
n
cham
be
r [6]. Therefore, th
e high
HC e
m
issi
on
s of the engi
ne sh
ould be
con
c
erne
d an
d m
u
ch
more
re
sea
r
chers have d
o
ne to red
u
ce the HC
e
m
ission d
u
rin
g
cold sta
r
t and
warm-u
p pha
se
[7-9].
Comp
ared to car e
ngin
e
s, motorcycle engine
s tend to have
lower di
spl
a
cem
ent
volumes an
d
the n
eed
fo
r hig
h
spe
c
ifi
c
o
u
tput p
o
w
er ma
ke
it ope
rating
at
high
revol
u
tion
spe
e
d
s
. So f
o
r m
o
torcycle
ga
solin
e e
n
g
i
ne
with PFI
system, th
e
wall-film
thickness i
s
high
and
wall-film area is sm
all because of compact
stru
cture an
d low injection p
r
essure (2
50
kPa
-
300
kPa), the
time of the fuel evap
orati
on is
sh
ort b
e
ca
use of hi
gh spee
d. Th
erefo
r
e, the
wall-
film on the ba
ck
of the inta
ke valve an
d
intake
-po
r
t m
a
y be not eva
porate
d
comp
letely and ent
er
the cylinde
r in liquid pha
se whi
c
h woul
d cau
s
e hi
gh
fuel con
s
um
p
t
ion and HC e
m
issi
on.
For redu
cin
g
the wall
-film enterin
g the
cy
linde
r in liq
uid pha
se, th
e phen
omen
a of wall-
film enteri
n
g
the
cylinde
r i
n
liquid
ph
ase
sho
u
ld
be
at
minimum
lev
e
r
or be
avoi
ded. So
the
first
thing for lea
r
ning the wall-film is to detect the
way
of the wall-fil
m
enterin
g the cylinde
r. Base
d
on tradition
al
theory the ways for
wal
l
-film ent
erin
g the cylinde
r inclu
de two
ways: first, the
injected fuel
keeps
dynam
ic equilibri
um
whi
c
h m
ean
s there i
s
some fuel in the intake-port
with
wall-film p
h
a
s
e but the inj
e
cted fuel a
n
d
the wa
ll-fil
m
enterin
g the cylind
e
r i
n
vapor p
hase is
equivalent; th
e se
con
d
way
is the wall
-film enter
in
g th
e cylinde
r in li
quid ph
ase which m
ean
s the
wall-film
can
not vapori
z
e
d
before the
intake va
lve
clo
s
ing a
nd
whe
n
the int
a
ke valve o
p
ens
again
the fu
el
stri
p off the
wall
and
ente
r
the
cylin
der in liq
uid
pha
se. T
he t
w
o
ways of the
wall-
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2141 – 2
147
2142
film enteri
ng
cylinde
r i
s
op
posite
so the
dete
c
ti
ng wh
ether
the wall
-film
ente
r
ing
the cylinde
r i
s
empha
si
zed.
2. Scheme of the Exp
e
riment
Whe
n
the fue
l
injected
stay
s dynami
c
eq
uilib
riu
m
the
air-fu
e
l ratio
can not be
cha
nged if
the evapo
rati
on rate
of the
wall-film i
s
chang
ed. Mea
n
whil
e
,
wh
en
evaporation
rate of the
wall-
film is accel
e
rated, the ai
r-f
uel ratio
wou
l
d be d
e
cea
s
ed an
d HC e
m
issi
on
woul
d be imp
r
ove
d
if
the wall-film
enter the
cylinder in liq
uid
phase.
Yet for the fixed speed, throttle
openin
g
ang
le
and inj
e
cte
d
fuel the
wall-f
ilm evapo
rati
on rate c
an b
e
affected
by
temperature
of the wall-film
locatio
n
,
time
for wall
-film evaporated a
nd
inta
ke
fl
o
w
inte
nsity. T
herefo
r
e, th
e
way of th
e
wall-
film enter the
cylind
e
r i
n
li
quid
pha
se
is dete
c
t
ed
by
cha
ngin
g
the
tempe
r
atu
r
e
of the
wall
-fi
l
m
locatio
n
and t
i
me for wall
-film evaporated
.
3. Test equip
m
ent and te
st meth
ods
The test bed
con
s
ist
s
of K157 FMI engine
(sp
e
cifi
c paramete
r
s shown in Table 1),
electri
c
ed
dy curre
n
t dyna
mometer, dyn
a
momete
r co
ntrol syste
m
, gasoline en
gi
ne ECU, spe
edy
data coll
ectio
n
system, five gas
analy
z
er (spe
ci
fic
p
a
ram
e
ters sh
own in T
able
2), wide
-b
an
d
oxygen
sen
s
or
and
comp
uter. Th
e
be
d is sho
w
n
in
Fig
u
re
1, whe
r
e
the el
ectri
c
eddy current
dynamom
eter and dyn
a
mo
meter
cont
rol system are u
s
ed
to co
ntro
l
and me
asure
the load
of the
engin
e
, engin
e
fuel injectio
n system a
r
e
used fo
r c
o
n
t
rolling timing
of fuel injection and ig
nitio
n
,
and the
com
puter'
s
se
rial
comm
uni
cati
on can
be
u
s
ed to
contro
l gasoline
en
gine E
CU
as to
control fuel in
jection a
nd ig
nition.
Table 1 Para
meters of the K157 FMI
Table 2 Five Gas Pa
ram
e
ters An
alyze
r
Parameter
Value
Parameter
Range
Resolution
Error
t
y
pe
Single,
four-strok
e
HC(10
-6)
0-10000
1
±12
Bore x str
o
ke (m
m)
56.5×49.5
CO(
%
)
0.00-10.0
0
0.01
±0.06
displacement /L
124
CO2
(
%)
0.00-20.0
0
0.1
±0.5
Compression rati
o
9
:
1
O2(
%
)
0.00-25.0
0
0.1
±0.1
Cooling st
y
l
e
w
i
nd cooling
NOx(10
-6)
0-5000
1
±25
Figure1. Dia
g
r
am of Experi
m
ental Syste
m
4. Selection of Re
fer
e
nce
Temperatur
e Point of th
e Engine
For the inta
ke-po
r
t fuel inj
e
ction e
ngin
e
,
t
he tempera
t
ure of the wall-film area d
e
termin
e
As we all kn
own that the motorcycle i
s
cooled
by ai
r and the temperature of
this pint can
be
easily affe
cte
d
by co
oling
con
d
ition
since the
surfa
c
e
temperature
is chan
ged m
o
re e
a
sily tha
n
inner temp
erature
for the
engi
ne’
s
sp
ecific he
at
capa
city. But the inn
e
r te
mperature
of
the
engin
e
i
s
h
a
rd
to m
e
a
s
ure
an
d the
therm
odyna
mic state is can
be valued by surf
ace
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Influence of Fuel Injectio
n on Ga
solin
e Engine Perfo
r
m
ance (Zo
n
g
-
zh
eng M
a
)
2143
temperature
su
ch a
s
tem
p
eratu
r
e of the
spa
r
k pl
ug
s.
In orde
r to va
lue the the
r
m
o
dynami
c
sta
t
e
of the engine
with su
rface
temperatu
r
e
the rela
tion
ship of the inner temp
erat
ure a
nd surf
ace
temperature
sho
u
ld b
e
stu
d
ied firstly. So tw
o m
o
re
measure poi
n
t
s are ad
ded
besi
de the
sp
ark
plug, one i
s
on the su
rfa
c
e of the intake-po
r
t nea
rin
g
the intake
valve and the other i
s
on
the
back of th
e i
n
take valve.
And the
sen
s
or o
n
t
he
su
rface of th
e in
take-po
r
t nea
ring th
e inta
ke
valve is she
a
thed the
r
m
o
co
uple m
e
a
n
whil
e the
s
ensor o
n
the
back of the
intake valve
is
thermo
co
uple
wire which is adheres to i
n
take va
lve u
s
ing hi
gh-te
m
peratu
r
e gl
ue
beca
use of the
high tempe
r
at
ure of the valve. The locati
on of
the mea
s
ure point
s are sho
w
n in Fi
gure 2.
The Figu
re 3
sho
w
s the vi
bration of te
mperature fo
r measu
r
e p
o
i
n
ts und
e
r no
coolin
g
and cooli
ng con
d
ition.
It
can be se
en
form
the
Fi
gure
that the
trend
of te
mperature
at
all
measure poi
nts is
same
whi
c
h is in
creased a
s
ti
me goe
s by. Also it is in
dicate
s that
the
temperature
at the ba
ck of
the valve is the hig
h
e
s
t an
d the temp
erature
at the i
n
take
-po
r
t is the
lowe
st which
is 3
0
de
gree
lowe
r tha
n
t
he temp
eratu
r
e of the
spa
r
k
plug
and
6
0
deg
r
e
e
lo
wer
than the tem
peratu
r
e of in
take valve. But unde
r
co
oli
ng co
ndition,
the te
mperature of the sp
ark
plug i
s
de
cre
a
se
d rapidly
while th
e te
mperature
o
f
o
t
h
e
r
me
as
ur
e
po
in
ts
is
de
c
r
e
a
s
e
d s
l
ow
ly
and the time f
o
r temp
eratu
r
e de
cre
a
si
ng
is del
ayed. T
h
e re
ason fo
r this ph
enom
enon i
s
that t
h
e
measure poi
nt on the spa
r
k plu
g
is en
gine su
rfa
c
e temperature
whi
c
h ca
n be
easily affect by
cooli
ng air m
ean
while the
temperature
of the inta
ke-port and inta
ke valve are in
ner temp
erat
ure
of the engine
whi
c
h can not
be affe
cted b
y
cooling ai
r dire
ctly
From the a
b
o
ve analysi
s
,
it can be concl
ude
d tha
t
all three m
easure
point
s
ca
n be
sele
cted for
valuing engi
ne thermo
dynamic
stat
e with no co
oli
ng. However, under co
oli
n
g
con
d
ition it i
s
hard to val
u
e the
engin
e
thermo
dy
nam
ic
state
with
only on
e me
a
s
ure p
o
int. S
o
in
orde
r to val
ue the en
gine therm
ody
namic
state
all experim
e
n
t are do
ne
with no co
oling
con
d
ition an
d
the temperat
ure at the spa
r
k plu
g
is sele
cted for e
a
sil
y
be get.
Figure 2. Dia
g
ram of Mea
s
ure Point
Figure
3. Tre
nd of Tempe
r
ature At Different
Measure Points
5. The Validation of Dete
c
t
ion Way
Whe
n
the dy
namom
eter
control
system
is
on
N/P model
which m
ean
s the
spe
ed an
d
throttle op
en
angle
rem
a
in
con
s
tant a
nd
the value i
s
5
0
00r/mi
n
an
d
40% re
sp
ecti
vely, the tren
d
of HC an
d NOx with grad
ually increa
se of engine b
ody temperature is
sho
w
n
in Figure 4. It can
be see
n
from
the Figure that with incre
a
se of
engi
n
e
temperatu
r
e the value of HC decrea
s
es
and th
e valu
e of
NOx i
n
crea
se
s. If th
e inje
cted
fu
el keep
s dyn
a
mic eq
uilibri
um the
r
e
is
no
cha
nge of th
e F/A ratio b
e
ca
use the fuel ente
r
i
ng
the cylinde
r i
n
vapor p
h
a
s
e. But if fuels
enterin
g the cylinde
r in liq
uid pha
se th
e F/A rati
o will alter with the engine tem
peratu
r
e for t
h
e
cha
nge of fra
c
tion of liquid
phase enteri
ng the cy
lind
e
r. So whe
n
the engi
ne te
mperature i
s
low
the HC
emission i
s
hig
h
a
n
d
NOx is low
for in
com
p
let
e
combu
s
tion
mean
whil
e t
he
HC emi
ssi
on
is lo
w a
nd
NOx is hi
gh
b
e
ca
use of
co
mbustio
n
imp
r
oveme
n
t an
d the fractio
n
of liquid
pha
se
enterin
g the
cylinde
r is re
duced. Th
e
r
e
f
ore there is f
u
el ente
r
ing t
he cylind
e
r in
liquid pha
s
e
for
this engi
ne.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2141 – 2
147
2144
Figure 4. Tre
nd of HC a
n
d
NOx With Incre
a
se of Te
mperature
6. Results a
nd Discu
ssi
on
In orde
r to study the influence of inject
ion timing on engine p
e
rforman
c
e twi
c
e fuel
injection (TFI
) strategy
is
applie
d in this re
se
arch. It mean
s that the fuel inje
ct
ed is divid
e
d
as
t
w
o pul
se
s
whe
r
e t
h
e f
i
r
s
t
inje
ct
ion i
s
st
art
e
d
at
comp
as
sio
n
st
ro
ke
whi
c
h
is
calle
d a
s
f
i
rst
injectio
n whil
e the se
con
d
injectio
n start
ed at intake
stroke.
6.1. Influenc
e of First Inj
ection Timin
g
In orde
r to analysi
z
e the
influence of injection tim
i
ng on engi
n
e
perfo
rman
ce, the
se
con
d
inje
ction timing is f
i
xed at 320º
CA wh
er
e th
e top dea
d center of com
p
re
ssi
on
stro
ke is
defined
a
s
0ºCA. T
he
e
ngine
po
we
r, the
ai
r-fu
e
l ratio of
the measured an
d
HC emi
ssi
ons
cha
nge
with t
he first inje
cti
on timing
are
sh
own in
Fig
u
re
s 5
an
d 6
and
in o
r
d
e
r to excl
ude t
h
e
influen
ce of the body tem
peratu
r
e, the
spa
r
k
plug
g
a
sket at the tempe
r
ature i
s
maintai
ned
at
135º
C, the e
ngine
spe
ed i
s
400
0r/min
and the throttle openi
ng a
n
gle is
20%
WOT
(wi
de o
p
en
throttle). It
ca
n be
seen
fro
m
the Fi
gu
re
that
wh
en fi
rst injectio
n timi
ng p
o
stp
o
ne
d
to the
150
ºCA
the engine p
o
we
r is re
du
ced to 1.92
kW while
whe
n
first injectio
n timing is 10ºCA the en
gine
power i
s
1.9
6
kW. Mea
n
while the m
e
a
s
ured
air-
fuel
ratio in
crea
sed to
14.7
from 14.4,
HC
emission
s rose from 764
× 10
-6
to843 ×1
0
-6
.
Due to th
e fu
el inje
cted b
e
fore the
inta
ke valve o
p
e
n
s all
arrives the co
mbu
s
t
o
r wall,
whe
n
the
first
fuel inj
e
ction
timing i
s
p
o
stponed
t
he
a
m
ount of fu
el
enteri
ng th
e
cylinde
r in
liq
uid
form is in
crea
sed fo
r sh
ort
e
r film evapo
ration ti
me. T
h
en the me
a
s
ured the val
ue of the air-fuel
ratio
be
come
s la
rge
a
nd t
he e
ngin
e
e
m
issi
on
is
de
teriorated.
Ho
wever the
vib
r
ation
of inj
e
ction
timing just
ch
ange
s the tim
e
that
the fuel
absorbs
heat
from the
wa
ll
whi
c
h
can’t i
m
prove th
e film
evaporation e
s
sentially and
the c
han
ge
s of engine p
o
w
er a
s
well a
s
the air-fuel ratio is small.
Figure 5. Engine Powe
r An
d A/F Ratio
Cha
nge
d Wit
h
Injection Ti
ming
Figure 6. HC Emissio
n
Ch
ange
d With Injectio
n
Timing
The en
gine p
o
we
r, the air-fuel ratio of th
e
mea
s
ured
and HC emi
s
sion
s chan
ge
with the
first inje
ction
timing a
r
e
sho
w
n i
n
Fi
gure
s
7 an
d
8 when t
h
e sp
ark pl
u
g
ga
sket at
the
temperature i
s
maintai
ned
at 155º
C, th
e engi
ne
spe
ed is
400
0r/
m
in and t
h
e
throttle ope
ni
ng
angle is 1
0
0
%
WOT. It is
shown that the engi
n
e
po
wer a
n
d the measured A/F ratio are n
o
t
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Influence of Fuel Injectio
n on Ga
solin
e Engine Perfo
r
m
ance (Zo
n
g
-
zh
eng M
a
)
2145
cha
nge
d
whe
n
the
inje
ctio
n timing
is ch
ange
d a
nd th
e HC
emi
ssi
o
n
keep
s
at 8
60×10-6. It can
be co
ncl
ude
d
that there is
cha
nge of the
engine p
e
rfo
r
man
c
e at wi
de throttle op
en.
The reason i
s
that t
he engine body temperature and ai
r velocity are high which will
result less fuel film enteri
ng the
cylinder in liq
uid f
o
rm at
WOT.
So the influ
ence of inje
ction
timing is sm
al
l on engin
e
p
e
rform
a
n
c
e.
Figure 7. Engine Power A
nd A/F Ratio
Cha
nge
d Wit
h
Injection Ti
ming
Figure 8. HC
Emissi
on Ch
ange
d With
Injection Timi
ng
6.2. Influenc
e of Second
Injection Timing
In ord
e
r to
a
nalysi
z
e the i
n
fluen
ce of
seco
nd inj
e
cti
on timing
on
engin
e
pe
rformance,
the first inje
ct
ion timing
i
s
fixed at 4
0
ºCA wh
ere
the
top de
ad
ce
n
t
er of
co
mpre
ssi
on
stroke i
s
defined
a
s
0ºCA. T
he
e
ngine
po
we
r, the
ai
r-fu
e
l ratio of
the measured an
d
HC emi
ssi
ons
cha
nge
with
the first inj
e
cti
on timin
g
a
r
e
sh
own in
Fig
u
re
s
9 a
nd
1
0
an
d in
o
r
de
r to
exclu
d
e t
h
e
influen
ce of the body tem
peratu
r
e, the
spa
r
k
plug
g
a
sket at the tempe
r
ature i
s
maintai
n
ed
at
137º
C, the en
gine spee
d is 4000r/mi
n
an
d the throttle openi
ng angl
e is 20% WO
T.
It can be
se
en from
the
Figure that
whe
n
second
injectio
n tim
i
ng po
stpo
ne
d to the
400º
CA the e
ngine p
o
wer
is re
du
ced b
y
0.2kW
whil
e whe
n
seco
nd inje
ction ti
ming is
320º
CA
the engin
e
po
wer i
s
1.96
kW. Mean
whil
e the measured
air-fuel rati
o increa
sed t
o
14.7 from 1
4
.4,
HC emi
s
sion
s ro
se fro
m
8
60 × 10
-6to 8
90 ×1
0-6.
In order to i
m
prove
the f
uel
eva
poration of th
e
se
con
d
inj
e
ctio
n the i
n
take
airflow i
s
need
ed. Whe
n
the intake flow rate is redu
ced re
sul
t
ing of the injectio
n timing delay there
is
more fu
el film on intake po
rt whi
c
h
can’t
use th
e
interac
t
ion
of the intak
e
flow, then the fuel film
enterin
g the cylinde
r in liq
uid form is i
n
crea
sed
whi
c
h cau
s
e
s
the deterio
rat
e
of the engi
ne
emission
s an
d engin
e
po
wer de
crea
se.
Figure 9. Engine Power A
nd A/F Ratio
Cha
nge
d Wit
h
Injection Ti
ming
Figure 10. HC Emission
Chang
ed With
Injection Timi
ng
The en
gine p
o
we
r, the air-fuel ratio of th
e
mea
s
ured
and HC emi
s
sion
s chan
ge
with the
first inje
ction
timing are
sho
w
n in Fi
gure
s
1
1
an
d 12 wh
en t
h
e sp
ark plu
g
gasket at
the
temperature i
s
maintai
ned
at 158º
C, th
e engi
ne
spe
ed is
400
0r/
m
in and t
h
e
throttle ope
ni
ng
angle
is WO
T. It is
also
sho
w
n
that t
he e
ngi
n
e
p
o
we
r
and
th
e me
asure
d
A/F ratio
are
not
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No. 4, April 2013 : 2141 – 2
147
2146
cha
nge
d
whe
n
the
inje
ctio
n timing
is ch
ange
d a
nd th
e HC
emi
ssi
o
n
keep
s
at 8
60×10-6. It can
be co
ncl
ude
d
that there is
cha
nge of the
engine p
e
rfo
r
man
c
e at wi
de throttle op
en.
Also the re
ason is that the
engine b
ody temper
ature
and air velo
ci
ty are high which
will
result less fuel film enteri
ng the
cylinder in liq
uid f
o
rm at
WOT.
So the influ
ence of inje
ction
timing is sm
al
l on engin
e
p
e
rform
a
n
c
e.
Figure 11. Engine p
o
we
r
and A/F ratio
cha
nge
d
with inje
ction
timing
Figure 12. HC emissio
n
chang
ed with
injection timing
6.3. Influenc
e of Fuel Ra
tio on Engine Performanc
e
For
studying t
he impa
ct of fuel ratio o
n
e
ngi
ne p
e
rfo
r
mance the first fuel inje
ctio
n timing
is fixed at
4
0
ºCA a
nd
se
con
d
fuel i
n
j
e
ction
timi
ng
is fixed
at 3
20ºCA
and
the adj
u
stm
e
nt of
injectio
n pul
se wi
dth is do
ne in
acco
rd
a
n
ce
with
th
e
calib
ration
of
the no
zzle to
ensure
that t
he
overall am
ou
nt of fuel injection is u
n
cha
nged.
Table
3 i
s
the
com
p
a
r
iso
n
of engin
e
p
e
rforman
c
e
at
different fuel
ratio
whe
n
th
e en
gine
spe
ed fixed a
t
5000r/min a
nd throttle valve openin
g
a
ngle is 2
0
% WOT.
From
the ta
bl
e, the
engin
e
power
is 1.94
kW when
the
first fuel
inje
ction pul
se
wi
d
t
h and
the se
con
d
i
n
jectio
n pul
se width i
s
5
m
s an
d
3.6m
s re
sp
ectivel
y
while the e
n
gine p
o
wer
wa
s
1.93kW
whe
n
the first fuel
injectio
n pul
se widt
h
and
a se
co
nd inj
e
ction p
u
lse width wa
s 3.6
m
s
and 5m
s re
sp
ectively. But the mea
s
ured
value of the
air-fuel ratio incre
a
sed from
14.5 to 14.7. I
t
also
can
be seen from th
e table that the
measure
d
value of the ai
r-fuel
ratio ro
se from
14.4
to
14.8 wh
en th
e fuel injectio
n pulse width
adju
s
t from 6ms to 2.6ms.
Similarly, it also ca
n be se
en from table
4,
when the throttle ope
n
in
g angle is 10
0%, the
large
r
first fue
l
injection p
u
lse wi
dth the bigge
r mea
s
u
r
ed ai
r-fuel
ra
tio value is al
so.
Table3. Com
pari
s
on of A/F Ratio and P
o
we
r At Differenct Fu
el Rat
i
o whe
n
The
Engine Spe
e
d
Fixed At 5000r/Min a
nd
Throttle Op
en
ing Angle Is 2
0
%Wot
Second fuel injection/ms
First fuel injectio
n/ms
Power/kW
Torque/
N
m
A/F ratio
4.3 4.3
1.91
14.8
14.6
5 3.6
1.94
14.7
14.5
3.6 5
1.93
14.6
14.7
6 2.6
1.91
14.5
14.4
2.6 6
1.95
14.7
14.8
Table 4. Co
m
pari
s
on of A/F Ratio and P
o
we
r At Differenct Fu
el Rat
i
o whe
n
The
Engine Spe
e
d
Fixed At 5000r/Min a
nd
Throttle Op
en
ing Angle 10
0
%
WOT
Second fuel injection/ms
First fuel injectio
n /ms
Power/kW
Torque/
N
m
A/F ratio
5.5 5.5
3.49
21.2
13.9
6 5
3.48
21.3
13.9
5 6
3.47
21.1
14.1
7 4
3.49
21.1
13.9
4 7
3.42
20.9
14.2
3 8
3.4
20.6
14.3
8 3
3.5
21.1
13.9
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Influence of Fuel Injectio
n on Ga
solin
e Engine Perfo
r
m
ance (Zo
n
g
-
zh
eng M
a
)
2147
From the ab
ove analysi
s
it is shown
that
the twice fuel injecti
on tech
nolog
y should
utilize the int
a
ke flow for i
m
provin
g fuel
evaporation.
So the fuel
needs to
be fitted
with the hi
gh-
spe
ed ai
rflow, the intake
st
roke fuel inj
e
ction
a
m
ount
sho
u
ld n
o
t be
exce
ssive. O
t
herwi
se, if th
e
fuel injectio
n
time is too lo
ng the inta
ke
airflo
w
with t
he interactio
n
effects b
e
tween the fuel
s is
wea
k
e
ned fo
r the airflo
w velocity decreases
wh
i
c
h
will red
u
ce the fuel evap
oration
rate
and
affect engin
e
perfo
rman
ce.
7. Conclusio
n
Based o
n
the
rese
arch it can be in
clud
e
d
in follows:
1)
Und
e
r
cooli
n
g co
ndition it
is ha
rd to v
a
lue the
engi
ne thermody
namic
state
with only o
ne
measure poin
t.
2)
The way of the wall-film en
ter the cylind
e
r
in liquid ph
ase can be d
e
tected by ch
angin
g
the
temperature
of the wall-fil
m
location .
3)
Whe
n
the en
gine i
s
in a
small throttle o
penin
g
angl
e, rega
rdle
ss of
the expan
sio
n
stro
ke
or
the inta
ke
stroke
fuel i
n
je
ction, the inj
e
cti
on timing
d
e
lay will
re
du
ce th
e film
e
v
aporatio
n,
then de
cre
s
e
the engin
e
po
wer a
nd emi
ssi
on dete
r
io
ration.
4)
Whe
n
u
s
ing
twice
fuel i
n
jectio
n tech
nique, the
fuel inje
ction
amou
nt sh
ould n
o
t be
ex
ce
ssiv
e
f
o
r
int
a
ke
st
ro
ke
inject
io
n f
o
r h
i
gh-
spe
ed airf
low.
Ackn
o
w
l
e
dg
ement
This
wo
rk
was
sup
p
o
r
ted
by the Te
ch
nologi
es
R &
D Pro
g
ram
of Zhen
gzho
u (G
rant
No
s. 121PPT
GG35
7
-8
) an
d Hen
an in
stitute of
engine
ering d
o
cto
r
found
ation (D2012
011
).
Referen
ces
[1]
Han
g
Z
hu, Sha
ogu
an
g W
ang.
Cali
bratio
n for
Charact
e
rist
ic
Parameters
of F
uel F
ilm i
n
Intake Duct o
f
EF
I Gasoline E
ngi
ne.
Autom
o
t
i
ve Engineering
. 2004; 2
6
: 12
7-13
0.
[2]
Hon
g
zhi Z
h
ao,
Lin C
ao. A Stud
y o
n
EGR P
e
rform
anc
e of
CA61
02 El
ectronic
a
ll
y-c
ontrol
l
ed Gas
o
li
n
e
Engi
ne,
Automotive Engineering
., 200
5; 27: 264-
268.
[3]
W
i
tze PO, Green RM. LIF
an
d F
l
ame-Emiss
i
on Ima
g
in
g
of
Liq
u
id F
u
el F
i
l
m
s and P
o
o
l
F
i
res in
an
S
I
Engi
ne d
u
rin
g
a Simul
a
ted C
o
ld Start.
SAE Paper
. Detro
i
t, MI, USA. 1997; 1: 101-10
3.
[4]
Yukih
i
ro T
a
kahash
i
, Yoshi
h
ir
o Nakas
e
. An
al
ysis of
the F
uel L
i
qu
id F
i
l
m
T
h
ickness
of a Port F
uel
Injectio
n Eng
i
n
e
.
SAE Paper
, Detroit, MI, USA. 2006; 1: 245
-248.
[5]
Kimitaka Sa
ito
,
Ki
y
o
nori S
e
ki
guch
i
, Nob
uo Imatak
e. A Ne
w
Met
hod to
Anal
yz
e F
uel
Behav
ior in
a
Spark Igniti
on
Engi
ne.
SAE Paper
. Detro
i
t, MI, USA. 1995; 1: 453-45
8.
[6]
Nemec
e
k LM, W
agner RM,
et al.
F
uel and Air Stu
d
i
e
s for Spark
Ignitio
n
Eng
i
n
e
Col
d
Start
Appl
icatio
ns
. Procee
din
g
s of ILASS. America. 2000; 1: 13
2
-
139.
[7]
Cho
H, Min
K. Measur
eme
n
t of li
qui
d fue
l
film distri
butio
n on
the c
y
l
i
n
der l
i
ner
of a
spark i
gniti
o
n
eng
ine
usi
n
g
th
e las
e
r-i
nduc
e
d
flu
o
resce
nce
techni
qu
e.
Me
asure
m
ent Sci
ence
an
d T
e
c
h
nol
ogy
, 20
03
;
14: 975-
98
2.
[8]
SK Fulcher, BF Gajdeczko, P
G
Felton, et al.
T
he Effe
cts of
Fuel Atomizati
on, Vap
o
rizati
o
n
, and Mi
x
i
n
g
on the Cold-St
a
rt UHC Emiss
i
ons
of a Contempor
ar
y
S.I. Engine
w
i
th Int
a
ke-Manifold Injection.
SAE
Paper
. Detro
i
t, MI, USA. 1995; 1: 235-24
2.
[9]
Z
ugh
yer J, Z
h
a
o
F
Q, Lai MC,
et al. A Vis
u
a
l
i
z
ation St
ud
y
of F
uel D
i
strib
u
ti
on a
nd
Com
b
u
s
tion i
n
sid
e
a
Port-Injectio
n
Gasoli
ne En
gin
e
und
er Differe
nt Start Conditi
ons.
SAE Paper.
Detroit, MI, U
SA. 2000;
1
:
127-
134.
Evaluation Warning : The document was created with Spire.PDF for Python.