TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 6134 ~ 6143
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.529
3
6134
Re
cei
v
ed
De
cem
ber 6, 20
13; Re
vised
Ma
y 18, 20
14
; Accepte
d
May 30, 20
14
Quality Function Deployment Application Based on
Interval 2-Tuple Linguistic
Zhen Li
Schoo
l of Mechan
ical a
nd El
ectronic En
gin
eeri
ng, W
uha
n Univers
i
t
y
of
T
e
chn
o
lo
g
y
, W
uhan
43
007
0, Chin
a
Schoo
l of Man
agem
ent, Hen
an Un
iversit
y
o
f
T
e
chnolo
g
y
,
Z
hengz
ho
u 45
000
1, Chi
n
a
email: liz
he
n
w
x
h
@1
63.com
A
b
st
r
a
ct
T
he a
ppl
icatio
n
of qu
al
ity funct
i
on
de
ploy
ment
metho
d
ca
n
meet the
custo
m
ers
’
re
quir
e
me
nt, and
opti
m
i
z
e th
e e
n
terpris
e
pro
d
u
ct desig
n. Ba
sed on th
e ho
use of pro
duct
desig
n,
the p
aper a
d
o
p
ts the
interva
l
tw
o-tuple
lin
gu
istic
mode
l a
nd p
o
ssi
bility th
eory,
a
nd co
nstructs the corr
elati
on
matrix
of pro
d
u
ct
desi
gn a
nd c
u
stomer r
e
q
u
ire
m
e
n
t for cars,
then the
i
m
p
o
rtant seq
u
e
n
ce
of desi
gn ele
m
ents:
eng
in
eer oi
l
consu
m
ption,
vehicl
e s
i
z
e
, fu
el c
onsu
m
ptio
n d
e
sig
n
an
d t
r
ans
missi
on
type
are t
he
mai
n
e
l
e
m
e
n
ts i
n
the
auto
m
o
b
il
e des
ign.
Ke
y
w
ords
:
QFD, product des
i
gn, interva
l
tw
o-t
uple, IVTW
A
oper
ator, possi
bility d
egre
e
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
De
sign of pro
duct
s
belon
g
s
to multi-sp
e
c
ie
s and mult
i-dime
nsi
ons,
and the cu
stomers’
requi
rem
ents analy
s
is i
s
the ba
se
of
prod
uct
de
si
gn, which i
s
better for th
e ente
r
p
r
ises to
optimize the
desi
gn an
d improve the p
r
odu
cts a
nd
q
uality [1]. Qu
ality Function
Developm
en
t, as
a method
of
improvin
g qu
ality to meet cu
stome
r
ne
eds i
n
produ
ct de
sign
pro
c
e
ss,
whi
c
h
ha
s
been
widely u
s
ed in ma
ny indu
strie
s
[2].
Based o
n
the QFD an
d
global se
nsitivity
analysis (Sob
ol’s
method
), Yang etc.[3]
analyzes the
warni
ng ra
d
a
r ope
ration
perform
an
ce index value chan
ge’
s influen
ce on
the
comb
at
capa
bility. Ma etc.[4] con
s
tru
c
t
s
th
e
field v
ehicl
e repai
r equi
pment
requireme
nts
of
quality hou
se
throu
gh th
e
QFD. Z
hon
g
etc. [5], ac
co
rding to th
e la
rge
softwa
r
e
system, they p
u
t
forwa
r
d the o
b
ject o
r
iented
equipme
n
ts
analysi
s
met
hod ba
se
d o
n
QFD. Xu e
t
c. [6] propo
sed
the QFD a
nd ANP, and ma
de the fuzzy military r
equi
rement map
p
i
ng to quantita
t
ive operation
a
l
perfo
rman
ce.
Based on th
e hiera
r
chy analytic me
tho
d
and ro
ugh
set theory, Wang etc. [7] took
the hai
r d
r
ye
r for
exampl
e, and
pro
p
o
s
ed
a rou
g
h
hierarchy a
nalytic meth
o
d
to che
c
k the
cu
stome
r
re
quire
ment im
portan
c
e
in
QFD. Z
han
g
[8] appli
e
d
the Q
F
D to the
de
sig
n
of
automobil
e
sun-sha
d
ing
b
o
a
rd p
r
od
uct
s
. Phirouz
aba
di [9] measured the
we
ight values
of
inventive prin
cipal
s ba
se
d on QF
D.
On the b
a
si
s of the abov
e study, the
pape
r
combi
nes th
e QF
D and inte
rval
two-tupl
e
lingui
stic, an
d applie
s it to the produ
cts de
sign,
a
n
d
optimize
s
th
e pro
d
u
c
t performan
ce in
d
e
x.
The
stru
ctu
r
e
is a
s
follo
ws: in
the
se
cond
pa
rt, it i
n
trodu
ce
s th
e QF
D and
i
n
terval t
w
o-t
uple
lingui
stic; in t
he third p
a
rt,
taking
the
au
tomob
ile
prod
uct d
e
si
gn fo
r in
stan
ce, it
determi
ne
s th
e
cu
stome
r
req
u
irem
ent
wei
ghts; in
the f
ourth
pa
r
t, it studie
s
th
e a
pplication of
QFD,
and fin
a
lly
the importa
nce seq
uen
ce o
f
automobile
prod
uct de
sig
n
is figure
d
o
u
t.
2. Preliminary
Kno
w
ledge
2.1. QFD
QFD was p
r
opo
sed by Akao Yoji and
Shigeru Mizuno in 197
0s in Japan, th
en it was
further
devel
oped by
Jap
an, United St
ates, Eur
ope
and othe
r countrie
s
, it was introdu
ce
d to
Chin
a in 19
90s. In the
prod
uct
s
d
e
sig
n
proces
s
,
a
ll ac
tivitie
s
ar
e
dr
iven
b
y
c
u
s
t
ome
r
requi
rem
ent [10]. The core co
ntent of
QFD i
s
the
custome
r
tra
n
s
form
ation, a
c
cordi
ng to t
he
hou
se of
qual
ity, it analyze
s
the
cu
stom
er
requi
re
m
e
nt,
cu
stome
r
prop
erty
an
d so on,
an
d
pi
cks
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Quality F
uncti
on De
plo
y
m
ent Application
Based on Int
e
rval 2-T
uple
Lingui
stic (Zh
en Li)
6135
out the produ
ct perfo
rman
ce index in the custom
er req
u
irem
ent [11]. The hou
se of quality model
is as
sho
w
n i
n
Figure 1.
Figure 1. Hou
s
e of Quality Model
The p
r
od
uct
desi
gn a
dopt
s the fo
rm of
hou
se of
q
ual
ity, it is carrie
d out a
c
cordi
ng to the
cu
stome
r
re
quire
ment, throu
gh the
prod
uctio
n
desig
n, pa
rts devel
op
ment, techn
o
logy
deployme
nt a
nd produ
ction
plan [12], a
s
sho
w
n i
n
Fig
u
re 2.
Hou
s
e
of quality ca
n
be con
s
tru
c
ted
in each sta
g
e
, and the in
trinsi
c rel
a
tio
n
exists in e
a
ch
stage, th
e main ceilin
g proj
ect can
be
transfe
rred to
the left wall
of next stage. Durin
g
the deployment, the first stage
-t
he co
nstructi
on
of produ
ct de
sign of qu
ality house is the
ke
y stag
e, the pape
r mainl
y
analyze
s
the stage.
Figure 2. Hou
s
e of Quality Depl
oyment in QFD
2.2. Interv
al
2-Tuple Ling
uistic
In QFD, the key stag
e is to determine
the
cu
stome
r
requireme
nt. Different cu
stome
r
s
may pro
p
o
s
e
lots of
req
u
i
r
eme
n
ts
and
expect
a
tions of the
same
pro
d
u
c
t, but
it can
not b
e
exhau
stive in
the de
sig
n
a
nd ma
nufa
c
turing,
we
sh
ould
sei
z
e th
e main
custo
m
er
req
u
ire
m
ent
and ta
ke
the
se
con
dary
re
quire
ment i
n
to con
s
ide
r
ati
on, it's ne
ce
ssary
to d
e
termine the
wei
ghts
of custom
er requireme
nts.
Lots
of sch
o
l
ars h
a
ve ad
opted differe
nt methods t
o
determin
e
the
cu
stome
r
req
u
irem
ent wei
ghts. L
a
i etc.
[13]
propo
sed a
gro
up
deci
s
io
n-m
a
ki
ng te
chniq
u
e
to
determi
ne th
e cu
stom
er
requireme
nt weights.
Che
e
t
c. [14] ado
pted the a
r
tifici
al neu
ral
net
work
(ANN) to
det
ermin
e
the
custome
r
wei
ghts.
Cha
n
etc. [15] a
d
o
p
ted the
ent
ropy m
e
thod
to
cal
c
ulate th
e
cu
stome
r
re
quire
ment
weights. Ba
se
d on the hi
erarchy analy
s
i
s
an
d ro
ugh
set
theory, Kong
etc. [16] propo
sed th
e rough
hierarchy analysi
s
of determi
nin
g
the custo
m
e
r
requi
rem
ent weig
hts in O
F
D. Song etc. [17]
adopted the availabl
e resou
r
ces
deviation bet
wee
n
deci
s
io
n value and target
value as the
optimizatio
n obje
c
tive integer prog
ram
m
ing model,
so a
s
to reali
z
e the
mappin
g
fro
m
cu
stome
r
requireme
nt
s to techni
cal
chara
c
te
risti
c
s. Wang et
c. [18]
adopte
d
the
relaxation
coe
fficient metho
d
to e
n
sure
the o
p
timal
se
t of se
eki
ng a
nd
key d
e
ma
n
d
to reali
z
e th
e
prio
rity. Gon
g
etc. [19]
p
u
t forwar
d
th
e fuzzy con
s
i
s
tent mat
r
ix into the u
s
e
of
hiera
r
chy ana
lysis to determine the cu
st
omer requi
re
ment weig
hts in QFD.
Duri
ng the proce
s
s of dete
r
minin
g
weig
hts, cal
c
ulatio
n values a
r
e
not alway
s
cl
ear, it is
more
suitabl
e for fu
zzy
numbe
rs. M
any pap
ers
have u
s
ed
triang
ula
r
fuzzy num
bers
and
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 613
4 –
6143
6136
lingui
stic vari
able
s
, but th
e use of the
s
e method
s
can re
du
ce th
e accu
ra
cy o
f
the informat
ion
[20]. Therefore, Herrera an
d Martine
z
[21] pr
opo
se
d the use of 2-t
uple lingui
stic method ba
sed
on the
symbo
l
tran
slation
can turn p
r
eference info
rmat
ion into 2
-
tupl
e lingui
stic i
n
formatio
n, an
d
cal
c
ulate
d
. Wang [22] unifi
ed the differe
nt forms
of
h
y
brid de
ci
sio
n
data a
s
the
2-tuple li
ngui
stic
informatio
n, and evaluate
d
the agile manufa
c
tu
ri
n
g
. Wei [23] applie
d the 2-tuple lin
gui
stic
informatio
n a
ggre
gation
o
perato
r
s to
the fu
zzy
mul
t
i-attribute group de
cisi
on
-ma
k
ing. Ch
an
g
and
Wen
[24
]
made
an i
m
porta
nt ana
lysis of th
e f
a
ctors l
eadi
n
g
to the
pro
d
u
ct d
e
sig
n
fai
l
ure
based on th
e
2-tuple lin
gui
stic a
nd o
r
de
red wei
ght
ed
averagi
ng o
p
e
rato
r. Lin et
c. [25] pro
p
o
s
ed
the i
n
terval
2
-
tuple
lingui
sti
c
m
odel
an
d
helpe
d
d
e
ci
si
on-m
a
kers
expre
s
s p
r
efe
r
e
n
ce
info
rmati
on
better.
Ho
we
ver, the i
n
terval 2-tu
ple li
ngui
stic
mod
e
l is for the
singl
e lin
gui
stic valuatio
n
set
conve
r
sation,
and
do
es no
t solve th
e di
fferent ling
u
istic term
set conversation. I
n
view of thi
s
,
the normali
ze
d interval 2
-
t
uple ling
u
isti
c model i
s
ad
opted in thi
s
pape
r, thro
ug
h the interval
2-
tuple lingui
stic agg
reg
a
tion
operato
r
s, and different
li
ngui
stic sets
of 2-tuple will
be agg
reg
a
te
d.
Two
-
tuple lin
guisti
c
,
α
use 2-tuple to represe
n
t its calculation obje
c
t. Among the
m
,
is the lang
ua
ge ph
ra
se of given lingui
sti
c
term
set
,
,⋯,
,
the numb
e
r of term
s is o
dd,
is even;
α
∈
0.5,
0
.5
r
eprese
n
ts the sy
mbolic tra
n
sl
ation,
w
h
ich
re
p
r
es
en
ts
th
e mo
s
t
c
l
os
e
to
the deviation of language
phra
s
e
s
between
the cal
c
u
l
ated langua
g
e
information
,
α
and initial
lingui
stic term
set
.
Defini
tion 1.
Linguisti
c
term
set
S
s
,s
,⋯,s
,
s
,
α
is 2-tuple lingui
stic, the real
numbe
r
β∈
0,
g
is the result of aggreg
ation op
eration, the followin
g
functions
∆
shows the 2-
tuple lingui
stic inform
ation
corre
s
p
ondin
g
to
β
[21].
∆∶
0,
→
0.5,
0
.5
(1)
∆
,
α
,
,
,
∈
0.5,
0.5
(2)
∙
expres
ses
the integral operat
or through the rounding
off,
∈
0,
.
Conve
r
sely, the inverse fu
nction
∆
can b
e
converte
d to corre
s
p
ondin
g
∈
0,
.
∆
∶
0.5,
0
.5
→
0,
(3)
∆
,
α
(4)
s
∈
S
⇒
s
.0
(5)
Defini
tion 2.
Lingui
stic te
rmset
S
s
,s
,⋯,
s
,
s
,
α
is 2-t
uple ling
u
isti
c, real nu
mber
β∈
0,1
, through the
following fu
n
c
tion
∆
, it can be re
pre
s
e
n
ted as th
e co
rrespon
ding 2
-
tuple
lingui
stic information [26].
∆
,
α
,
,
∗
/
,
∈
0.5/
,
0
.
5/
(6)
Conve
r
sely, 2-tuple ling
u
isti
c ca
n be con
v
erted to co
rresp
ondi
ng
th
roug
h the followin
g
inverse functi
on
∆
.
∆
,
α
/
(7)
The differe
nces lie in the value ra
nge, in
definition 1,
∈
0,
, in definition 2,
range
s
0
,1
, the value range of
can b
e
treated a
s
standard, in this way it can t
e
ll the 2-tuple
linguisti
c
from different
linguisti
c
term set.
Defini
tion 3.
Set
r
s
,s
,
i
1,2
,
⋯
,
m;
j
1,2
,
⋯
,
n
, as the com
p
lem
entary
judgme
n
t matrix,
r
N
e
g
s
,
Neg
s
,
Neg
is the inverse o
p
e
r
ati
on,
Negs
s
,i
g
j
.
Defini
tion 4.
Set linguistic term
set
S
s
,s
,⋯,s
,
s
,α
,
s
,α
is interval 2-tu
ple
lingui
stic,
s
and
s
are the linguisti
c
phrases in
S
,
ij
,
α
and
α
repre
s
e
n
t sym
bolic tra
n
sl
ation.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Quality F
uncti
on De
plo
y
m
ent Application
Based on Int
e
rval 2-T
uple
Lingui
stic (Zh
en Li)
6137
Interval numb
e
rs
β
,β
β
,β
∈
0,1
,β
β
ca
n be re
pre
s
ente
d
as
the corre
s
p
o
nding inte
rval
2-tuple lin
gui
stic through t
he followi
ng functio
n
∆
[27].
∆
,
,
,
,
,
,
∗
,
∗
/
,
∈
0.5/
,
0
.5/
/
,
∈
0.5/
,
0
.5/
(8)
Conve
r
sely, interval 2-tu
pl
e lingui
stic
,
,
,
ca
n be conve
r
te
d to co
rre
sp
o
nding
interval num
b
e
r thro
ugh th
e followin
g
inverse fun
c
tio
n
∆
.
∆
,
,
,
/
,
/
,
(9)
Defini
tion 5.
Set
X
s
,α
,
s
,α
,
s
,α
,
s
,α
,⋯,
s
,α
,
s
,α
as a
grou
p of 2
-
tu
ple lingui
stic,
w
w
,w
,⋯,w
is the
weig
ht vector
and
satisfie
s
w
∈
0,1
and
∑
w
1
, the operato
r
s of 2-tuple li
ngui
stic IVTWA will be:
,
,
,
,
,
,
,
,⋯,
,
,
,
∆
∑
∆
,
,
∑
∆
,
(10)
Defini
tion 6
.
Set
R
s
,s
as the cal
c
ul
ation matrix,
i
1
,
2
,⋯,m
;j
1,2
,
⋯
,
n
, the compreh
ensive
weight
range of
som
e
cal
c
ulatio
n obje
c
t
i
will be:
,
∑
/
,
∑
/
(11)
Defini
tion 7.
If the calculation obje
c
t
i
is
not inferior to
the calculati
on obje
c
t
k
, it
can be
r
e
pr
es
e
n
t
ed
a
s
θ
θ
,
i,
k
1
,
2,
⋯
,
m
, and compa
r
e
s
with the comprehen
sive value in
definition 5, the com
p
arati
v
e num
bers
will be figured out [28]:
1
,0
,0
(12)
Possi
bility matrix can be worked out as follows:
…
⋮
⋮
…
⋮
…
⋮
Orde
rin
g
vect
ors of p
o
ssibil
ity matrix are:
∑
/
(13)
3. Weights Determina
t
ion
of Cus
t
ome
r
Requireme
nt
3.1. Algorith
m
Acco
rdi
ng to the basi
c
kno
w
led
ge an
d definit
ion
s
ab
ove, the pap
er presents a
kind of
interval 2-tup
l
e linguisti
c
method to d
e
termin
e
the custom
er requireme
nt weig
hts, spe
c
ifi
c
p
r
oc
es
se
s
are
a
s
fo
llow
s
.
Step 1:
Id
ent
ifying cu
stom
er
req
u
ire
m
e
n
ts in
dicator.
In ord
e
r to e
n
sure the
con
s
isten
cy
of weig
ht cal
c
ulatio
n, the
numbe
r of
ca
lculatio
n indi
cator
shoul
d b
e
co
ntrolle
d, for the
compl
e
x
prod
uct
s
, we
can divid
e
the cu
stome
r
re
quire
ment
s in
to different levels.
Step 2:
Set up the linguis
tic
term
set
,
,⋯,
,Valuators
1
,
2
,⋯,
,evaluate cu
stomer req
u
irement
and
, the number of customers is
, and figure out the
measure value
u
,v
,
u
,v
∈
S
,
i
,j
1
,
2
,
⋯
,n
, so as to o
b
tain the ling
u
istic
compl
e
mentary
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 613
4 –
6143
6138
judgme
n
t matrix
,
, the weig
ht vector of cal
c
ulatio
n is
,
,⋯,
,
∑
1
.
Step 3:
Acco
rding
to defin
ition 1, lingui
st
ic
com
p
lem
entary ju
dgm
ent matrix
can b
e
conve
r
ted to interval 2-tu
pl
e lingui
stic ju
dgment matri
x
,0
,
,0
.
Step 4:
Acco
rding to defin
ition 4, throu
gh the inverse function
∆
, the interval 2-t
uple
lingui
stic
,
0
,
,0
is converted to th
e corre
s
p
ondi
ng interval nu
mber
,
.
Step 5:
To aggregate th
e interval measure nu
mb
er
,
. Throug
h
the IVTWA
operator, th
e com
p
reh
ensive
cal
c
ulation mat
r
ix
,
∑
∙
,
∑
∙
of i
n
terval 2-tu
pl
e lingui
stic wil
l
be figured o
u
t.
Step 6:
Th
e formula (1
1) can be used
to
cal
c
ul
ate
the cu
stom
er req
u
ire
m
ent
weig
ht
,
of interval 2-tuple lingui
stic group im
port
ance value
for cu
stom
er requireme
nt
.
Step 7:
T
he
possibility ranking met
hod of definition 7 can be
used to find the ordering
vec
t
or
of possi
bility matrix
,
sort
e
d
by
t
heir si
ze
s,
dif
f
e
r
ent cust
omer
req
u
ire
m
ent wei
ght
s
will be worked out.
3.2. Case Stud
y
In orde
r to verify the validity of the a
bove algo
rith
m, the paper takes the
car a
s
an
example to st
udy. It develops gradu
ally based
on the
interval 2-tu
pl
e lingui
stic m
e
thod.
Step 1:
The
pape
r ha
s sel
e
cted
a grou
p of cu
stome
r
requi
rem
ent indicators for
the ca
r,
a num
be
r of
market ma
na
gement
pe
rsonnel
from
a
ca
r e
n
terpri
se an
d p
a
rt of
ca
r
cu
stome
r
s,
ultimately five
indicators are determine
d
as the custo
m
er req
u
ire
m
ent indicato
rs:
repre
s
ent
s
manipul
ability,
repre
s
ent
s safety,
represe
n
ts comfo
r
t,
rep
r
e
s
ent
s power and
rep
r
e
s
ent
s economy .
Step 2:
In t
h
is
re
sea
r
ch, three
experts pa
rtic
ip
ate
in the
cal
c
ulation of
cu
stome
r
requi
rem
ent importa
nce, experts'
weig
h
t
s
w
0
.
3,0
.
4,0.
3
.Thre
e
exp
e
rts ad
opt th
ree ki
nd
s of
lingui
stic term sets: nine
elements lin
guisti
c
term
set
,
,
,
,
,
,
,
,
; seven
element
s lin
guisti
c
term
set
,
,
,
,
,
,
and five element
s lin
guisti
c
term
set
,
,
,
,
. According t
o
the experts' calculation
result
s, the linguisti
c
com
p
l
e
menta
r
y
judgme
n
t matrix
is co
nst
r
u
c
ted.
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
Step 3:
Acco
rding to
defin
ition 1, lingui
stic
compl
e
m
entary mat
r
ix
can be con
v
erted
to interval 2-t
uple lingui
stic judgment ma
trix
.
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Quality F
uncti
on De
plo
y
m
ent Application
Based on Int
e
rval 2-T
uple
Lingui
stic (Zh
en Li)
6139
,
0
,
,0
,
0
,
,0
,0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,0
,
,0
,
0
,
,0
,0
,
,0
,
0
,
,0
,0
,
,0
,0
,
,0
,
0
,
,0
,0
,
,0
,
0
,
,0
,0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,0
,
,0
,
0
,
,0
,0
,
,0
,0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,
0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
,0
,
,0
Step 4:
A
c
co
rding to d
e
fin
i
tion 3, throu
gh the inverse function
∆
, the interval 2
-
tuple
lingui
stic judg
ment matrix
can b
e
co
nve
r
ted to co
rrespondi
ng interval numbe
r matrix
.
0.5,0.5
0
.625
,0
.875
0.
375,
0.5
0
.5,0.
75
0.75
,0.
875
0.125
,0
.375
0.5,0.5
0.
625,
0.75
0.375
,0
.625
0
.5,0.
625
0.5,0.625
0
.25,
0.375
0.5,
0
.5
0
.75,
0.875
0.
625,
0.875
0
.2
5,0
.
5
0
.375
,0.625
0.125,0.25
0.5
,
0.5
0,0
.
25
0
.125
,0.
25
0.375,0.5
0
.125
,0.
375
0.
75,1
0.
5,0.
5
0.5,0.
5
0
.833
,0.
833
0.5
,
0.667
0
.667
,0.
833
0.5
,
0.833
0
.167
,0
.167
0.5,0.5
0
.667
,0
.833
0
.333
,0
.667
0.
333,
0.5
0
.333
,0.5
0.167
,
0
.333
0.5,
0
.5
0,0.167
0.667
,
0
.833
0
.167
,0.333
0
.333
,0.667
0
.833
,1
0.5,0.5
0
.333
,0.667
0
.167
,0.
5
0.5,
0
.667
0
.167
,0.333
0
.333
,0.667
0.5
,
0.5
0.5
,
0.5
0.5,
0
.75
0
.7
5,0
.
7
5
0
.2
5,0
.
7
5
0
.2
5,0
.
5
0.
25,0
.
5
0.5,0.5
0.
25,0
.
5
0.
5,0.
75
0
.5
,1
0
.2
5,0
.
2
5
0.5,
0
.75
0.5,0.5
0
.7
5,0
.
7
5
0.5,
0
.75
0.
25,0
.
75
0
.25,
0.5
0.
25,0
.
25
0.5,0.5
0.
25,0
.
75
0.5
,
0.75
0,0.5
0.25
,0.
5
0
.2
5,0
.
7
5
0.
5,0.5
Step 5:
To aggregate th
e interval measure matri
x
through IVTWA opera
t
or, the
comp
re
hen
si
ve calculation
matrix
of interval 2-tu
ple l
i
ngui
stic will b
e
figured o
u
t.
0.5
,
0.5
0
.669
,0.821
0
.538
,0.642
0
.492
,0.783
0.5,
0
.746
0
.1
8,0
.
3
3
0.
5,0.5
0
.528
,0.708
0
.396
,0.678
0
.433
,0.686
0
.358
,0.
461
0
.292
,0.
471
0.5,0.
5
0
.45
,
0.
555
0
.603
,0.
821
0.217
,0
.508
0.321
,0
.603
0.446
,
0
.55
0.5,0.5
0.208
,0
.567
0
.255
,0.5
0.
313,
0.567
0.
18,0
.
396
0.
433,
0.792
0.5,
0
.5
Step 6:
The
formula (1
1)
can be u
s
ed
to calc
ulate the custo
m
er requirement
weight
,
of interval 2-tuple lingui
stic group im
port
ance value
for cu
stom
er requireme
nt
.
0.
302,
0.46
,
0.419
,
0
.592
,
0
.
438
,0.559
,
0.454
,0.
662
,
0.449
,0
.664
.
Step 7:
Th
e possibility ran
k
ing meth
od of definition 7 can be u
s
ed
to compa
r
e th
e above
importa
nce calcul
ation value
, the following possi
bility matrix can be worked out:
0.5
0.
876
0.
921
0.
984
0.
971
0.
124
0.5
0.
476
0.
638
0.
631
0.
079
0.
524
0.5
0.
681
0.
673
0.
016
0.
362
0.
319
0.5
0.
496
0.
029
0.
369
0.
327
0.
504
0.5
Orde
rin
g
vect
or
of pos
s
i
bility matrix
can
be figured o
u
t
as follows:
0
.112
,
0
.
207
,
0
.
202
,
0
.
2
4
,
0
.239
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 613
4 –
6143
6140
Sorted by their si
zes, im
portance
ordering
of different custom
er requirement
s will be
work
ed out:
.
Namely,
ca
r cu
stome
r
s'
most im
porta
nt req
u
ireme
n
t is
power
,
th
en th
e e
c
on
omy,
safety and co
mfort, finally
come
s the m
anipul
ability.
4. QFD Ap
plication in Pro
duct
Design
4.1. Cons
tru
c
tion of Q
u
al
it
y
House in Product
Des
i
gn
Acco
rdi
ng to the above, ultimately five cust
ome
r
requ
ireme
n
t indicators
are
det
ermin
ed:
manipul
ation,
safety, comfort, po
we
r a
n
d
e
c
on
omy,
their wei
ghts are se
pa
ratel
y
(0.1,
0.2,
0.
2,
0.3, 0.2)
CR
1
M
anipul
ation: simple operatio
n, vari
ous facilities,
etc..
CR
2
Safety: re
liable quality, low failure
rat
e
, long se
rvice life, etc..
CR
3
Comfo
r
t: beautiful ap
p
eara
n
ce, rea
s
onabl
e de
coration, comfo
r
table spa
c
e, e
t
c..
CR
4
Po
we
r: powe
r
ful ho
rse
power, turb
ochargi
ng, etc..
CR
5
E
c
ono
my: price e
c
on
o
m
y, low fuel consumpt
ion, l
o
w mainte
na
nce
co
st of re
pair,
etc.
At the sam
e
time, the e
x
perts
and
manag
eme
n
t perso
nnel f
r
om the
aut
omobile
manufa
c
turi
n
g
de
sig
n
d
e
partme
n
t, produ
ction
dep
artment, m
a
rketing
de
part
m
ent an
d af
ter
servi
c
e
dep
a
r
tment a
r
e
a
ll invited. Fin
a
lly,
the follo
wing
elem
en
ts are a
s
th
e outp
u
t: DE
1
:
transmissio
n type; DE
2
: car reversin
g ai
d servi
c
e; DE
3:
control co
nfiguratio
n; DE
4
: design life;
DE
5
: fault alarm; DE
6
: air bag; DE
7:
v
ehicle si
ze;
DE
8
: interior configu
r
atio
n; DE
9
: engineer
displ
a
cement
; DE
10
:
fuel consumption d
e
sig
n
; DE
11:
car pri
c
e; DE
12
: maintenan
ce desi
gn.
The hou
se of
quality model
of car produ
ct design
stag
e is as
sho
w
n
in Figure 3.
Strong
Medium
Weak
Positive Correlation
Design Elements
Customer Re
quir
e
ment
DE
1
DE
2
DE
3
DE
4
DE
5
DE
6
DE
7
DE
8
DE
9
DE
10
DE
11
DE
12
Index Weight
CR
1
0
.
1
CR
2
0
.
2
CR
3
0
.
2
CR
4
0
.
3
CR
5
0
.
2
Figure 3. Hou
s
e of Quality Model of Ca
r
Produ
ct De
si
gn
4.2. Relativ
e
Matrix o
f
Product
Design
and Cu
stom
er Req
u
irement
Relative expe
rts an
d man
a
gers evalu
a
te
t
he pro
d
u
c
t desi
gn ele
m
e
n
ts’ influen
ce
degree
to the cu
sto
m
er requi
rem
ent, as shown in Table
1.
In orde
r to make th
e evaluator
expre
s
se
s
better, the int
e
rval vari
able
s
can
be a
d
o
p
ted,
thre
e li
ngui
stic a
s
se
ssm
ent sets can be ch
osen,
namely the
9 elemen
ts asse
ssm
ent set
,
,
,
,
,
,
,
,
, 7 element
s
as
se
ssm
ent
set
,
,
,
,
,
,
, and 5
element
s asse
ssm
e
n
t set
,
,
,
,
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Quality F
uncti
on De
plo
y
m
ent Application
Based on Int
e
rval 2-T
uple
Lingui
stic (Zh
en Li)
6141
Table 1.Relat
i
ve Matrix of
Produ
ct De
si
gn and
Cu
sto
m
er Requi
re
ment
Design
Eleme
nt
Customer
Requireme
nt
Requireme
nt Weight
DE
1
DE
2
DE
3
DE
4
DE
5
DE
6
DE
7
DE
8
DE
9
DE
10
DE
11
DE
12
CR
1
0.1
[x
7
,x
8
]
[y
4
,y
6
]
[y
4
,y
5
]
[z
0
,z
1
]
[x
1
,x
3
]
[x
2
,x
3
]
[y
0
,y
1
]
CR
2
0.2
[z
1
,z
2
]
[x
2
,x
3
]
[z
3
,z
4
]
[x
6
,x
7
]
[y
2
,y
3
]
[x
4
,x
5
]
CR
3
0.2
[y
1
,y
2
]
[x
1
,x
2
]
[z
3
,z
4
]
[x
6
,x
7
]
CR
4
0.3
[x
7
,x
8
]
[y
4
,y
5
]
CR
5
0.2
[y
2
,y
3
]
[z
2
,z
3
]
[y
5
,y
6
]
[x
6
,x
7
]
Design
Element
Weight
4.3. Importa
nce De
gree
of Produc
t Design Element
Acco
rdi
ng to definition 1 a
nd def
inition
2, the weight
rang
e
θ
of prod
uct de
sign el
ement
can b
e
figure
d
out.
0.
188,
0.267
,
0.117
,0.
11
,
0.142
,0
.208
,
0.15
,0.2
,
0
.15,
0.2
,
0.
167,
0.25
,
0
.
263
,0.363
,
0.15
,0
.175
,
0.288
,0.
338
,
0.2
,
0.267
,
0.167
,0
.2
,
0.15
,0.175
.
Acco
rdi
ng to definition 3 a
nd wei
ght ran
ge
, the possibility matrix can be figured
out.
0.500
1.000
0.862
0.907
0.907
0.000
0.500
0.000
0.000
0.000
0.138
0.093
0.093
0.383
0.978
0.000
1.000
0.541
0.107
0.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.500
0.500
0.500
0.725
1.000
0.363
1.000
0.940
0.586
0.363
0.500
0.500
0.500
0.752
1.000
0.333
1.000
1.000
0.602
0.333
0.500
0.500
0.500
0.752
1.000
0.333
1.000
1.000
0.602
0.333
0.617
0.000
0.275
0.248
0.248
0.500
1.000
0.074
1.000
0.667
0.198
0.074
0.022
0.000
0.000
0.000
0.000
0.000
0.500
0.000
0.500
0.024
0.000
0.000
1.000
0.000
0.637
0.667
0.667
0.926
1.000
0.500
1.000
1.000
0.862
0.500
0.000
0.000
0.000
0.000
0.000
0.000
0.500
0.000
0.500
0.000
0.000
0.000
0.459
0.000
0.060
0.000
0.000
0.333
0.976
0.000
1.000
0.500
0.000
0.000
0.893
0.000
0.414
0.398
0.398
0.802
1.000
0.138
1.000
1.000
0.500
0.138
1.000
0.000
0.637
0.667
0.667
0.926
1.000
0.500
1.000
1.000
0.862
0.500
Orde
rin
g
vect
or
φ
of
P
can be
worke
d
out a
s
:
0
.115
,
0
.
005
,
0
.083
,
0
.082
,
0
.082
,
0
.105
,
0.14
,
0
.
0
7
,
0
.141
,
0
.
1
2
,
0
.089
,
0
.
0
7
.
Sorted by si
ze, the weight
orde
rin
g
of
produ
ct desi
gn
element can
be figure
d
out
:
.
In view of this, engi
nee
r displa
ce
me
nt, vehicle si
ze, fuel con
s
umptio
n de
sign a
nd
transmissio
n type
are
the
main eleme
n
t
s,
the de
sig
n
staff
sh
oul
d pay
mu
ch
attention the
s
e
f
a
ct
or
s.
4.4. Compari
s
on
w
i
th O
t
h
e
r Meth
ods
Comp
ared with 2-tuple li
ngui
stic ba
sed meth
o
d
s,
the origin
al
deci
s
ion inf
o
rmatio
n
expre
s
sed by
2-tuple lingui
stic are alwa
ys deriv
ed fro
m
a predefin
edling
u
istic te
rm set. That is,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 613
4 –
6143
6142
all the expe
rt
s a
r
e a
s
ked t
o
give thei
r j
udgme
n
ts
wit
h
only on
e li
ngui
stic te
rm
from the
sa
me
lingui
stic term set. Ho
we
ver, it is so
m
eho
w un
reali
s
tic fo
r ea
ch
expert to give
his o
r
he
r o
p
i
nion
fully under
su
ch con
s
traint.
As a re
sult, the ca
rdin
ality of the term set may be too small to fully
expre
ss the
expert’s o
p
ini
on on a ce
rta
i
n attribut
e, while may be so big that the evaluation
on
anothe
r attrib
ute is out of
his ability. Alternatively,
if given the exp
e
rts t
he right to
freely
ch
oo
se
their o
w
n ling
u
istic te
rm se
ts. That is, the deci
s
io
n inf
o
rmatio
n is p
r
esent by ling
u
istic te
rm se
ts
with differe
nt gran
ula
r
ity. In su
ch a
ca
se, it
is n
eede
d to un
ify multi-gran
ularity lingui
stic
informatio
n before ag
gre
g
a
tion ope
rati
on. For exam
pl
e, Herre
r
a et al. [21] intr
odu
ced a fusion
approac
h
of
multi-granular
ity linguis
t
ic
information with the
bas
i
c linguis
t
ic
term, whic
h demands
lots of calcula
t
ion wo
rk. T
o
avoid such issue
s
, Li
n
et a
l
. [25] propo
sed the d
e
finition of interval
2-
tuple ling
u
isti
c vari
able to
better exp
r
e
s
s de
ci
sion i
n
formatio
n. Wa
ng an
d Hao [
29] presente
d
the propo
rtio
nal 2
-
tuple
fu
zzy li
ngui
stic
rep
r
e
s
entatio
n mod
e
l a
nd
put forwa
r
d
some a
g
g
r
ega
tion
operators fo
r pro
p
o
r
tional
2-tupl
es. B
u
t, in ab
ove
model
s [2
5,29], all d
e
ci
sion
informat
ion
provide
d
by d
i
fferent expe
rts is al
so d
e
ri
ved fr
om o
n
e
same li
ngui
stic term
set. On the
contra
ry,
the results
of this pa
per i
ndicate
that
the
interval 2
-
tuple ba
se
d
quality function deploym
ent
method can e
x
presse
s p
r
ef
eren
ce
s of experts
m
o
re ful
l
y than other lingui
stic meth
ods.
5. Conclusio
n
The pa
per a
dopts the m
e
thod of qu
ality
function
deployment,
and co
nst
r
ucts the
automobil
e
d
e
sig
n
sta
ge
of hou
se of
qualit
y, and
analyzes th
e relatio
n
shi
p
between t
he
element
s
of prod
uct de
si
gn
a
nd cu
st
omer
re
qui
re
ment, on t
h
e ba
si
s of i
n
terval two-t
uple
lingui
stic mo
del and p
o
ssi
b
ility orderi
n
g
,
the impor
ta
nce d
e
g
r
ee o
f
produ
ct de
sign eleme
n
ts is
figured
out.
The m
e
thod
start
s
fro
m
t
he p
e
rspe
ctive of
cu
stome
r
requi
reme
nt
to the
pro
d
u
ct
desi
gn, a
nd
make
s the
d
e
sig
n
el
eme
n
ts m
eet
the
cu
stom
er re
quire
ment, th
e ap
plication
i
s
simple, which
provide
s
a n
e
w way and e
x
pand
s the a
pplication field of QFD.
Ackn
o
w
l
e
dg
ments
The
re
sea
r
ch is
su
ppo
rt
ed by the
Nation
al Natural S
c
ien
c
e
Foun
dation
of Chi
n
a
(U1
304
701
),
the Soft Scie
nce
Re
se
arch Proje
c
ts
of Hen
an (132
4004
1067
9),
the Scien
c
e
and
Tech
nolo
g
y Proje
c
t of Zheng
zh
ou (2
0131
046
) an
d the He
na
n Unive
r
sity
of Tech
nol
ogy
Philoso
phy Social Sci
e
n
c
e
Prosp
e
rity Plan (20
13F
RJH02
)
.
Referen
ces
[1]
HL Z
h
ao. Mark
et gro
w
t
h
d
e
p
e
nde
nt o
n
re
quir
e
men
t: focus
o
n
the
bus
pro
d
u
cts b
y
tra
n
sit
enterpr
ises.
Urba
n Vehic
l
es
. 2007; (6): 21-
23.
[2]
LM Dua
n
, H Huan
g. Integrati
on an
d ap
plic
a
t
ion
of Kano'
s
mode
l into qu
alit
y
fu
nctio
n
d
e
vel
opme
n
t.
Journ
a
l of Ch
o
ngq
ing U
n
iv
ers
i
ty
. 2010; 31(
5)
: 515-51
8.
[3]
L Yan
g
, Z
HH Yan, MZ
H W
ang
. Applic
ation
of QF
D and Sob
o
l’ Meth
od
in t
he Re
qu
ireme
n
t Anal
ys
is o
f
W
eapo
n an
d Equi
pment.
Shi
p
Electronic En
g
i
ne
erin
g
. 201
2; 32(3): 107-
10
9.
[4]
HW
Ma, J W
e
i
,
YZ
H Gao. Requir
e
ment An
al
ysis
of Ve
hicl
e
F
i
eld Mai
n
ten
ance Eq
ui
pme
n
t Based o
n
QFD.
Journal o
f
Acade
my of Military Transp
o
rtation
. 20
10;
12(4): 35-
37.
[5]
JQ
Z
hong, R F
ang,
Z
H
SH
Yuan.
Ob
ject-
o
ri
e
n
ted
r
e
q
u
ir
ements ana
l
y
s
i
s
meth
od bas
ed on
QF
D.
Journ
a
l of Hefe
i Univers
i
ty of T
e
chno
logy
. 2
004; 27(
1): 58-
62.
[6]
YP Xu, F
Ya
ng
, W
P
W
ang. An QF
D and AN
P Based
E
qui
p
m
ent Operati
o
nal R
e
q
u
irem
e
n
ts Anal
ys
is
Appro
a
ch.
Jour
nal of Nati
on
al
Univers
i
ty of Defense T
e
ch
no
logy
. 20
09; 31(
4): 134-1
40.
[7]
XD
W
ang, W
Xion
g. Ro
ug
h AHP
appr
o
a
ch for
det
er
minin
g
the
im
portanc
e rati
n
g
s of custom
e
r
requirements in QFD.
Comp
u
t
er Integrated
Manufactur
i
ng Systems
. 20
10
; 16(4): 763-7
7
1
.
[8]
HF
Z
hang. QF
D Appl
yi
n
g
in t
he D
e
vel
opme
n
t of Automotiv
e
Interior T
r
im Parts.
Journa
l of
Shan
gh
ai
Jiaoto
ng U
n
ive
r
sity
. 2007; 41(
Z
)
: 180-187.
[9]
AM Phiro
u
za
b
adi. Pro
pos
ing
a Practic
a
l M
e
thod
for C
o
n
c
eptua
l D
e
sig
n
Process
in
Ne
w
Pr
od
uct
Devel
opm
ent. Medica
l Gla
sses as a
Case Stu
d
y
.
Internatio
na
l Journ
a
l of Inf
o
rmatics an
d
Co
mmun
icati
o
n T
e
chno
lo
gy
. 201
4; 3(2).
[10]
GY Yuan,
XD
Liu. A
p
p
licati
o
n of QF
D
in
th
e
R
equ
irem
ent
Ana
l
ysis
of A
e
rial
W
a
rfare
W
eapo
n
and
Equi
pment.
Jo
urna
l of the Acade
my of Eq
ui
pment Co
mma
nd & T
e
chn
o
lo
gy
. 2004; 1
5
(8)
:
23-26.
[11]
Y SH L
i
, JJ S
hao, YT
Miao.
Qualit
y F
u
ncti
on
D
e
p
l
o
y
me
n
t
T
e
chnolog
y.
Beiji
ng: N
a
tio
n
al D
e
fenc
e
Industr
y
Pr
ess. 2011.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Quality F
uncti
on De
plo
y
m
ent Application
Based on Int
e
rval 2-T
uple
Lingui
stic (Zh
en Li)
6143
[12]
W
X
Li,
X P
an,
F
Luo. Res
ear
ch on
HOQ of QF
D and F
u
zz
y R
egr
essio
n
T
heor
y
and Its A
pplic
atio
n o
n
Certai
n T
y
p
e
Militar
y Proj
ect Devel
opme
n
t.
Ordnanc
e Indu
stry Automati
o
n
. 2011; 3
0
(4): 14-1
7
.
[13]
YJ Lai, ES
S A
Ho, SI C
han
g
.
Identif
yin
g
cu
stomer
pref
ere
n
ces i
n
q
u
a
lit
y functio
n
d
epl
o
y
me
nt usi
n
g
grou
p decis
io
n
-making tec
hni
ques.
Integr
ate
d
Product a
nd
Process Dev
e
l
o
p
m
e
n
t.
1998: 1-
28.
[14]
AD Ch
e, Z
H
H
Lin, K
N
C
h
e
n
.
Ca
pturin
g
W
e
ight
of Voi
c
e of th
e
C
u
s
t
omer Usi
ng A
r
tificial
Neur
a
l
Net
w
ork i
n
QFD.
Journa
l of Xi
’
an Ji
ao to
ng
Univers
i
ty
. 199
9; (5): 75-78.
[15] LK Cha
n
, HP A Ng, ML W
u
.
Ratin
g
the imp
o
rt
ance of cust
omer ne
eds in
qua
lit
y
fu
nctio
n
depl
o
y
ment
b
y
fuzz
y and entrop
y
m
e
tho
d
s.
Internatio
n
a
l Jour
na
l of Producti
on R
e
search
. 1
999;
37(1
1
): 249
9-
251
8.
[16]
Z
J
Kong, YJ Hao. Determ
in
e the Importa
nce of Custo
m
er
Dema
nd i
n
QF
D using
Importance -
Proba
bil
i
t
y
C
o
mpreh
ensiv
e Coeffici
ent Method.
Co
mputer
Integrated
Ma
nufacturi
ng Sy
stems
. 20
01
;
(2): 65-67.
[17] X So
ng, W
Gu
o, JQ Liu. Met
hod for Map
p
in
g from Customer Deman
d
to T
e
chnical Ch
ar
acteristics
i
n
QFD.
Journal o
f
T
i
anjin U
n
iver
sity
. 2010; 43(
2): 174-1
80.
[18]
QG W
ang, S
Z
hao, Z
HH Li
u.
Equipm
ent Appl
icatio
n De
mand Ma
ppi
n
g
Method Bas
ed on QF
D.
Journ
a
l of Aca
d
e
m
y of Armor
ed F
o
rce Eng
i
n
eeri
n
g
. 20
10; 2
4
(1): 20-2
4
.
[19]
YP Gong, Z
H
G Z
hao. Ap
pl
ying t
he F
u
zz
y
AHP to
D
e
ter
m
ine th
e Imp
o
r
tance W
e
i
ghts
of Custom
er
Dema
nd in QFD.
Value En
gi
n
eeri
n
g
. 20
06; (7): 81-83.
[20]
YH Cao, J
X
Yo
u. A novel
ba
la
nced sc
orecar
d desi
gn
base
d
on fuzz
y a
n
a
l
ytic n
e
t
w
ork pr
ocess a
nd it
s
app
licati
on.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electric
al
Engin
eeri
n
g
. 2
014; 12(
4): 291
4-29
23.
[21]
F
Herrera, L Martinez. A 2-tu
ple fuzz
y li
ng
ui
st
ic represe
n
ta
tion mod
e
l for
computi
ng
w
i
t
h
w
o
r
d
s.
IEEE
Tra
n
s
a
c
ti
on
s on
Fu
z
z
y System
s
. 20
00; (8): 746-
752.
[22]
W
P
W
ang.
T
o
w
a
rd d
e
vel
opi
n
g
agi
lit
y
eval
ua
tion
of mass cu
stomizatio
n s
y
st
ems using
2
-tupl
e lin
guisti
c
computi
ng.
Expert Systems
w
i
th Applicati
o
ns
. 2009; (3
6): 343
9-34
47.
[23]
GW
W
e
i. A method for multi
p
le attrib
ute
gr
oup d
e
cisi
on
makin
g
base
d
on the ET
-WG and ET
-OW
G
oper
ators
w
i
th
2-tupl
e lin
gu
isti
c informatio
n
.
Expert Systems w
i
th Applicati
ons
. 201
0; (37)
: 7895-7
9
0
0
.
[24]
KH Ch
ang, T
C
W
en. A nov
el
efficient a
ppr
o
a
ch
for DF
ME
A combi
n
in
g 2-
tuple
an
d the
OW
A operator.
Expert Systems w
i
th Applicati
ons
. 201
0; (37)
: 2362-2
3
7
0
.
[25]
J Lin, JB Lan, YH Lin. A
Method of Multi-at
tribute Group
De
cisi
on-m
a
ki
ng Base
d on the Aggr
egati
o
n
Operators for Interval T
w
o-tu
ple Linguistic Information.
Jili
n Nor
m
al U
n
iv
ersity Journ
a
l
. 200
9; (1): 5-9.
[26]
CT
Chen, W
S
T
a
i.
Measurin
g the
inte
llectu
a
l ca
pita
l p
e
rfo
r
ma
nce bas
ed
on 2-tup
l
e
fu
zz
y
lin
guist
i
c
infor
m
ati
o
n
. Procee
din
g
s of the 10th a
n
n
u
a
l meeti
ng of Asia pac
ific
regio
n
of decisi
on scie
n
ce
s
institute. T
a
i
w
a
n
. 2005: 2
0
.
[27]
HM Z
han
g. Severa
l F
u
zz
y
Multi-attrib
ute
De
cisi
ons M
e
thods
and Its
Applic
atio
n. PhD T
hesis.
Shan
gh
ai: Sch
ool of Man
a
g
e
m
ent, Shan
g H
a
i Univ
ersit
y
. 2
013.
[28]
Z SH Xu, QL
Da. A Possib
ilit
y-bas
ed Met
hod
for Pri
o
riti
es of Interval
Judgm
ent Mat
r
ix.
Ch
in
ese
Journ
a
l of Man
age
ment Scie
n
c
e
. 2003; 1
1
(1)
:
63-65.
[29]
JH W
a
n
g
, JY
Hao. A
n
e
w
v
e
rsion
of
2-tupl
e
fuzz
y l
i
n
guisti
c
repr
esent
atio
n mo
del
for c
o
mputin
g
w
i
t
h
w
o
rds.
IEEE Transactions on Fu
z
z
y
System
s
. 2006; (14): 43
5-44
5.
Evaluation Warning : The document was created with Spire.PDF for Python.