TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.6, Jun
e
201
4, pp. 4427 ~ 4
4
3
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i6.547
8
4427
Re
cei
v
ed
De
cem
ber 2
2
, 2013; Re
vi
sed
Febr
uary 15,
2014; Accept
ed Feb
r
ua
ry
27, 2014
Motion Compensation Technique Based on Fractional
Fourier Transform
Tan Ge
w
e
i
*
, Pan Guang
w
u, Lin
w
e
i
Schoo
l of infor
m
ation sci
ence
and en
gi
neer
i
ng, Hua
q
i
ao U
n
iversit
y
, Xiam
en, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: tange
w
e
i
7
0
@
16
3.com
A
b
st
r
a
ct
F
r
actiona
l F
o
u
r
ier transfor
m
(
F
rF
T
)
is a kind of
gener
ali
z
ed F
ouri
e
r transform, w
h
ich
process
e
s
sign
als i
n
the
unifi
ed ti
me-fr
equ
ency
do
ma
in a
nd th
e li
n
ear freq
ue
ncy
mo
du
latio
n
si
gna
l can
be
w
e
ll
focused
after F
r
F
T
.
Motion err
o
r is
an
i
m
port
ant factor
affecting th
e SAR r
e
soluti
on, p
o
inti
ng to t
he
prob
l
e
m
that the effect
of error
eli
m
i
natio
n is
not
obvi
ous i
n
pr
o
c
essin
g
n
on-st
ation
a
ry
moti
o
n
error
usi
ng
the
traditio
nal
F
F
T
base
d
moti
o
n
co
mp
ens
atio
n co
mb
in
ed S
A
R i
m
a
g
in
g a
l
gorith
m
, F
r
F
T
base
d
tw
o-ste
p
moti
on c
o
mpe
n
satio
n
co
mbi
ned w
a
ve
nu
mber d
o
m
ai
n a
l
gorith
m
and
s
ub-a
perture
w
i
de b
e
a
m
moti
on
compe
n
satio
n
alg
o
rith
m are
put
forw
ard
in
this
p
a
p
e
r, w
h
i
c
h ar
e
expect
ed to
e
l
i
m
i
nate
the
infl
uenc
e
of
moti
on err
o
r more effectively,
so as to obtain hi
gh
qu
al
ity SAR ima
ges.
T
he simu
lati
o
n
results an
d th
e
imagi
ng r
e
sult
s of real SAR
data sh
ow
that the pro
pose
d
alg
o
rith
ms
i
nde
ed e
l
i
m
i
nat
e the infl
ue
nc
e o
f
moti
on
error e
ffectively. (T
he real SAR
dat
a provi
d
e
d
by
Institute of Electronics, C
h
in
ese Aca
d
e
m
y
o
f
Scienc
es).
Ke
y
w
ords
:
fractional Fourier transform
, motion error, tw
o-step motion co
mp
ens
ation, w
i
de-b
e
a
m
motio
n
co
mp
en
sa
ti
on
, h
i
gh
re
so
lu
ti
on
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The sy
stem theory an
d rel
a
ted tech
nolo
g
y for
SAR are establi
s
h
e
d
on kee
p
ing t
he flight
path of ra
dar platform in a
straig
ht line,
but t
he atmo
sph
e
ri
c turbul
ence or
other natural fa
cto
r
s
often ma
ke t
he aircraft de
viated from t
he nomi
nal
track an
d ge
ne
rating m
o
tion
error
of ante
nna
pha
se
ce
nter, whi
c
h
will
cause the
am
plitude m
odul
ation a
nd p
h
a
se
mod
u
lati
on of
rad
a
r e
c
ho
sign
als, resul
t
in the imag
e blurring
an
d geom
et
ric
distortio
n
s. In
orde
r to obt
ain high
qual
ity
SAR image
s, the motion error mu
st be
compen
sate
d [1-3].
The e
a
rli
e
st
motion
com
p
ensation
sch
e
me o
n
ly con
s
ide
r
ed
spa
c
e-inva
riant m
o
tion e
r
ror
[3], but with the requi
re fo
r hig
h
re
sol
u
tion, ra
nge
-va
r
iant motio
n
error m
u
st
b
e
co
nsi
dered,
so
two-step mot
i
on com
pen
sation techni
q
ues combi
n
e
d
imaging al
gorithm is p
u
t forward to
comp
en
sate
su
ch
errors.
With the
dev
elopme
n
t of l
o
w f
r
equ
en
cy ra
dar, th
e ef
fect of
azim
u
t
h-
variant m
o
tio
n
e
rro
r to
the
dege
neration
of SAR im
agi
ng q
uality is
more
an
d m
o
re
sig
n
ificant
[4],
whi
c
h presen
ts a new p
r
ob
lem for the m
o
tion com
pen
sation te
chni
que.
Fra
c
tional F
o
urie
r tran
sform (FrF
T) is
propo
s
ed by V.Namia
s
in 1
9
80 [5], which i
s
a ne
w
time-freq
uen
cy analysis t
ool. Com
pared to the F
ourie
r tra
n
sf
orm, FrF
T
h
a
s in
com
parable
sup
e
rio
r
ity in
pro
c
e
s
sing
non-station
a
ry sign
al
s
an
d chirp
si
gn
als.
Chirp
si
gnal
can
be
well
foc
u
s
ed
after frac
tional Fourier trans
f
orm with
th
e spe
c
ific rotati
on
an
gle,
wh
ich
p
r
ovide
s
a
possibility to achi
eve high
resolution a
n
d
high a
c
cu
ra
cy in SAR imaging. Esp
e
ci
ally when
sig
nal
and inte
rfere
n
ce
sou
r
ce a
r
e coupl
ed to
each
othe
r, good
sep
a
ration effect in fraction
al dom
ain
can b
e
obtain
ed [6-8].
There ha
s b
e
en literatu
r
e
s
putting forwa
r
d SAR imagi
ng alg
o
rithm
combi
n
ing
wit
h
FrFT.
Literatu
re [9]
and [1
0] p
r
op
ose
d
a
n
im
proving
CS ima
g
ing
algo
rith
m ba
sed
o
n
FrFT.
Literat
u
re
[11] and [12] also p
r
op
ose
d
a com
b
inati
on of
FrFT a
nd RD imagi
ng algo
rithm.
These re
sea
r
ch
results
sho
w
that FrFT can
contri
bute to
the improvem
ent of SAR re
solutio
n
.
In orde
r to e
liminate the i
n
fluen
ce of
mo
tion e
rro
r
more
effectively and imp
r
ove the
resolution, in
the pap
er, F
r
FT i
s
combi
ned
with the
two-step m
o
tion comp
en
sa
tion tech
nolo
g
y
and SAR ima
g
ing algo
rith
m, through ut
ilizing the
su
perio
rity of FrFT in pro
c
e
s
sing
chirp sig
nal
and no
n-stationary si
gnal,
so a
s
to obtai
n high qu
ality SAR images.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4427 – 4
437
4428
2.
Franc
t
ional Fourier Tran
sform
The fra
c
tional
Fourie
r tran
sform and its i
n
verse tran
sf
orm for
signal
x
t
is defined a
s
:
,
pp
p
Xu
F
x
x
t
K
t
u
d
t
(1)
,
pp
p
x
tF
X
X
u
K
t
u
d
u
(2)
Whe
r
e,
22
1c
o
t
exp
c
ot
2
c
s
c
2
(,
)
(
)
p
j
jt
u
u
t
n
Kt
u
tu
()
2
(
)
2
n
tu
n
(3)
And
2
p
,
whi
c
h i
s
the order of
FrFT. whe
n
1
p
,
FrFT i
s
the Fouri
e
r tra
n
sf
orm.
The fra
c
tional
Fourie
r tran
sform for chirp
signal i
s
as f
o
llow:
22
2
co
t
2
co
t
2
cs
c
,
ju
j
k
t
j
t
j
u
t
pp
p
Xu
F
x
x
t
K
t
u
d
t
A
e
e
e
d
t
(4)
Whe
n
,
cot
2
k
,
2
2
opt
jk
t
p
F
ek
u
(5)
2
cot
2
op
t
pa
r
c
k
(6)
Whe
r
e
k
is the
coeffici
ent of
transfo
rm,
op
t
p
is the optim
al order
of Fr
FT. Formul
a
(5) shows,
th
e
optimal order
FrFT for
chirp
signal i
s
a impulse sig
nal.
FrFT ha
s the
followin
g
time-shift and freq
uen
cy-shift property,
2
sin
c
o
s
2
s
in
[
(
)
]
(
)
e
[
(
)](
cos
)
jj
u
pp
Fs
t
u
Fs
t
u
(7)
2
2
s
i
n
co
s
2
co
s
[
(
)
]
(
)
e
[
(
)](
sin
)
jv
t
j
v
j
u
v
pp
Fs
t
e
u
F
s
t
u
v
(8)
Acco
rdi
ng to the frequ
en
cy-shift prop
erty, there is,
2
2
[e
](
)
s
i
n
op
t
jk
t
v
t
p
Fu
u
v
(9)
Whe
r
e ign
o
ri
ng the co
efficient, if the chirp sig
nal
is a
discrete
seq
u
ence, then the optimal ord
e
r
is:
2
22
cot
/
opt
s
k
pa
r
c
f
N
(10)
In which,
s
f
as the sam
p
ling f
r
equ
en
cy,
N
as the seq
uen
ce
length.
Ju
st u
s
ing
th
e optimal
-o
rd
er fractio
nal
Fouri
e
r tran
sf
orm, the
chirp si
gnal
will
be
well
focu
sed, whi
c
h no ne
ed
s additional m
a
tchin
g
co
m
p
ressio
n, thereby im
provin
g the processing
effic
i
enc
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Motion Com
p
ensation Te
chniqu
e Base
d
on Fr
a
c
tional
Fourie
r Tran
sform
(Tan G
e
wei
)
4429
3.
Motion Error
Mode and S
AR Ech
o
Signals
w
i
th Mo
tion Errors
The motion e
rro
r refe
rs to
the difference of
the distance from o
n
e
target to real track
and the
dista
n
ce from the
target to the
nominal t
r
a
c
k. By taking
the target P i
n
Figu
re 1, f
o
r
example, the
deviation fro
m
the nomin
al flight path
is
()
,
(
)
,
(
)
x
ty
t
z
t
, the real distan
ce i
s
rt
and the nomi
nal dista
n
ce is
Rt
.
The s
l
ant range with motion error is
,
22
2
00
0
()
()
()
(
)
rt
x
t
v
t
x
y
t
y
z
t
z
(11)
Whe
r
e
22
00
0
ry
z
,
00
si
n
yr
,
00
cos
zr
, thus
,
Figure 1. Geo
m
etry of SAR System unde
r Side Mode
22
2
00
0
(
)
()
()
s
i
n
(
)
c
o
s
rt
x
t
v
t
x
y
t
r
z
t
r
2
0
0
0
()
()
s
i
n
(
)
c
o
s
2
xt
v
t
x
ry
t
z
t
r
0
av
Rt
r
t
r
t
(12)
Whe
r
e
2
2
00
Rt
r
v
t
x
, which
is the slant r
ange without motion
erro
r.
0
0
()
()
s
i
n
(
)
c
o
s
,
,
ref
r
e
f
r
v
rt
y
t
z
t
r
t
r
r
t
r
(13)
Whi
c
h i
s
mot
i
on erro
r in range
dire
ctio
n and
can
be
divided a
s
range
-inva
r
ian
t
erro
r
ref
r
and
rang
e-va
riant
erro
r
rv
r
. The azimuth error i
s
:
2
0
0
00
,
2
av
x
t
vt
x
x
t
rt
x
rr
(14)
The influe
nce
of motion e
r
ror to
differe
nt point
targ
e
t
in azimuth
dire
ction a
s
shown in
Figure 2, whe
n
the azimuth
erro
r is
x
, the chang
e of slan
t range is:
2
0
0
()
2
P
x
rP
S
P
S
r
(15)
The ra
nge
ch
ange of
P
1
is
:
10
0
22
2
2
11
0
0
(2
)
()
2
L
pL
L
x
xx
rP
S
P
S
r
x
x
r
x
r
(16)
00
0
(,
,
)
Px
y
z
Y
X
Z
0
r
()
rt
H
(
(
)
,(
)
,(
)
)
S
x
t
v
t
y
t
z
t
(,
0
,
0
)
vt
()
Rt
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4427 – 4
437
4430
Whe
r
e
L
x
is h
a
lf of the synth
e
tic ap
ertu
re
length,
whe
n
a
z
imuth
b
eam i
s
wi
de,
the a
z
imuth
spa
c
e
-
vari
ant
prope
rtie
s of motion erro
r is obviou
s
.
Figure 2. Motion Erro
r for
Different Point Targ
et in Azimuth
Suppo
se th
at SAR tran
sm
it the chi
r
p
s
to an o
b
serv
ed sce
ne, th
eir e
c
h
o
e
s
af
ter the
demod
ulation
are:
2
0
00
0
2/
2
4
,
;
,
e
xp
ex
p
ps
tt
rc
r
r
s
d
t
r
x
r
r
ect
j
k
r
ect
j
Tc
T
(17
)
Whe
r
e
is fast time in the
slant ra
nge d
i
rectio
n,
t
is sl
ow time alon
g the rada
r fligh
t
path,
c
and
are t
he sp
eed of li
ght and the radar
wavele
n
g
th re
spe
c
tively, and
k
is
the c
h
irp rate.
()
r
ect
is the re
ctan
gle functio
n
, in whi
c
h
p
T
and
s
T
are the pul
se
duratio
n and
synthetic a
p
e
r
ture
time.
rt
is the instant ran
ge from the ra
da
r to a
point target in the
observed scene,
whi
c
h
inclu
d
e
s
motion error.
2
2
00
0
0
()
;
,
,
re
f
r
e
f
r
v
a
v
rt
r
v
t
x
r
t
r
r
t
r
r
t
x
(18)
Ignore
the
azim
uth
motion
e
r
ror,
the Fou
r
i
e
r tran
sfo
r
m
in the ran
g
e
dire
ction first is
perfo
rmed by
the stationary phase p
r
in
ciple, the resul
t
is:
2
00
01
0
0
4,
4
,;
,
e
x
p
e
x
p
e
x
p
e
re
f
r
e
f
rr
r
rr
rs
rt
r
ft
t
f
r
s
D
t
f
r
C
x
r
r
ec
t
r
ect
j
j
f
j
f
BT
k
c
c
0
0
4,
4
xp
exp
exp
;
re
f
r
e
f
rv
rt
r
r
jj
j
t
r
(19)
Ran
ge-i
n
vari
ant motion
e
rro
rs cau
s
e t
he e
c
h
o
e
n
velope
delay
errors
(third
i
t
em) a
n
d
azimuth
pha
se e
rro
rs (fifth item), whi
c
h
can b
e
compen
sate
d
along
with range
com
p
re
ss.
Ran
ge-va
rian
t motion e
rro
rs
(sixth item
) is
rel
a
ted t
o
sla
n
t ra
nge
. In real SA
R data
,
all poi
nt
target a
r
e
sp
read
out in range
dire
ctio
n and in
az
i
m
uth directio
n, so
comp
e
n
satio
n
to su
ch
errors mu
st be implem
en
ted after ra
n
ge co
mpression and th
e
rang
e mig
r
ati
on correctio
n
is
compl
e
ted.
4.
T
w
o
-
ste
p
Mo
tion
Compen
sation
Comb
ined Wav
e
number
Doma
in Algorithm Ba
sed
on
FrFT
Stolt interpol
ation is a
ke
y step in tra
d
i
tional two
-
st
ep motion
co
mpen
sation
combine
d
waven
u
mbe
r
domain alg
o
r
ithm, whi
c
h
not only incr
eases the a
m
ount of cal
c
ulatio
n, but also
bring
s
ad
ditio
nal error. F
r
a
c
tional Fo
uri
e
r tran
sform
can repl
ace the in
terpol
atio
n operation a
n
d
can tra
n
sfo
r
m
signal into ra
nge-Do
pple
r
domain at
the
same time, thus imp
r
ovin
g the cal
c
ulati
on
efficien
cy and
imaging reso
lution.
x
P
1
P
L
x
X
0
S
S
0
r
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Motion Com
p
ensation Te
chniqu
e Base
d
on Fr
a
c
tional
Fourie
r Tran
sform
(Tan G
e
wei
)
4431
Figure 3 i
s
pro
c
e
s
sing
flow of th
e two
-
ste
p
motion
com
pen
sation
combine
d
waven
u
mbe
r
domain al
gori
t
hm base
d
on
FrFT.
Figure 3. Pro
c
e
ssi
ng Flo
w
for the Two
-
step Motion Co
mpen
sation
Combi
ned
Wavenumb
e
r
Domai
n
Algorithm Based o
n
FrFT
First the
ra
w
data is t
r
an
sf
orme
d into
ra
nge freque
ncy domain by
Fouri
e
r tran
sform in
the rang
e direction (ra
nge
FT), then multiplying
1
moc
o
H
and
r
H
to complete
range fo
cu
sin
g
and
first-o
r
de
r mo
tion comp
en
sation.
2
1
4,
ex
p
e
x
p
re
f
r
e
f
r
mo
c
o
r
r
c
r
rt
r
f
HH
j
f
f
cK
(
2
0
)
Next pe
rformi
ng F
ouri
e
r transfo
rm i
n
th
e a
z
imut
h
direction,
sig
nal
is inverte
d
i
n
to two
-
dimen
s
ion
a
l frequ
en
cy do
main, the re
sult is:
02
0
0
(,
;
)
e
x
p
(
,
;
)
e
x
p
;
a
r
ar
a
r
r
v
a
rd
f
f
SD
f
f
r
C
r
ect
j
f
f
r
r
e
ct
j
f
r
BB
(21
)
Whe
r
e
rv
is pha
se erro
r ca
used by the ran
ge-va
riant mo
tion error.
2
2
0
0
4
(,
;
)
1
2
a
r
ar
c
rf
f
ff
r
fv
(22)
Whi
c
h can be
divided into two pa
rts a
c
cordin
g the ref
e
ren
c
e
ran
g
e
,
00
1
0
(
,
;
)
(
,
;
)
(
,
;
)
ar
ar
m
a
r
ff
r
f
f
r
f
f
r
(23)
2
2
0
4
(
,
;
)
1
2
ma
r
ar
m
c
rf
f
ff
r
fv
(24)
2
2
10
4
(,
;
)
1
2
a
r
ar
c
f
f
r
ff
r
fv
(25)
Whe
r
e
0
,
m
rr
r
/2
,
/
2
,
rr
rw
w
m
r
is sla
n
t range of the
swath middle,
r
w
is the swath wide.
1
moc
o
r
HH
0
(,
;
)
Fr
a
H
ff
r
20
(;
)
mo
co
Ht
r
0
(,
;
)
rc
m
c
r
a
H
ff
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4427 – 4
437
4432
22
23
0
32
5
41
(
)
1
(
)
(,
;
)
(
)
()
2
(
)
2
()
ma
a
r
ar
m
c
a
r
r
a
ca
c
a
rf
f
f
ff
r
f
f
f
f
cf
f
f
f
f
(26)
The first item
co
rre
sp
ond
s to the a
z
imu
t
h com
p
re
ssi
on, se
co
nd to
ran
ge
cell mi
gration,
third to
secon
d
range
com
p
re
ssi
on, the
fourth i
s
high
-orde
r
co
uplin
g item
of ra
n
ge a
nd
azim
u
t
h
.
So choo
sin
g
the followi
ng compen
satio
n
function,
2
0
4
(,
;)
e
x
p
(
,
;
)
1
2
ma
Fa
r
m
a
r
m
rf
H
f
fr
j
f
fr
v
(27)
Multiplying (21)
with
F
H
can
compl
e
ting
ra
nge
cell mig
r
ation corre
c
tion, se
co
nd
range
comp
re
ssion
and pha
se
co
mpen
sation f
o
r high
-o
rde
r
cou
p
ling item
of range and
azimuth for the
referen
c
e ra
n
ge. The sig
n
al after this
s
t
ep is
:
02
2
0
(,
;
)
e
x
p
(
,
;
)
e
x
p
a
r
ra
r
ar
r
v
rd
f
f
S
D
f
f
r
C
r
ect
r
ect
j
f
f
r
j
BB
(28)
22
23
0
20
32
5
41
(
)
1
(
)
4
(,
;
)
(
)
()
2
(
)
2
(
)
aa
r
ar
a
r
r
ac
a
c
a
rf
f
f
r
ff
r
f
f
f
cf
f
f
f
f
(29)
Then, m
u
ltipl
y
ing
rc
mc
H
, and
pe
rforming
fra
c
tional F
o
u
r
ier tran
sform
to i
n
vert
signal
i
n
to
rang
e-Do
pple
r
domai
n,
0
4
,;
e
x
p
()
r
rc
m
c
r
a
a
f
r
Hf
f
r
j
cf
(30)
10
0
0
(,
;
)
(,
;
)
,
;
(
,
)
a
r
ar
r
c
m
c
r
a
pr
r
Sd
f
r
SD
f
f
r
H
f
f
r
K
f
d
f
22
32
0
ex
p
(
,
;
)
e
xp
co
t
2
cs
c
a
r
ar
r
r
r
dr
f
f
C
r
ect
r
ect
j
f
f
r
j
f
f
d
f
BB
()
00
4
42
ex
p
(
)
e
xp
s
i
n
a
ar
v
d
f
rr
Cr
e
c
t
j
f
j
c
Bc
(31)
Whe
r
e
2
3
1(
)
2
cot
()
a
ca
f
r
arc
cf
f
, the optimal ord
e
r o
f
FrFT is
2
op
t
p
.
Next, perfo
rming a
z
imut
h Fou
r
ier t
r
ansfo
rm into
two-di
men
s
ional time
-d
omain,
impleme
n
ting
second
-o
rd
er motion
compen
satio
n
, the corre
s
p
ondin
g
pha
se com
pen
sat
i
on
function i
s
:
20
0
4
,e
x
p
,
,
moc
o
mo
r
e
f
r
e
f
Ht
r
j
t
r
r
t
r
(32)
Whe
r
e
mo
is pha
se erro
r gen
e
r
ated by moti
on error of dif
f
erent ra
nge.
Finally, in ran
ge-Dop
p
ler d
o
main, co
mpl
e
ting azim
uth
comp
re
ssi
on
by using FrF
T
and
get focu
sed i
m
age. The
re
sult is:
02
0
(
,
;)
(
,
;)
(
,
)
ap
a
a
s
dt
r
S
d
f
r
K
f
t
d
f
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Motion Com
p
ensation Te
chniqu
e Base
d
on Fr
a
c
tional
Fourie
r Tran
sform
(Tan G
e
wei
)
4433
22
00
5
24
si
n
(
)
e
x
p
(
)
e
x
p
c
o
t
2
c
s
c
a
aa
a
a
d
rf
r
Cc
r
e
c
t
j
f
j
f
t
f
t
d
f
cB
()
0
6
2
sin
(
)
s
in
(
)
sin
r
t
Cc
c
c
(33)
Whe
r
e,
22
1
()
1
1
22
2
aa
a
ff
f
vv
and
1
0
2
cot
2
r
v
=-
, the optimal orde
r of FrFT i
s
2
op
t
p
.
5.
Compen
sati
on to the
Re
sidual Motio
n
Error in the Azimu
t
h Di
rection
For l
o
w freq
uen
cy ra
da
r, the
spa
c
e
-
variant
prope
rty of motion
error in th
e
azim
uth
dire
ction
can
not igno
re, h
o
w to eli
m
ina
t
e the re
sid
u
a
l azi
m
uth m
o
tion e
rro
r i
s
cru
c
ial
to re
al
ize
high
re
solutio
n
. The
sub
-
a
pertu
re
motio
n
comp
en
sati
on al
gorith
m
for
wide
-be
a
m SAR
provides
a way to re
so
lve such pro
b
l
em.
Whe
n
a
z
imut
h bea
m is
wi
de, it is n
a
tural to divide th
e ape
rture int
o
seve
ral
so t
hat the
motion errors in the same
s
ub-ape
rture
are con
s
id
ered equal. Fi
g
u
re 4 sh
ows
the relation of
azimuth p
o
siti
on and a
z
imu
t
h motion error,
s
L
is the synthetic ape
rture
,
i
L
is su
b-ape
rture,
i
is
squi
nt angl
e
whi
c
h i
s
on
e
by one
co
rre
spondi
ng to a
z
imuth po
sitio
n
, so th
e moti
on e
rro
r of ev
ery
sub
-
ap
ertu
re
is also one by
one co
rrespo
nding to the squint angl
e.
Figure 4. Rel
a
tion of Azim
uth Motion Error a
nd Squin
t
Angle
The azi
m
uth resid
ual motio
n
error is:
0
00
()
()
()
co
s
(
)
av
i
rt
rr
t
r
t
r
t
(34)
And the co
rre
spo
ndin
g
pha
se compe
n
sa
tion function i
s
:
4
exp
av
av
m
o
c
o
r
Hj
0
1c
o
s
4
exp
cos
i
i
r
j
4
1c
o
s
1c
o
s
4
exp
e
xp
cos
c
os
re
f
ii
rv
ii
r
r
jj
(35)
The p
r
o
c
e
s
sing for the
sub
-
ap
ertu
re
wide
-be
a
m
motion co
mpen
sation
algorith
m
combi
n
ing
wi
th two-step
motion comp
ensation is
shown as Fi
g
u
re 5, after t
he se
co
nd-order
motion comp
ensation,
in range
-Doppl
er domain,
dividing the
data
into suita
b
le
size blo
c
ks, t
hen
perfo
rming m
o
tion com
pen
sation for e
a
ch block data
with 35 [13].
Whe
n
4
||
1
rv
r
, the range
-vari
ant motion e
rro
r
c
an
be ign
o
red, the proce
ssi
ng for
the sub
-
ap
ert
u
re wi
de be
a
m
motion co
mpen
sation a
l
gorithm i
s
sh
own a
s
Figu
re 6.
s
L
i
0
rt
rt
i
L
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4427 – 4
437
4434
Figure 5. Pro
c
e
ssi
ng of Sub-ap
ertu
re Wi
de Beam Mot
i
on Com
pen
sation Algorith
m
Combi
n
ing
with Two-s
t
ep Motion Compens
a
tion
Figure 6. Pro
c
e
ssi
ng for S
ub-a
p
e
r
ture
Wide Bea
m
Motion Co
mp
ensation Algo
rithm Com
b
in
ig
with Two
-
ste
p
Motion Co
mpen
sation
while t
he
Ran
ge-va
riant Mo
tion Erro
r is Ignored
6.
Simulations and S
AR
Imaging Re
sults
Bas
e
d
on Real
Data for
th
e Propos
ed
Algorithm
6.1. Simulation Re
sults
to Point Targ
et
w
i
th
Moti
on Error in the Ra
nge
Direction
for the
Algorithm
Simulation re
sults for the
prop
osed alg
o
rithm
are as follow, the simulation pa
rameters
as sho
w
n in
Table 1.
Table 1. Simulation
s Para
meters
Parameter
value
Carrier
frequ
en
cy
1.5GHz
Band
w
i
dth for t
r
ansmit signal
150MHz
Pulse duration
of transmit signal
1.5
μ
s
The numb
e
r of
r
ange sampling points
1024
For
w
ard velocity
180m/s
Length of s
y
nth
e
tic aperture
320m
The numb
e
r of
azimuth samplin
g points
512
Range-invariant
motion erro
r
t
2
1
rm
o
c
o
HH
0
(,
,
)
Fa
r
Hf
f
r
20
(,
)
moco
Hx
r
0
(,
)
am
oco
Hi
r
0
(,
,
)
rcmc
a
r
H
ff
r
1
rm
o
c
o
HH
0
(,
,
)
Fa
r
H
ff
r
(,
)
amoc
o
m
H
ir
0
(,
,
)
rc
m
c
a
r
Hf
f
r
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Motion Com
p
ensation Te
chniqu
e Base
d
on Fr
a
c
tional
Fourie
r Tran
sform
(Tan G
e
wei
)
4435
The
ran
g
e
error i
s
non
-st
a
tionary
ra
ndo
m motion
e
r
ror
wh
ose me
an valu
e i
s
expone
ntial
function, so range
-vari
ant motion erro
r is:
00
0
,,
,
rv
r
e
f
r
ef
rt
r
r
t
r
r
t
r
Simulation
s to point ta
rge
t
with motion
error
usi
ng
FFT ba
se
d the two
-
step
motion
comp
en
satio
n
combin
ed
waven
u
mbe
r
domain
alg
o
ri
thm an
d F
r
F
T
ba
se
d the
two-step
moti
on
comp
en
satio
n
com
b
ine
d
waven
u
mbe
r
dom
ain al
gorithm
are
sho
w
n i
n
Figure 7, (a
) is
comp
ari
s
o
n
of azim
uth i
m
pulse resp
onse with
no
error
and
af
ter motion
co
mpen
sation
using
traditional al
g
o
rithm; (b
) is compa
r
ison
of az
imuth i
m
pulse re
sp
onse with no
erro
r and af
te
r
motion comp
ensation u
s
i
ng the p
r
op
ose
d
alg
o
ri
th
m; (c) is
co
mpari
s
o
n
of
rang
e imp
u
lse
respon
se
after motion
co
m
pen
sation
by the two al
go
rithm; (d) i
s
co
mpari
s
o
n
of a
z
imuth im
pul
se
respon
se afte
r motion com
pen
sation by
the two algo
ri
thm.
(a)
(b)
(c
)
(d)
Figure 7. Co
mpari
ng of Impulse Re
sp
on
se bet
wee
n
No Erro
r and
with Error afte
r Comp
en
satio
n
Figure 7(b)
sho
w
s that the main lo
b
e
of
impulse
respon
se in
azimuth
direction i
s
narro
wer
and
the influen
ce
of quadratic
pha
se e
rro
r i
s
elimin
ated
virtually. The wide
r mainl
o
be
of Figure 7(a
)
indi
cate
s th
e influen
ce o
f
quadrat
ic p
hase erro
r st
ill exists, whi
c
h p
r
ove
s
th
e
pro
c
e
ssi
ng
effect of
non
-st
a
tionary
moti
on e
r
ror u
s
in
g FrFT i
s
ob
vious th
an
F
FT, at the
sa
me
time prove
s
that the focusin
g
effect
of ch
i
r
p
sign
al usi
ng F
r
F
T
is b
e
tter t
han FF
T. T
h
e
perfo
rman
ce
comp
ari
s
o
n
o
f
their impulse respon
se in
the azimuth i
s
sh
own in Table 2.
Table 2. Perf
orma
nce Co
mpari
s
o
n
of
Impulse Re
sp
onse in Azim
uth Dire
ction
Motion compensation algorithm
The
w
i
de of main
lobe
Integrated side lo
be
rati
o
Peak to side lobe
rati
o
No motion comp
ensation when n
o
erro
r
1.10m
-26.012 dB
-31.432dB
FFT
-t
w
o
step mo
t
i
on compensation RMA
4.864m
-24.68
1dB
-24.21
8dB
FrF
T
-t
wostep motion
compe
n
sation
RMA
1.125m
-25.58
9dB
-30.35
3dB
6.2. Imaging Res
u
lts
Comparis
on
for th
e Pr
oposed
Alg
o
rithm and
the Tr
aditi
onal
Algorithm
Figure 8(a
)
is the imaging
result of the real
SAR d
a
ta with motion
erro
rs, the blurri
ng
image
sho
w
s there a
r
e ob
vious qu
ad
rat
i
c pha
se
erro
rs. Pro
c
e
s
sin
g
re
sult for such SAR
dat
a
usin
g the trad
itional FFT ba
sed two step
motion
co
mp
ensation wavenumb
e
r d
o
m
ain algo
rith
m is
sho
w
n in Fi
g
u
re 8
(
b
)
, due
to the elimina
t
ion of most
motion erro
r, image resolut
i
on is imp
r
ovi
n
g
signifi
cantly, but in som
e
places
with more d
e
tails
(su
c
h
as p
a
rt
of the circl
e
line), the ima
ge is
not clea
r and
image re
sol
u
tion deteri
o
rat
e
s be
cau
s
e
o
f
the residu
al pha
se erro
r. The proce
s
si
ng
result
with t
he p
r
o
p
o
s
ed
FrF
T
b
a
sed
two
ste
p
m
o
tion
com
p
e
n
satio
n
wave
numbe
r
dom
ain
algorith
m
i
s
shown in
Figu
re 8
(
c),
detail
s
info
rm
atio
n
increa
se
s, th
e imag
e
re
so
lution i
s
furth
e
r
improvin
g.
-1
5
-10
-5
0
5
10
15
20
-5
0
-4
0
-3
0
-2
0
-1
0
0
no erro
r
F
F
T
-
t
w
os
t
e
pM
oC
o
-
R
M
A
-1
5
-1
0
-5
0
5
10
15
20
-5
0
-4
0
-3
0
-2
0
-1
0
0
no er
ror
F
r
F
T
-t
w
o
s
t
epM
oC
o-R
M
A
75
80
85
90
95
100
105
110
115
12
0
125
-5
0
-4
5
-4
0
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
F
F
T
-
t
w
o
s
t
epM
oC
o
-
R
M
A
F
r
F
T
-
t
w
o
s
t
epM
oC
o-
R
M
A
-4
0
-3
0
-2
0
-1
0
0
10
20
30
40
-6
0
-5
0
-4
0
-3
0
-2
0
-1
0
F
F
T
-
t
w
o
s
t
epM
oCo-
RM
A
F
r
F
T
-
t
wos
t
epM
o
C
o-
RM
A
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 6, June 20
14: 4427 – 4
437
4436
(a)
(b)
(c
)
Figure 8. Co
mpari
s
o
n
of Imaging
Re
sul
t
s before and
after Motion
Comp
en
satio
n
6.3. Simulations for the Sub-ap
erture
Wide Beam Motion Com
p
ensa
tion Al
gorithm
Figure 9(a) i
s
the imagin
g
results fo
r L-
SAR data wit
h
motion e
r
ro
r, the fuzzed
image
sho
w
s there
are
compl
e
x motion erro
r in the data;
Figure 9
(
b
)
is t
he pro
c
e
s
sin
g
re
sults by the
two-step m
o
tion comp
ensa
t
ion co
mbine
d
wave
numb
e
r d
o
main
alg
o
rithm, du
e t
o
the elimi
nat
ion
of the motion
erro
r in the range di
re
ctio
n, the fo
cu
sin
g
perfo
rma
n
ce of the imag
e is rem
a
rka
b
ly
improve
d
; Figure 9
(
c) i
s
pro
c
e
s
sin
g
results b
y
the sub-a
pertu
re wid
e
beam motion
comp
en
satio
n
algo
rithm, the re
sidu
al
motion erro
rs in azimuth d
i
rectio
n
are furthe
r elimin
ated,
so the imag
e is more cle
a
r.
the image si
ze is:
2048
4096
, res
o
lution is
:
2.4
2
.4
mm
.
(a)
(b)
(c
)
Figure 9. Identification of Flux Se
ctor a
nd Dete
rmin
a
t
ion of the A
pprop
riate Flux
Error Statu
s
in
the Block of
Modificatio
n
of Flux Error
Status
7. Conclu
sion
Motion e
rro
r i
s
a
cru
c
ial fa
ctor to limit a
i
rbo
r
ne SAR
resolution im
proving [1
4, 15]. As
mode
rn
SAR system
s
a
r
e contin
uou
sly developin
g
in
to
the directio
n of high
er
spatial re
sol
u
tion,
how t
o
ove
r
come the
mot
i
on e
rro
r
cau
s
ed
by ai
r tu
rbule
n
ce i
s
a
n
urgent
pro
b
lem to
rad
a
r
worke
r
s. The
two-step mo
tion com
pen
sation combin
ed wave
num
ber d
o
main
a
l
gorithm b
a
sed
on fractio
nal
Fouri
e
r tran
sf
orm
and
the
sub
-
ap
ertu
re
wide
be
am m
o
tion
com
pen
sation
alg
o
rit
h
m
based on F
r
FT pro
p
o
s
ed
in this pap
er can
solve va
riou
s motio
n
errors effectively, especi
a
lly
can
eliminate
the image bl
urri
ng
cau
s
ed
by non-stat
io
nary motion
errors, the re
sea
r
ch p
r
ovid
e
s
an effective solution sch
e
m
e for motion
erro
r.
Ackn
o
w
l
e
dg
ements
This
proj
ect i
s
supp
orte
d
by the natu
r
a
l
sci
en
ce fou
ndation
of Fu
jian p
r
ovince
of 2013
proje
c
t (2
013
J01
242
).
Evaluation Warning : The document was created with Spire.PDF for Python.