TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 2, Februa
ry 20
15, pp. 271 ~ 281
DOI: 10.115
9
1
/telkomni
ka.
v
13i2.703
3
271
Re
cei
v
ed
No
vem
ber 1
6
, 2014; Re
vi
sed
De
cem
ber 2
8
,
2014; Accep
t
ed Jan
uary 1
5
, 2015
A Review to AC Modeling and Transfer Function of DC-
DC Converters
Azadeh Ahm
a
di*
1
, Rahim Ildarabadi
2
Dep
a
rtment of Electrical & C
o
mputer Eng
i
n
e
e
ri
n
g
, Hakim S
abzev
ari Un
ive
r
sit
y
, Sabz
evar
, Iran
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: azade
h.ahm
adi@s
un.hs
u.a
c
.ir
1
, r.ildar @hsu.ac.ir
2
A
b
st
r
a
ct
In this paper, AC modeling and small
signal
transfer function for DC-DC converters
are
represented. T
he
fundam
entals governing the
formulas are also
review
ed.
In DC-DC converters, the
output voltage must
be k
ept constant,
regardless of
changes in
t
he input
voltage or
in the
effective load
resistance. T
r
ansfer function is
t
he necessary know
ledge to
design a pr
oper feedback
control such as
PID
control
to regulate the
output voltage as linear PI
D
and PI controllers are usually designed for DC-DC
converters using standard frequency response tec
hniques based on the small signal model of
the
converter.
Ke
y
w
ords
:
D
C
-DC Co
nvert
e
r, boost conv
erter, buck co
n
v
erter, AC mo
d
e
lin
g, transfer functio
n
Co
p
y
rig
h
t
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
DC-DC po
we
r conve
r
ters are
empl
oye
d
in
a va
riet
y of appli
c
ati
ons, i
n
cl
udin
g
po
we
r
sup
p
lie
s for person
a
l compute
r
s, of
fice eq
uipm
ent, spa
c
e
c
raft powe
r
systems, lapt
op
comp
uters, a
nd tele
comm
unication
s e
quipme
n
t,
as well a
s
dc motor
drive
s
. In a
DC-DC
conve
r
ter, th
e d
c
inp
u
t vo
ltage is conv
erted to
a d
c
output volta
ge havin
g a
magnitud
e
di
ffer
from the
inp
u
t, possibly
wi
th opp
osite
p
o
larity o
r
with
isol
ation of
the in
put an
d
output
gro
und
referen
c
e
s
. Figure 1
sho
w
s a DC-DC co
nverter a
s
a
black box. It
conve
r
ts a d
c
input voltage, v
g
(t) , to a dc o
u
tput voltage, v (t) , with a
magni
tud
e
other than th
e input voltage. In a typical DC–
DC converte
r appli
c
ation, t
he o
u
tput vol
t
age v(t)
mu
st be
kept
con
s
tant, re
ga
rdl
e
ss of
cha
n
g
e
s
in the
input
voltage v
g
(t) o
r
in
the
effecti
v
e load
resi
st
ance
R. Thi
s
is a
c
com
p
lish
ed by
buildi
n
g a
circuit that v
a
rie
s
the
con
v
erter
cont
rol
input
[i.e., the duty cy
cle
d(t)] in
su
ch
a way that t
h
e
output voltag
e v(t) is re
gul
ated to
be
e
qual to
a
de
sired
refe
ren
c
e value.T
o
d
e
sig
n
the
co
ntrol
system of a converte
r, it is nec
e
s
sary to
model the converte
r dyn
a
mic be
havio
r. In particul
a
r, it
is of intere
st
to determin
e
how va
riation
s
in the po
we
r input voltag
e v
g
(t), the load cu
rrent, a
n
d
the duty cycl
e d(t) affect the
output voltage. Unfo
rtun
ately, under
standin
g
of con
v
erter dynami
c
behavio
r is h
a
mpe
r
ed by
the nonlin
ear time-varyi
ng
nature of th
e swit
chin
g and pul
se
-wi
d
th
modulatio
n proce
s
s.
Figure 1. A DC-DC
conve
r
t
e
r beh
avior
In particular, i
t
is of intere
st to determi
n
e
how vari
atio
ns in the
power inp
u
t voltage v
g
(t),
the load
cu
rrent, and the
duty cycle
d(t
)
affect
the
o
u
tput voltage.
Unfo
rtu
natel
y, understand
ing
of co
nverte
r dynami
c
be
havior is ha
mpered
by
the n
onlin
ear time-va
r
ying
natu
r
e
of the
swit
chin
g and
pulse
-wi
d
th modulatio
n proce
s
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 271 – 281
272
These difficul
t
ies can be
o
v
erco
me thro
ugh the u
s
e
of waveform
averagi
ng a
n
d
small
signal modeli
ng techni
ques.As illustrated in
Fi
gure
2, a
cont
roller block i
s
an integral
part of any
power p
r
o
c
e
s
sing
system. It is nearly always
de
sire
d to prod
uce a well-re
gulate
d
output.
Figure 2. Req
u
ired
cont
roll
er to DC-DC
convete
r
Since switchi
ng co
nverte
rs are
nonlin
e
a
r sy
st
ems, i
t
is desi
r
able
to const
r
u
c
t small-
sign
al linea
rized mod
e
ls. T
h
is is
acco
mp
lishe
d by pert
u
rbin
g an
d lin
eari
z
ing th
e a
v
erage
d
model
about a q
u
ie
scent op
erati
ng point. Ac equivalent
circuit
s
can b
e
co
nstructe
d, in the sa
me
manne
r
used
in to
co
nst
r
u
c
t d
c
e
quival
ent ci
rcuits. T
he d
c
co
mpo
nent of
a
con
v
erter
wavefo
rm
is given by its averag
e valu
e, or the inte
gral ov
e
r
on
e
swit
ching
pe
riod, divide
d by the swit
chi
ng
perio
d. Soluti
on of
a
dc-dc
co
nverte
r to find
its dc,
o
r
stea
d
y
-state,voltag
e
s and
currents
therefo
r
e invo
lves avera
g
in
g the waveforms.
A typical DC–DC bu
ck
converte
r and
feedba
ck lo
op blo
ck di
a
g
ram i
s
illust
rated in
Figure 2 [11, 8, 2].
It is d
e
sired to de
sign this
feed
back sy
stem in su
ch a wa
y that the output
voltage i
s
a
c
curately regul
ated, an
d i
s
i
n
se
nsitive to
disturban
ce
s
in v
g
(t)
or in t
he lo
ad
cu
rre
n
t.
Additionally, the p
o
wer
sta
ge a
nd
a fee
dba
ck net
work fee
dba
ck
system
shoul
d
be
stabl
e, a
nd
cha
r
a
c
t
e
ri
st
ic
s
su
ch a
s
t
r
a
n
sie
n
t
ov
er
sh
oot
,
settling
time, and
ste
ady-state
reg
u
lation
sho
u
l
d
meet spe
c
ifications.
We a
r
e inte
rested to d
e
si
gn co
nverte
rs and th
eir
control
system
s su
ch
as Fi
gure
3. To d
e
sig
n
the system o
f
Figure 3, a
dynamic
mo
del of the switching
conve
r
te
r is
req
u
ired. What is t
h
e
effect of vari
ations in th
e
powe
r
inp
u
t voltage,
the load current
, or the duty
cycle the
ou
tput
voltage? Wh
at are the small-sign
al transfe
r fun
c
tions? To an
swer the
s
e
q
uestio
n
s, we
will
extend the steady-state
model
s to in
clud
e t
he dynamics intro
duced
by the indu
ctors
and
cap
a
cito
rs of
the conve
r
ter.
Figure 3. A simple dc-d
c re
gulator
syste
m
,includi
ng a
buck co
nvert
e
r
Modelin
g i
s
t
he
rep
r
e
s
ent
ation of
physical
phe
nom
ena
by math
ematical
me
ans. I
n
engin
eeri
ng,
it is de
sire
d to mod
e
l
the im
po
rtan
t dominant
behavio
r of
a syste
m
, while
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Revie
w
to AC Modeli
ng
and Tran
sfer
Functio
n
of DC-DC
Con
v
e
r
ters (A
za
deh
Ahm
a
di)
273
negle
c
ting
other in
co
nseq
uential p
hen
omena. Simp
lif
ied termin
al
equatio
ns
of the co
mpo
n
e
nt
element
s a
r
e
use
d
, an
d m
a
ny aspe
cts of
the system
resp
on
se ar
e
negle
c
ted
alt
ogethe
r, that
is,
they are “u
n
m
odele
d
.”
The swit
chin
g
rip
p
le
i
s
small
in a we
ll-de
sign
ed converte
r
o
p
e
r
ating
i
n
con
t
inuou
s
con
d
u
c
tion m
ode
(CCM
). Hen
c
e,
we ig
nore
the
sw
it
chin
g rip
p
le,
and m
odel
o
n
ly the und
erl
y
ing
ac va
riation
s
in the convert
e
r waveform
s. Suppose
th
at som
e
a
c
variation i
s
int
r
odu
ced i
n
to the
c
onverter duty c
y
c
l
e d (t), s
u
c
h
that:
d(t
)
= D +
D
m
cos
ω
m
t
W
h
er
e D a
nd D
m
are
co
n
s
tants,
| D
m
<<
D
|
a
n
d
th
e mo
du
la
tio
n
fr
e
q
ue
nc
y
ω
m
is
m
u
ch
smalle
r tha
n
the co
nverte
r swit
chin
g freque
ncy
ω
x
=2
π
f
x
. The res
u
lting trans
is
tor gate drive
sign
al is sho
w
n in
Figu
re
4(a
)
, and
a ty
pical
co
nvert
e
r o
u
tput volt
age
wavefo
rm v (t) i
s
sho
w
en
in Figu
re 4
(
b). The
spe
c
trum
of v(t) is ill
ustrated in Fi
gure
4. This
sp
ectru
m
cont
ains
comp
one
nts
at the switching freq
uen
cy as
well
as its ha
rm
onics and
si
deba
nd
s; these
comp
one
nts are small
in magnitud
e
if the
switchi
n
g
rippl
e is sm
all. In additio
n
, the spe
c
trum
contai
ns a lo
w-frequ
en
cy comp
one
nt at the modulati
on frequ
en
cy
ω
m
.
Figure 4. AC variation of the conve
r
ter
si
gnal
s (a
) tran
sisto
r
gate d
r
i
v
e signal,a
nd
(b) the
resulting con
v
erter outp
u
t voltage wavef
o
rm
The ma
gnitud
e
and p
h
a
s
e
of this co
mpo
nent dep
end
on the duty cycle variatio
n, as well
as th
e fre
que
ncy respon
se
of the
conv
erter. If
we neglec
t the
s
w
itc
h
ing
ripple,
then this
low-
freque
ncy
co
mpone
nt rem
a
ins [a
s illu
strated in Fi
gure 4(b
)
]. The
obje
c
tive of our a
c
mod
e
li
ng
efforts is to predict this lo
w-freque
ncy co
mpone
nt
.
Figure 5. Spectrum of the o
u
tput
voltage waveform v(t) of Figure 4
The switchi
ng
ripple
s
i
n
the in
du
ctor cu
rrent a
n
d
ca
pa
citor vo
ltage
wavefo
rms a
r
e
remove
d
by averagi
ng over
o
ne swit
ch
ing
pe
rio
d
.
Hence, the lo
w-freq
uen
cy co
mpone
n
ts
of the
indu
ctor an
d cap
a
cito
r wav
e
form
s are m
odele
d
by eq
uation
s
of the form:
〈
〉
〈
〉
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 271 – 281
274
〈
〉
〈
〉
Whe
r
e ‹x
(t)
›
Ts
den
otes th
e averag
e of x(t) over an in
terval of length T
s
[11]:
〈
〉
(2)
So we will apply the basi
c
approximat
i
on of
remov
i
ng the high-frequency switching
ripple by ave
r
aging ove
r
on
e swit
chin
g p
e
riod.
In the n
e
xt p
a
rts
we
will
d
e
rive a
c
mod
e
ling of
ba
sic DC-DC conv
erters
and
th
en by th
e
approximatio
n method m
entione
d abo
ve we will d
e
ri
ve sm
all si
gnal tra
n
sfe
r
function of
su
ch
conve
r
ters.
2.
AC Equiv
a
lent Circui
t Modeling
2.1. The Basi
c AC Mo
deling Appro
ac
h
Let us de
rive a small
-
si
gnal
ac model of t
he bu
ck-bo
o
st converte
r of Figure 6 [9, 2]
.
Figure 6. Buck-b
oo
st conv
erter exam
ple
The
analy
s
is
begin
s
, by
de
terminin
g the
voltage
and
curre
n
t waveform
s of
the i
ndu
ctor
and capa
citor. When the switch i
s
in po
sition 1,
the ci
rcuit of Figu
re
7(a) i
s
obtain
ed.
Figure 7. Buck-Bo
o
st Conv
erter
circuit: (a) switch
i
s
in
position 1, (b
) sw
itch i
s
in position 2
The indu
cto
r
voltage and
capa
citor curre
n
t are:
(3)
We
no
w m
a
ke the
sm
all-ri
pple
app
roxi
mation
by re
placi
ng
wave
forms with
th
eir l
o
w-
freque
ncy av
erag
ed value
s
〈
〉
(4)
〈
〉
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Revie
w
to AC Modeli
ng
and Tran
sfer
Functio
n
of DC-DC
Con
v
e
r
ters (A
za
deh
Ahm
adi)
275
With the
swit
ch in
po
sition
2, the ci
rcuit of
Figure 5
(
b) i
s
obtain
e
d. Its indu
cto
r
voltage
and capa
citor current a
r
e:
(5)
Use of the small-ri
pple a
p
p
roximatio
n
, to repla
c
e
i
(
t
) and
v
(
t
) with t
heir ave
r
ag
ed
values, yield
s
:
〈
〉
〈
〉
〈
〉
(6)
Averagin
g
the indu
ctor vol
t
age used Eq
uation (2
):
〈
〉
〈
〉
′
〈
〉
(7)
By insertion this eq
uation i
n
to Equation
(1) le
ad
s to:
〈
〉
〈
〉
′
〈
〉
(8)
This e
quatio
n
descri
b
e
s
ho
w the lo
w-fre
quen
cy
comp
onent
s of the
indu
ctor
cu
rre
nt vary
with time. A similar procedure lead
s to the
capa
citor dynamic equation. Average
cap
a
citor
c
u
rrent:
〈
〉
〈
〉
′
〈
〉
〈
〉
(9)
Upo
n
insertin
g this equ
atio
n into Equatio
n (1) a
nd coll
ecting terms,
we will o
b
tain
:
〈
〉
′
〈
〉
〈
〉
(10
)
This i
s
the b
a
s
ic
avera
ged
equatio
n whi
c
h de
sc
ribe
s d
c
an
d low-fre
quen
cy a
c
variation
s
in the cap
a
cit
o
r voltage.
To derive a
complete a
c
e
quivalent ci
rcuit m
odel, it is ne
ce
ssary to write an e
q
uation for
the averag
e converte
r input
current. Buck
-b
oo
st input curre
n
t wavef
o
rm is:
〈
〉
Upon averagi
ng over one switchi
ng period, we will obt
ain:
〈
〉
〈
〉
This i
s
the b
a
s
ic
avera
ged
equatio
n whi
c
h de
sc
ribe
s d
c
an
d low-fre
quen
cy a
c
variation
s
in the co
nve
r
ter in
put cu
rre
nt. These
equation
s
are n
onlin
ea
r be
cau
s
e t
hey involve the
multiplicatio
n of time-varyin
g
quantitie
s.
If the convert
e
r is d
r
iven wi
th some
stea
dy-state, or q
u
iesce
n
t, inputs:
〈
〉
Then,
after t
r
ansi
ents hav
e sub
s
ide
d
t
he in
du
ctor
current,
capa
citor voltage, and input
c
u
rrent:
〈
〉
,
〈
〉
,
〈
〉
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 271 – 281
276
Rea
c
h the q
u
i
escent value
s
I, V
, and
Ig
, given by the steady-state
analysi
s
a
s
[8, 2]:
′
′
To con
s
truct a small-sig
nal
ac m
odel at a quiesce
nt operatin
g point
(
I
,
V
), one assume
s
that the input voltage
v
g
(t)
and the duty cycle
d(
t)
a
r
e
equal to som
e
given quie
s
cent value
s
:
〈
〉
In re
spo
n
se, and afte
r any
tran
sient
s ha
ve sub
s
id
ed,
the co
nverte
r depe
nde
nt voltage
s
and current
s will be eq
ual to the co
rre
sp
ondin
g
quie
s
cent value
s
, plus
small a
c
variation
s
:
〈
〉
̂
〈
〉
〈
〉
̂
If the ac varia
t
ions are mu
ch smalle
r in
magnitud
e
than the re
spe
c
tive quiescent
values.
≪
≪
|
|
,
|
|
≪
|
|
|
̂
|
≪
|
|
̂
≪
Then
the no
nlinea
r conve
r
ter equ
ation
s
can
be
line
a
rized. F
o
r the in
du
ctor e
quation,
one obtai
ns:
̂
′
It should be n
o
ted that the compl
e
me
nt
of the duty cycle is give
n b
y
:
′
1
1
′
with
′
1
Multiply out and coll
ect terms:
̂
′
′
The de
rivative of
I
is zero,
sin
c
e
I
is by definition a d
c
(con
stant) t
e
rm. For the
purp
o
ses
of de
riving a
small
-
si
gnal
ac
model,
the
dc term
s ca
n
be co
nsi
dere
d
kno
w
n co
n
s
tant
q
uantiti
e
s
.
On the right
-h
and si
de of e
quation three
types of term
s ari
s
e:
a)
Dc
terms
: These terms
co
ntain dc q
uan
tities only.
b)
First
-
order a
c
term
s
: Each of these te
rms
contai
ns
a single a
c
quantity, usually
multiplied by
a con
s
tant
coeffici
ent su
ch a
s
a d
c
term. Th
ese term
s a
r
e lin
ear
function
s of the ac vari
atio
ns.
c)
Secon
d
-ord
er ac term
s
: Th
ese te
rm
s co
ntain the p
r
o
duct
s
of ac
q
uantities.
He
nce
they are nonli
near, be
ca
use they involve
the multiplica
t
ion of time-varying si
gnal
s.
The
se
co
nd-orde
r
ac terms
are
mu
ch smalle
r th
an the
first-o
r
de
r te
rms.
So we
will
negle
c
t se
co
nd-o
r
d
e
r term
s. Also, dc terms on ea
ch
side of equatio
n are eq
ual. After discardi
ng
se
con
d
-o
rd
er terms, and
removing d
c
term
s (which add to ze
ro
), we will h
a
ve:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Revie
w
to AC Modeli
ng
and Tran
sfer
Functio
n
of DC-DC
Con
v
e
r
ters (A
za
deh
Ahm
adi)
277
̂
′
Figure 8. Circuit equivalent
to the sma
ll-sign
al ac in
du
ctor loo
p
equ
ation
The ca
pa
citor equation
can
be lineari
z
e
d
in a similar
manne
r. So, we will h
a
ve:
′
̂
Figure 9. Circuit equivalent
to the sm
all-sign
al ac
cap
a
citor n
ode e
quation
Finally, the equation of the
average in
pu
t current is al
so line
a
ri
zed.
̂
̂
By collecting
terms, we obt
ain:
̂
̂
̂
We
again
ne
glect th
e second-order no
nlinea
r te
rms.
The
dc term
s o
n
both
si
d
e
s
of the
equatio
n are
equal. The
re
maining first-orde
r line
a
r a
c
term
s are:
̂
̂
Figure 10. Circuit equival
e
n
t
to the small-sign
al ac in
pu
t source
curre
n
t equation
This i
s
the
lineari
z
e
d
small-sign
al e
quat
ion that
descri
b
e
s
the low-fre
q
u
ency a
c
comp
one
nts
of the convert
e
r input curre
n
t.
Colle
cting three circuit results:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 271 – 281
278
Figure 11. Buck- boo
st sm
all-si
gnal a
c
e
quivalent ci
rcuit
Combi
nation
of depen
dent
sou
r
ces into
effective ideal
transfo
rme
r
, lead
s to the final model.
Figure 12. Final Small sig
nal ac e
quival
ent circuit mo
del of the buck-b
o
o
s
t conv
erter
2.2. Results for Sev
e
ral
Basic
Conv
erters
Flyback
3. Conv
erter Trans
f
er Fun
ctions
3.1. Transfer
Function
s of the
Buck
-Boost
Conv
erter
The conve
r
te
r co
ntain
s
two input
s
and
and o
ne out
put,
.Hen
ce, the
ac
output voltag
e variatio
ns
can be
expressed
as the
s
uperpo
sition
of terms ari
s
i
ng from
the t
w
o
inputs:
The co
ntrol
-
to-outp
u
t and l
i
ne-to
-outp
u
t transfe
r
fun
c
tions
can b
e
d
e
fined a
s
[5, 2], [13-14]:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Revie
w
to AC Modeli
ng
and Tran
sfer
Functio
n
of DC-DC
Con
v
e
r
ters (A
za
deh
Ahm
a
di)
279
To find
the li
n
e
-to-output t
r
ansfe
r fu
nctio
n
we
set th
e
sou
r
ces to
ze
ro
as in
Figu
re 13
(a
).
We can then
push the sou
r
ce a
nd the indu
ctor thro
u
gh the tran
sforme
rs, to ob
tain the circui
t of
Figure 13(b).
(a) Set
d
sour
c
e
s t
o
ze
ro
(b) p
u
sh indu
ctor an
d
v
source thro
ugh
trans
formers
Figure 13. Manipul
ation of
buck-b
o
o
s
t equivalent
ci
rcuit to find the
line-to
-outp
u
t transfe
r
function G
v
g
(s)
The tran
sfe
r
functio
n
is obt
ained u
s
ing t
he voltage di
vider formul
a:
′
′
′
′
′
′
′
(11
)
Whi
c
h is the f
o
llowin
g
stan
dard fo
rm:
(
1
2
)
Derivatio
n
of the control
-
t
o
-outp
u
t tran
sfer fun
c
tion
G
vd
(s
) is
c
o
mplic
a
ted. Firs
t, In
small
-
si
gnal
model, set vg
source to
zero:
Then, pu
sh al
l elements to
output sid
e
of transfo
rme
r
:
There a
r
e t
w
o
d sou
r
ce
s. On
e
way to solve th
e mod
e
l i
s
t
o
u
s
e
sup
e
rpositio
n,
expre
ssi
ng th
e output v as a sum of terms ari
s
i
ng from the two source
s. With voltage sou
r
ce
only:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 2, Februa
ry 2015 : 271 – 281
280
′
‖
′
‖
With the cu
rrent sou
r
ce al
one:
′
‖
‖
The tran
sfe
r
functio
n
is the
sum of abov
e equatio
ns:
′
‖
′
‖
′
‖
By algebrai
c
manipul
ation,
we will have:
′
′
′
This eq
uation
is of the form:
(13
)
The dc
gain i
s
:
′
′
′
The ang
ula
r
frequ
en
cy of the ze
ro is:
′
And:
′
√
,
′
Simplified usi
ng the dc
rela
tionshi
ps:
′
,
′
3.2. Transfer
Function
s of some Ba
sic CCM
Conv
erter
s
The p
r
omin
e
n
t feature
s
of
the line-to
-o
utput
and
co
ntrol-to
-outp
u
t
transfe
r
fun
c
tion
s of
the ba
sic
bu
ck, boo
st, an
d
buck-boo
st
converte
rs
are
summ
ari
z
e
d
in Tabl
e 1. In
each
case, th
e
control-to
-out
put transfe
r functio
n
is of the form
of Equation (13)
and the line-t
o
-outp
u
t tran
sfer
function i
s
of the form of Equation (12
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.