TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 66
5
8
~ 666
6
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.472
7
6658
Re
cei
v
ed O
c
t
ober 1
1
, 201
3; Revi
se
d Apr 25, 201
4; Acce
pted Jun
e
10, 2014
Study on Pattern Reconfiguration of Plasma Antenna
Excited by Surface Wave
Zhu Ans
h
i*
1
, Chen Zili
1
, Wei
Jianbin
1
, Zhen Yunhui
2
1
Mechan
ical E
ngi
neer
in
g Col
l
ege, Shi
jiaz
h
u
ang 0
5
0
003, C
h
in
a
2
Militar
y
r
egi
on
of Hebei Prov
i
n
ce, Shij
iazh
ua
ng 05
00
11, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: zhuans
hi
_me
c
@16
3
.com
A
b
st
r
a
ct
F
o
r the p
u
rpos
e of a
n
ti-ja
m
mi
ng co
mmunic
a
tions, t
he r
adi
a
t
ion p
a
ttern rec
onfig
uratio
n of
plas
m
a
anten
na excit
e
d by surface w
a
ve w
e
re stu
d
ie
d. T
he
self-consiste
nt mo
del us
ed to de
scribe the rel
a
tio
n
betw
een the p
u
mp sign
al a
n
d
radi
ation p
a
ttern is
put forw
ard by co
mbi
n
i
ng the Bolt
z
m
ann Eq
uati
on an
d
Maxw
ell Equ
a
ti
on. And the cor
r
ectness of the
mod
e
l
is va
lid
ated by us
ing
F
D
T
D
appro
a
c
h
. T
he exper
imen
t
system
t
hat
us
ed to
m
e
asure the r
a
di
ation pattern is established
to
v
a
lidate the c
o
rrectne
ss of
the s
e
lf
-
consiste
nt mo
d
e
l. T
he investi
g
ation
res
u
lts sh
ow
that the radiatio
n patte
rn a
r
e reconfi
gura
b
l
e by contro
lli
n
g
the pu
mp si
gn
al.
Ke
y
w
ords
: pla
s
ma a
n
ten
na, r
e
confi
gurati
on,
Bolt
z
m
a
nn e
q
uatio
n, F
D
T
D
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Plasma
ante
nna
use p
a
rti
a
lly or fully io
nize
d g
a
s a
s
the cond
uctin
g
me
dium i
n
stead of
metallic mate
rials.
With re
spe
c
t to co
n
v
entional met
a
llic ante
nna,
plasm
a
ante
nna ha
s ma
n
y
peculiar
properties
.
For ins
t
ant, it c
an
be rapidl
y switc
h
on
or off, this
behavior mak
e
s
plasma
antenn
a suita
b
le for u
s
e in
stealth appli
c
ation
s
fo
r mi
litary commu
nicatio
n
s. Also, if this kind
of
antenn
a is
used a
s
the
ant
enna
arra
y, the coupli
ng b
e
twee
n the el
ements is
sm
all. Espe
cially
,
radiatio
n pattern of pla
s
ma
antenna is re
config
ur
a
b
le
by changi
ng the frequ
en
cy and inten
s
ity of
pump
sig
nal,
gas pressu
re, vessel dim
ensi
o
n
s
an
d
so o
n
. Becau
s
e of th
e adv
antage
s a
bov
e,
many re
sea
r
chers and
sci
e
n
tific comm
u
n
ities sho
w
great intere
sts
about it.
At prese
n
t, studie
s
co
ncerning pla
s
ma
antenn
a
co
nsists of thre
e asp
e
ct
s, experime
n
t,
theory, an
d n
u
meri
cal
sim
u
lation. Th
eo
dore
Ande
rs
o
n
togethe
r
wi
th Igor Alexef
f [1] desig
ne
d a
sma
r
t plasm
a
antenn
a, and implem
en
t a wide
ran
ge of plasm
a
antenna ex
perim
ents. T
heir
studie
s
p
r
ove
d
that pla
s
ma
antenn
a was highly re
co
nfigura
b
le. Raj
nee
sh Kum
a
r [2] desig
ned
a
30cm
pl
asm
a
anten
na,
and
proved th
at t
he frequ
en
cy
and ra
diation
pattern
are a
b
le
to
alter with
the freque
ncy
and power o
f
the pump si
gnal. Yang
L
anlan [3] and
Zhao Guo
w
e
i
[4] studied the
disp
ersion of
the surfa
c
e
wave alo
ng t
he pla
s
ma
column by u
s
i
ng the an
alytical meth
od. Wu
Zhenyu [5] a
nd Xia Xinre
n
[6] studied
the radi
atio
n
cha
r
a
c
teri
stic of plasma
antenn
a thro
ugh
theoreti
c
al de
rivation. Zhao
yang Dai an
d
Liu Shaobin
[7] calculate
d
the coefficie
n
ts of reflecti
on
and tra
n
smission
of ele
c
tromagn
etic
wave in pl
a
s
m
a
by usi
ng F
D
TD
num
eri
c
al app
roa
c
h.
Liang
Zhiwei [8]
sim
u
lated the
ra
d
i
ation charact
e
risti
c
of
cylin
drical mo
nop
olar a
n
tenn
a
by usin
g F
D
T
D
method. P.
Ru
sso an
d
G.G.Borg
[9
-13] est
ablish
ed 1
D
a
nd
2D
self-co
n
si
stent m
odel
and
validated the
corre
c
tne
s
s o
f
the
model by using FDTD method.
From
the inv
e
stigatio
ns a
bove, we
can
dra
w
a con
c
l
u
sio
n
that pla
s
ma
is so
co
mplicate
d
that one can
not find the real issue
s
of the
problem only in experim
ental
appro
a
ch. It is
necessa
ry to
esta
blish
a
rigo
rou
s
m
a
thematic
al
model to
in
vestigate th
e
re
config
ura
b
le
cha
r
a
c
teri
stic of pla
s
ma
an
tenna i
n
the
o
retical
app
roa
c
h. We did
thi
s
work
i
n
se
ction
2.
Be
sid
e
s
,
the expe
rime
nt investigati
on is implem
ented to va
li
date the
re
su
lts of theo
reti
cal inve
stigati
on.
This part is introdu
ced in
section3.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on Pattern Reconfig
uration of Pla
s
m
a
An
tenna
Excited b
y
Surface Wave
(Zhu An
shi
)
6659
2. Theore
t
ic
al In
v
estigation
Plasma i
s
cre
a
ted and
su
st
ained by a
su
rface
wa
ve i
n
this pap
er. T
he den
sity of plasm
a
along th
e tub
e
is in
homo
g
eneo
us. Th
e
electri
c
p
a
ra
meters (
,
,
) are different
at different
plasm
a
re
gio
n
. And these
para
m
eters will chang
e wi
t
h
the variatio
n of pump si
gnal. So the first
thing we do i
n
this part is to establi
s
h a
model
to describ
e the relat
i
on betwe
en the pump
sign
al
and the
ele
c
tri
c
pa
ram
e
ters. Thi
s
m
odel i
s
u
s
ed
to cal
c
ulate
and lo
ad d
i
fferent ele
c
t
r
ic
para
m
eters
a
t
different po
sition of
pla
s
ma tube. T
h
i
s
pa
rt will
be
elabo
rated
in
se
ction
2.1. The
next work we
do is to calculate the far field r
adiatio
n
pattern of plasma a
n
tenn
a by using the
FDT
D
approach. The detail
s
of thi
s
part
will be
given i
n
section
2.
2.
The object we studi
ed i
s
t
h
e
cylindri
c
al m
o
nopol
e as
sh
own in Fig
u
re
1.
Figure 1. Geo
m
etry of Mon
opole Pla
s
ma
Antenna
Figure 1 sho
w
s the ge
om
etry for a m
onopol
e plasm
a
antenna fe
d throug
h an
image
plane fro
m
a coaxial tra
n
smissi
on line.
The bou
nda
ry of the space V is surro
u
nded by the
dash
line. The
ima
ge pl
ane
s
are
assu
med
pe
rfect ele
c
tr
i
c
condu
ctor.
a a
nd b
a
r
e th
e i
nner radiu
s
a
nd
outer
radi
us
of the tran
sm
issi
on lin
e, re
spe
c
ti
vely. The ratio b/a
=
2.3, whi
c
h
co
rre
sp
ond
s to
a
cha
r
a
c
teri
stic impedan
ce
of 50
Ω
for the transmi
ssi
on line. T
he com
putati
onal volume
is
surro
und
ed b
y
the perfe
ctl
y
matched
la
yer (PML
) to
redu
ce th
e re
flection of the
radiate
d
en
e
r
gy
at the bound
a
r
ies of the vol
u
me.
2.1. Establis
h the Self-co
n
siste
n
t Mo
del
The state of
plasm
a
is ea
sily affected by
the frequen
cy and intensit
y of pump sig
nal, the
gas
pressu
re,
the shape
of
the vessel
etc.. Among
th
ese fa
cto
r
s t
hat affect the
re
config
urati
on
perfo
rman
ce
of plasm
a
a
n
tenna, the
pump
sign
al is picke
d
up
in this pap
e
r
. The mo
del
is
establi
s
h
ed to descri
be the relatio
n
betwee
n
the pump si
gnal
and the rad
i
ation pattern
of
plasm
a
anten
na.
The relation
s betwe
en
pl
asma
state
and p
u
mp
si
gnal
can
be
con
s
id
ered
as the
intera
ction b
e
twee
n plasma and el
ectro
m
ag
neti
c
wave. So, the prop
agation of an
electroma
gne
tic wave into
a pla
s
ma
is d
e
scrib
ed
by the Max
w
ell
curl e
quatio
n t
ogethe
r
with t
he
Boltzman
n eq
uation.
The pla
s
ma
state is dete
r
mine
d by the mo
vement
s of elect
r
on
and ion. An
d these
movement
s could be d
e
scribed by Boltzmann Equ
a
tion [14].
rv
[(
)
]
(
)
ex
t
co
l
l
ee
F
Fe
F
FF
tm
m
t
vE
v
B
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
58 – 666
6
6660
Whe
r
e
F
is
elect
r
on
di
stributio
n fun
c
tion
(E
DF).
ext
F
r
e
p
r
es
en
ts
th
e e
x
te
rna
l
fo
rc
e p
u
t
on
the particl
es.
()
co
l
l
F
t
represents th
e cha
nge rate
of EDF with time.
Becau
s
e the
Boltzman
n equation is n
o
n
linea
r equ
at
ion, the usual
method to de
al with it
is to expand t
he EDF in sp
heri
c
al ha
rmo
n
ics retaini
n
g
only the first two term
s, so
that:
01
(
,
,)
(
,
,
)
(
,
,)
Ft
F
v
t
F
v
t
v
v
rv
r
r
(2)
Substituting
(2) into
the
(1
), an
equ
atio
n for
ea
ch te
rm i
s
o
b
taine
d
an
d the
s
e
are th
e
one
s that have to be solve
d
self -con
sist
ently with the Maxwell eq
ua
tions.
2
0
00
2
0
01
1
()
(
)
33
()
1
11
r
r
F
ve
vC
F
tm
v
v
F
e
vF
C
tm
v
t
t
11
1
E
FF
F
EF
H
E
E
Hj
(3)
Whe
r
e,
00
()
CF
and
11
()
CF
a
r
e the colli
si
on term
s de
scribin
g
the EDF evolutio
n due to
elasti
c and io
nizatio
n
colli
sions.
The cu
rrent d
ensity is calculated from th
e EDF as:
33
0
14
3
v
en
en
F
d
v
e
v
d
v
n
1
ju
v
F
(4)
To de
scrib
e
the ioni
zation
of wea
k
ly ion
i
zed
plasma
due to the p
e
r
turb
ation introdu
ced
by the propa
gating ele
c
tro
m
agneti
c
field, also
the co
ntinuity equation for the ele
c
tron d
e
n
s
ity
e
n
has b
een introdu
ced in the
model:
()
(
)
i
e
ei
o
n
e
n
nu
n
n
t
r
u
(5)
Whe
r
e,
io
n
n
is the ion de
nsity
and it is a
s
sume
d to be
equal to the
electron d
e
n
sity
according to t
he qua
si
-ne
u
trality assump
tion;
i
u
and
are
the ionization
and re
co
mbi
nation
rates
res
p
ec
tively,
where:
3
i
i
v
uv
f
d
v
(6)
And
can b
e
a
s
sumed to be
a con
s
tant chosen a
c
cord
ing to the gas compo
s
ition.
The complet
e
plasma
ki
netic mo
del
is
finally re
p
r
esented
by Equation (3) and (4)
together
with Equation (5) .
In a ste
ady-state co
ndition
(wh
en th
e ion
i
za
tion
-recom
bination bala
n
ce
i
s
rea
c
h
e
d)
a
n
d
for a time harmo
nic field
,
the time-varying qua
ntities
x
J
and
x
E
c
a
n be trans
formed into th
e
corre
s
p
ondin
g
qua
ntities
x
J
and
x
E
in the f
r
eque
ncy d
o
m
a
in. In this way, the pla
s
m
a
ele
c
tro
n
para
m
eters
p
and
p
ca
n be obt
ained.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on Pattern Reconfig
uration of Pla
s
m
a
An
tenna
Excited b
y
Surface Wave
(Zhu An
shi
)
6661
0
Re[
/
]
Im[
/
]
1
px
x
xx
p
JE
JE
(7)
From the
eq
uation
s
abov
e, we kno
w
that
most of
the equatio
n is no
nline
a
r
pa
rtial
differential eq
uation
s
. It is difficult to sol
v
e t
hese eq
u
a
tions by u
s
i
ng the analyti
c
app
roa
c
h.
The
most fea
s
ibl
e
app
roa
c
h
is num
eri
c
al
approa
ch. The finite-dif
feren
c
e time
-dom
ain (F
DTD)
method is a
d
opted in this
pape
r.
The mo
del
repre
s
e
n
ted b
y
the Maxwe
ll cu
rl equ
ation, Boltzma
n
n
equ
ation a
nd the
contin
uity eq
uation
can
b
e
re
solve
d
in
an expli
c
it way by usi
ng
FDT
D
ap
pro
a
ch. T
he ite
r
ative
equatio
ns of
Boltzman
n eq
uation an
d the cont
in
uity equation after
discreti
zation
are:
12
1
/
2
00
1
1
/
2
22
32
0
0
00
|
1
||
|
3
|
()
|
(
)
4
|
()
()
|
(
)
n
nn
n
xk
kk
x
k
n
en
e
ak
k
i
ni
i
i
k
i
kn
E
e
FF
t
v
F
t
mv
v
vv
TF
m
vv
v
F
vv
v
MM
v
v
t
F
vvv
t
F
v
v
v
(8)
1/
2
1
/
2
0
11
/
2
11
/
2
|(
1
(
)
)
|
ne
n
n
n
x
kx
k
x
k
k
F
e
Ft
v
v
F
E
mv
(9)
1
||
|
nn
i
n
kk
i
o
n
k
nn
t
v
n
n
(10)
The di
scretization of M
a
xwell
equatio
n is omitted
be
cau
s
e
it
is
well
kno
w
in the
electroma
gne
tic comm
unity.
The Equatio
n (8) to (1
0) together wit
h
t
he Maxwell iterative equatio
n con
s
titute a
compl
e
te set
of self-con
sistent equation
s
to be
solve
d
simultan
eo
usly.
The iterative procedu
re
assumin
g
sta
r
ting ap
proxi
m
ate value
s
for
(,
)
i
Er
t
, Equatio
n (8
) and
(9
) can b
e
solved to yield
(,
,
)
F
t
rv
, using the calcul
ated
(,
,
)
F
t
rv
in Equation (4
) leads to values for the
cha
nge an
d
curre
n
t de
nsit
ies
J
in the
pla
s
ma,
whi
c
h
can b
e
sub
s
tituted into
Ma
xwell e
quatio
ns
and
solved
for
(,
)
i
Er
t
. These value
s
are the
n
plugg
ed b
a
ck i
n
to
the Boltzman
n eq
u
a
tion, and
so
on. Wh
en
plasm
a
meet
s the stea
dy-state co
nditio
n
, the el
ectri
c
paramete
r
s could be
cal
c
ulate
d
throu
gh
Equation (7).
To maintain
the same a
c
curacy an
d the
sam
e
nu
meri
cal structure as the
stand
ard
FDT
D
, the an
isotro
pic fu
nction is calcula
t
ed in the
sa
me po
sition a
nd in the sam
e
instant of the
magneti
c
fiel
d wh
ere
a
s the isotropi
c
function
and
the ele
c
tro
n
den
sity are
cal
c
ulate
d
i
n
a
veloc
i
ty grid.
2.2. Calculate the Radiati
on Pattern
The ra
diator in Figure 1
is rotational
ly
symmetric and is exci
ted by a rotationally
symmetri
c
source. Th
ere
f
ore, the el
e
c
trom
agn
et
ic field is i
n
d
epen
dent of
the cylin
dri
c
al
c
o
or
d
i
na
te
,
and Maxwell
equation ca
n be expre
s
sed a
s
two i
ndep
ende
nt sets: on
e tha
t
involves can
be expressed
as two in
dep
ende
nt
sets:
one that invol
v
es only the
comp
one
nts
x
E
,
y
E
,
z
H
, the transverse el
ect
r
ic (TE) field. A
nd one that involves only the com
pon
e
n
ts
z
E
,
x
H
,
y
H
, the transverse mag
netic
(TM) field. si
nce
the ex
citation for the
antenn
a in Figure 1 i
s
a
TEM mode,
whi
c
h ha
s o
n
l
y the field compon
ents
z
E
x
H
, so, the TM
model i
s
sele
cted. The
iterative Equa
tion [15] are a
s
follows.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
58 – 666
6
6662
11
1
1/
2
1
/
2
1/
2
(,
)
(
,
)
(,
)
(
,
)
(,
)
(
1
,
)
(,
)
(
,
)
(,
1
)
(
,
)
(
,
)
nn
n
n
z
e
ze
z
e
zhy
y
y
nn
n
ezh
x
y
y
e
z
j
i
z
E
i
j
C
ij
E
i
j
C
ij
H
i
j
H
i
j
C
i
j
H
ij
H
i
j
C
ij
F
i
j
(11a)
1/
2
1
/
2
(
,
)
(
,
)
(,
)
(
,
)
(,
1
)
(
,
)
(,
)
(
,
)
nn
n
n
x
h
xh
x
h
xez
z
z
n
hx
m
i
x
H
ij
C
i
j
H
ij
C
i
j
E
ij
E
i
j
Ci
j
M
i
j
(11b)
1/
2
1
/
2
(
,
)
(
,
)
(
,
)
(
,)
(
1
,)
(
,
)
(,
)
(
,
)
nn
n
n
y
h
yh
y
h
yez
z
z
n
hy
m
i
y
H
ij
C
i
j
H
ij
C
i
j
E
i
j
E
i
j
Ci
j
M
i
j
(11c
)
Whe
r
e,
(,
)
ez
e
Ci
j
,
(,
)
ezh
y
Ci
j
,
(,
)
eze
Ci
j
,etc. rep
r
e
s
ent th
e iterative co
efficients
of Maxwell
equatio
n.
On the cro
ss
se
ction A-A’ the inci
dent el
ectri
c
field is:
()
ˆ
()
ln
(
/
)
i
i
Vt
Et
r
ba
(12)
The
spatial
and tem
pora
l
increme
n
ts (
x
,
z
and
t
) are
ch
osen to
satisfy the
‘Cou
rant
-Fri
e
d
richs-L
e
wy condition’.
22
1
11
()
(
)
ct
x
z
(13)
In this pape
r, the uniform
spatial grid i
s
use
d
and
we
set
x
z
.
For
obtain
th
e ele
c
tro
m
ag
netic
wave
i
n
un
boun
ded
regi
on
s, an
absorbi
ng
bo
unda
ry
con
d
ition
(ABC)
mu
st be
i
n
trodu
ce
d to
simul
a
te th
e extens
ion
of the lattice to infinity. In this
pape
r the PML is appli
ed.
The PML upd
ating equ
atio
ns are obtain
as:
0
0
0
0
()
()
y
zx
pe
x
z
x
zy
x
pe
y
z
y
z
xz
y
x
pmy
x
yz
x
z
y
pm
x
y
H
E
E
tx
E
H
E
ty
EE
H
H
ty
HE
E
H
tx
(14)
Whe
r
e,
p
ex
,
p
mx
,
p
ey
,
p
my
are
the
ele
c
tri
c
al con
d
u
c
tivity
and
the mag
n
e
tic con
d
u
c
tivity
at the corre
s
p
ondin
g
dire
cti
on, respe
c
tively.
Ho
wever, for
many anten
n
a
appli
c
ation
s
, we wa
nt to know the el
ect
r
oma
gneti
c
field at a
large
dista
n
ce from the
an
tenna—th
e ra
diated fiel
d. t
h
is field
ca
n
be obtai
n by
applying
a ne
ar-
field to far-field (NFFF) trans
f
or
m
a
tion. To perfo
rm this transfo
rmatio
n, a virtual surface i
s
pla
c
e
d
arou
nd the a
n
tenna. The
field on this
surfa
c
e i
s
ob
tained for the
time period
of interest. T
h
is
radiatio
n po
wer of the field is then obtai
n
ed by applyin
g
the su
rface
equivalen
c
e t
heorem.
1
ˆ
Re
'
2
ra
d
s
P
nd
S
EH
(15)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on Pattern Reconfig
uration of Pla
s
m
a
An
tenna
Excited b
y
Surface Wave
(Zhu An
shi
)
6663
Here, the
co
mpone
nts
E
and
H
are th
e el
e
c
tri
c
field
an
d
mag
netic fiel
d on
the
virtu
a
l
surfa
c
e,
re
sp
ectively. The
n
, com
b
inin
g
the FD
TD ap
proa
ch
an
d a
pplying the
i
m
age th
eo
ry, we
obtain the far
field pattern.
2.3. Results
Firstly,
we si
mulated
the attenuation consta
nt
and pha
s
e con
s
ta
nt
of
elect
r
o
m
agneti
c
wave tra
n
smi
tting in plasm
a
. The pla
s
m
a
regi
on is
ch
ara
c
teri
ze
d b
y
these pa
ra
meters: ele
c
tron
den
sity
18
3
1.
86
10
e
Nm
, ne
utral den
sity
23
3
6.
24
1
0
n
Nm
, temperature
29
3
TK
and a
con
s
tant colli
sion
f
r
equ
en
cy
8
1.5
1
0
vH
z
. The va
ri
ation of atte
nuation
co
nstant and p
h
a
s
e
con
s
tant
with
freq
uen
cy
ra
nge f
r
om
10
GHz to
25
G
H
z is
simulat
ed in
thi
s
p
a
p
er.
The
re
sult is
s
h
ow
n
in
F
i
gu
r
e
2
.
Figure 2. Attenuatio
n Co
n
s
tant and Ph
ase
Con
s
t
ant
of Electroma
g
netic
Wave
Tran
smitting i
n
Plas
ma
From Fi
gure
2 we
ca
n con
c
lud
e
that the
a
ttenuation
consta
nt de
cre
a
se
s g
r
ad
uall
y with
the in
crease
of freq
uen
cy. Whil
e the
ph
ase
con
s
tant
increa
se
s
with the i
n
cre
a
se of frequ
e
n
cy.
The co
rrectn
ess of the sel
f
-con
si
stent model e
s
tabli
s
he
d in se
ctio
n 2.1 is valida
t
ed by simula
ting
the pro
c
e
s
s
of elect
r
oma
gnetic
wave
(2G
H
z) tran
smitting in pl
asma
from f
r
ee
spa
c
e. T
he
iteration time
s is 16
00. Th
e result is sh
own a
s
Figu
re 3.
Figure 3. Pro
pagatio
n of Electro
m
ag
neti
c
Wave from Free Spa
c
e t
o
Plasma
From Fi
gu
re
3 we
ca
n
see th
at the
attenuation
is ha
ppe
ned
obviou
sly when the
electroma
gne
tic wave
tran
smit into the
plasm
a
fro
m
free
spa
c
e.
Whe
n
ele
c
tro
m
agneti
c
wa
ve
transmitting i
n
the free
sp
ace th
e wave vector
is a
con
s
tant. Th
ere i
s
no
attenuatio
n. Wh
ile
plasm
a
is a
kind of lo
ssy
medium, th
e wave vect
or is a
com
p
lex numbe
r.
Therefo
r
e, the
amplitude of
the electro
m
agneti
c
wa
ve attenuate
gr
adu
a
lly until to the air-pla
s
ma inte
rface.
From thi
s
re
sult, we can
co
nclu
de that
the self-con
si
stent model is
corre
c
t.
1
1.5
2
2.
5
x 10
10
0
2
4
6
8
()
A
tte
n
u
a
t
i
o
n
c
o
n
s
ta
n
t
1
/
m
()
fr
e
q
u
e
nc
y
H
z
1
1.5
2
2.
5
x 10
10
0
100
200
300
400
500
()
P
h
ase
con
s
t
a
nt
1
/
m
()
fr
e
q
u
e
nc
y
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
58 – 666
6
6664
3. Experimental Inv
estigation
3.1. Experiment Setup
In orde
r to ch
eck the co
rre
ctne
ss
of the
model pro
p
o
s
ed a
bove. The
system [1
6] used
to measure t
he ra
diation
pattern of pl
asma
ante
n
n
a
array is e
s
tablish
ed. In this sy
stem, the
plasm
a
ante
n
na is
con
s
tru
c
ted ap
plying
bursts of
po
wer to a
discharg
e
tube
which filled
wit
h
argo
n. The
a
n
tenna
-rotating meth
od i
s
adopte
d
in
t
h
is p
ape
r. Th
e sketch dia
g
r
am a
r
e
as
show
in Figure 4.
Figure 4. Sketch Di
agram
of Antenna-rotating Metho
d
Acco
rdi
ng to
the re
cip
r
o
c
ity prin
ciple, t
he
radiatio
n pattern of
tra
n
smitting ant
enna and
receiving ant
enna i
s
sam
e
. The horn antenn
a is
a
dopted a
s
transmitting a
n
tenna. And
the
plasm
a
array
is u
s
ed
a
s
receiving
ant
enna.
The
di
stan
ce
of the
two
elem
ent
s i
s
/2
. The
distan
ce
R
satisfies th
e fa
r field conditi
on
2
1
R
. The pho
tos related to
the experi
m
ent are
s
h
ow
n
as
F
i
gu
r
e
5
.
(a) a
n
e
c
hoi
c
cham
be
r
(b) pl
asm
a
an
tenna
(c) pump
sign
al sou
r
ce
(d)
sign
al so
u
r
ce a
nd am
pli
f
ier
Figure 5. Photos Rel
a
ted to the Experi
m
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on Pattern Reconfig
uration of Pla
s
m
a
An
tenna
Excited b
y
Surface Wave
(Zhu An
shi
)
6665
3.2. Experiment Results
We e
s
tabli
s
h
a plasma a
rray, which h
a
s tw
o elem
ents. The f
r
e
quen
cy of excitation
sign
al is 12.
56MHz. T
h
e
po
wer of p
u
mp
sign
al i
s
a
d
ju
stable
with the
ra
n
ge 0
~
1
2
0
W
. The
transmitting
signal frequ
en
cy is
200
MHz co
rrespon
din
g
to the
wave
length
37.5
c
m. The
dista
n
c
e
of the two
ele
m
ents i
s
7
5
cm. In ord
e
r to
mea
s
ure t
he
field inten
s
ity, the field inte
nsity indi
cator is
placed at 30
m away from
the antenn
a
array. An
tenn
a array rotate
s on
ce eve
r
y
15 deg
re
e. We
record the da
ta of the radi
ation pattern
by ch
a
nging t
he po
we
r of the pum
p si
g
nal. The
re
su
lts
are a
s
sh
own
in Figure 6.
Figure 6. H Plane Radiatio
n Pattern of Plasma Ante
nn
a Array
As
sho
w
n
in
Figu
re
6, it
is the
H-pl
an
e radiatio
n p
a
ttern
of the
two el
eme
n
t
plasm
a
array. At the
begin
n
ing, th
e ap
plied
po
wer of tw
o el
ements a
r
e b
o
th 50
W. Th
e
radi
ation
pat
tern
is represente
d
by the
cu
rve that con
s
ist
s
of d
o
t sp
ot
and
sho
r
t line
.
And then th
e appli
ed p
o
w
er
of one ele
m
e
n
t cha
nge
s from 50
W to 1
00W.
Comp
a
n
y with the variation
of ap
plied po
we
r, the
maximum rad
i
ation directio
n of the ante
nna a
r
ray ch
ange
s fro
m
2
70 de
gre
e
to
285 d
egree.
The
state of pl
asma chan
ge
with the variati
on of
the
app
lied po
we
r. T
he ele
c
tri
c
p
a
ramete
rs (
,
,
) ch
ang
e with
the state of
plasm
a
. A se
rial of
ch
ang
e
s
lead to th
e cha
nge of
su
rface
cu
rrent
distrib
u
tion o
f
plasma
an
tenna. On
ce
the su
rf
a
c
e
cu
rre
nt dist
ribution
of p
l
asma
anten
na
changes, the radi
ation pattern will be affected.
4.
Conclusio
n
The radiatio
n pattern re
config
uratio
n
of
plasma
antenn
a is
studied in th
e
o
ry an
d
experim
ent a
s
pe
ct. First of all, we esta
blish
ed
the
self-co
n
si
stent
model u
s
ed
to confirm t
he
electri
c
p
a
ra
meters of pla
s
ma a
n
tenn
a
at differ
ent region.
We va
lidate the
correctn
ess of t
h
is
self-con
si
sten
t model by u
s
ing the n
u
me
rical a
ppr
oa
ch
. And then,
we esta
blish th
e expe
riment
al
system u
s
e
d
to measure t
he pattern of plasm
a
ante
nna is
set up
. The radi
ation pattern of t
w
o
element
s pla
s
ma a
rray was teste
d
. The re
sults
show that the
radiation p
a
ttern coul
d b
e
config
ure
d
by chan
ging the
powe
r
of pu
mp sou
r
ce
. This characte
ri
stic ma
ke
s the plasm
a
use
f
ul
in communication anti-jam
ming. Thi
s
research
re
sult
will have preferabl
e
appli
c
ation prospect
and supe
rio
r
martial ap
plication value.
Ackn
o
w
l
e
dg
ements
We would like to thank p
r
ofesso
r FENG
and profe
s
sor LIANG from Elect
r
oni
c and
Optical
Engin
eerin
g
Dep
a
rtment for
giving me
ma
ny co
nstructive
advices
in
a
n
tenna
theo
ry.
More
over,
we
also th
an
k Li
Ming for
ma
king
pla
s
ma
antenn
a for
u
s
, so t
hat we
can i
m
plem
e
n
t
our expe
rime
nt.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 66
58 – 666
6
6666
Referen
ces
[1]
T
heodore An
d
e
rson. Artech
Hous
e. 201
1; 79-11
2.
[2]
Rajn
ees
h Kum
a
r, Dhiraj B
o
ra.
Journa
l of app
lied
physics.
2
010; 05
33
03
_1
-053
303
_5.
[3]
YANG Lanl
an,
T
u
Yan, W
ang
Baop
ing. Vac
u
um
Scienc
e an
d T
e
chnolo
g
y
.
200
4; 24:42
4-4
26.
[4]
Guo
w
e
i
Z
hao. Center for Spa
c
e Scienc
e an
d Appl
ied R
e
se
arch. 200
7; 70-
101.
[5]
W
U
Z
hen
yu, Yang Yi
ngta
ng, W
A
NG Jia
y
o
u
.
AC
T
A
Ph
y
s
ic
a Sinic
a
. 201
0; 59: 189
0-18
93
.
[6]
Xi
a
Xinr
en, Yin
Chen
g
y
o
u
. Nu
clear F
u
si
on a
nd Plasm
a
Ph
ysics. 2010; 1(3
0
): 30-36.
[7]
Z
hao
ya
ng D
a
i,
Shao
bin
Liu,
Yu Che
n
, et al
. In
ternation
a
l Confer
ence on
Micro
w
av
e an
d Mill
imete
r
W
a
ve T
e
chnol
og
y. 201
0; 113
5-11
37.
[8]
Lia
ng Z
h
i
w
e
i
. Center for Spa
c
e Scienc
e an
d Appl
ied R
e
se
arch. 200
8: 28-
43.
[9]
P Russo, G Cerri, E Vecchio
n
i
, Micro
w
a
v
es. Antenn
as& Pro
pag
atio
n. 201
0
;
4:2256-2
2
6
4
[10]
Graziano Cerri, Franco Mog
lie, Ruggero
Montesi,
et al.
IEEE
T
r
ansacti
ons on anatennas
a
n
d
prop
agati
on. 2
008; 56: 2
584-
258
8.
[11]
G Cerri, P Russo, E Vecchio
n
i
. Europe
an C
o
nf
erenc
e on An
tennas a
nd Pro
pag
atio
n. 201
0
;
12-16.
[12]
Grazian
o
Cerri
, Paola R
u
sso.
3rd Euro
pe
an
C
onfere
n
ce
o
n
Anten
nas a
n
d
Prop
agati
on.
200
9; 314
3-
314
6.
[13]
G Cerri, V Ma
riani Pr
imia
ni,
P Russo, et a
l
.
T
he Secon
d
Europ
e
a
n
Co
n
f
erence
on An
tennas
an
d
Propa
gati
on. 2
007.
[14]
JA Bittencourt. F
undam
enta
l
s of
plasma p
h
y
s
i
cs. 2004; 6
29-
633.
[15]
Alle
n T
a
flove, Susan C H
a
g
n
e
ss. Computati
ona
l Electro
d
y
namics:
T
he F
i
nite-Differ
ence
T
i
me-Domian
Method. 20
00;
67-1
06.
[16]
F
E
NG Jiping,
Z
E
NG Rui, LIANG Yu
y
i
ng.
F
u
ndam
ental
of Micro
w
av
e En
geer
ing. 2
002;
32-3
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.