TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5861 ~ 5868
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.591
1
5861
Re
cei
v
ed Ma
rch 3, 2
014;
Re
vised Ap
ril
23, 2014; Accepte
d
May 1
0
, 2014
Grid-connected Photovoltaic Power Systems and
Power Quality Improvement Based on Active Power
Filter
Brahim
Be
rb
aoui*
1
, Sami
ra Dib
2
, Rachid Dehini
2
1
Unité de rec
h
erche e
n
Ener
gie R
eno
uve
l
a
b
les e
n
m
ili
eu
sahar
ien, URE
RMS, Centre d
e
Déve
lop
pem
ent
des Ener
gi
es Ren
ouve
l
a
b
les
,
CDER, 0100
0
,
Adrar, Algeria
2
Departme
n
t of Electrical En
gi
neer
ing, Bec
h
a
r
Universit
y
, Al
geri
a
*Corres
p
o
ndi
n
g
author, em
ail
:
berbao
ui.br
a
h
i
m@gma
il.com
A
b
st
r
a
ct
This p
aper
pre
s
ents a Par
a
ll
e
l
Active Pow
e
r
Filter
(PAPF) using P
hotov
olt
a
ic ce
lls En
erg
y
to fee
d
line
a
r
or n
o
n
lin
ear l
o
a
d
s w
i
th
current
perturb
ations
co
mp
en
sation
an
d th
e
excess
of the
ener
gy is
in
ject
e
d
into th
e
mains
.
As a r
e
su
lt
of usi
n
g
insta
n
tane
ous
p-q
t
heory
as
a c
o
ntrol sc
he
me,
the mu
lti-functi
on
oper
ation
suc
h
as h
a
r
m
on
ic
eli
m
i
nati
on, re
active p
o
w
e
r c
ontrol
an
d u
n
i
n
terrupti
b
le
po
w
e
r supply
w
ill
b
e
achieved. The system cons
isting
of Phot
ovoltaic c
e
lls,
connected t
o
a diode rectifier
feeding a
par
alle
l
active p
o
w
e
r filter is si
mulat
ed i
n
MATLA
B
/SIM
ULINK e
n
viro
nment. T
he si
mulati
on
results pr
ove t
h
e
efficiency of usin
g
the pro
pose
d
meth
od
for
Phot
ov
olt
a
ic ce
lls
ener
gy in
jecti
on
a
nd p
o
w
e
r q
u
a
lity
improvement in the grid power system
.
Ke
y
w
ords
: ph
otovolta
ic cells
ener
gy, MPPT,
PAPF, current harmon
i
cs, p-q theory
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Contin
uou
sly, fossil fu
el
time is g
e
tting
missing
.
Energy an
d fuel exige
n
cy is
expone
ntially increa
sing
with time. Simultaneo
usly
energy co
st is also co
ntinuou
sly ri
sin
g
. In
orde
r to
su
rp
ass the
s
e p
r
oblem
s we
can u
s
e
re
n
e
w
abl
e re
so
urce
s at ou
r di
spo
s
al f
r
om
whi
c
h
energy can b
e
tapped; Ph
otovoltaic cell
s co
nvert
s
sol
a
r ene
rgy to dire
ct elect
r
ic energy [1].
The system
of
Photovoltai
c
p
o
wer gen
eration
is
a p
r
inci
pal efficie
n
t
tech
niqu
e of
usi
ng
sola
r e
nergy, whi
c
h
can
co
nvert
su
nlight radi
ati
on di
re
ctly into ele
c
tri
c
ity throug
h t
h
e
photovoltai
c
effect, and
h
a
s b
r
o
ad p
r
o
s
pe
cts fo
r
d
e
v
elopment
wi
th a serie
s
of advantag
es
su
ch
as cl
ean a
nd
pollution
-free,
noise
-fre
e, and ren
e
wable
[2].
Non
-
line
a
r d
e
vice
s produ
ce di
storte
d
curre
n
t wave
forms i
n
the
powe
r
syst
em. The
injected harm
onics have several im
pacts on the ut
ilities grid and loads
co
nnected to system. To
overcome
the
s
e po
we
r
q
u
a
lity problem
s, harmo
nic
active filters are wi
dely used in the system.
[3-4]. In this pape
r, the an
alysis a
r
e focuse
d on
the system confi
guratio
n
with a dire
ct cou
p
ling
betwe
en the
Photovoltaic
cell
s an
d the
sh
unt a
c
tive
power filter
employed
to
inject the
sol
a
r
power into t
h
e utility grid u
nder fixed
Ph
otovolta
ic p
o
w
er co
ndition
s. The
pro
p
o
s
ed
de
sign i
s
not
only able
of
delivering the solar power
to the gri
d
, but will al
so
act as a parall
el active power
filter (PAPF) to mitigate the c
u
rrent harmonics
and
regulate reac
tive po
wer injec
t
ed by the non-
linear loa
d
s.
In ord
e
r to
i
n
vestigate
a
nd mi
tigate
the ha
rmo
n
ic ca
pabilitie
s
of the p
r
op
o
s
ed
system; a 1
M
W Photovol
taic po
we
r wi
th shu
n
t ac
tiv
e
po
wer filter con
n
e
c
ted t
o
a thre
e-ph
ase
power g
r
id fe
eding n
on-li
n
ear loa
d
wa
s
simu
late
d in MATLAB / SIMULINK e
n
vironm
ent.
2. Parallel Activ
e
Po
w
e
r Filter
Parallel
a
c
tive po
we
r filter is
a p
o
wer
conver
te
r utili
zed in
orde
r to
co
mpen
sate
cu
rrent
disturban
ce
s (ha
r
moni
cs,
reactive po
we
r
a
nd unb
al
a
n
ce
). In
order to me
et q
uali
t
y enhan
ce
m
ent
con
s
trai
nts proper
control of
it
s p
o
we
r
switch
es is
ne
eded. Seve
ra
l topologi
es a
nd
configu
r
ati
on
have b
een
in
trodu
ced
in
the lite
r
ature
and i
n
comm
erci
al im
plem
entation
s
fo
r this filter th
at
highlight different
a
s
p
e
ct
s of
its comp
e
n
satio
n
ta
sks
[11].
The m
o
st comm
on topology of
the
shu
n
t a
c
tive power filter is sh
own
in Fi
g
u
re
1.
Its mai
n
compo
nent
s a
r
e volta
ge
sou
r
ce inve
rter,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 586
1 –
5868
5862
DC
bu
s (in
o
u
r
situation i
s
a
cap
a
cito
r), output
p
a
ssive filter a
n
d
a control system. The
most
important objec
tive of the PAPF is
to
c
o
mpen
s
a
te
the c
u
rrent harmonics
generated by non
linear loa
d
s [
12]. The
refe
ren
c
e
current
s
con
s
i
s
ts of
the
harmoni
c
com
pon
ent
s of
the l
oad
curre
n
ts
whi
c
h the a
c
tive
filter mu
st su
pply
[5]. The
s
e
refe
ren
c
e
cu
rrents
are
fed throug
h
a
controlle
r to gene
rate swit
chin
g sig
nal
s for the
powe
r
switchin
g d
e
vice
s of the voltage sou
r
ce
inverter
(VSI). Finally, the
AC su
pply wi
ll
only need to provide th
e
fundame
n
tal comp
onent f
o
r
the non line
a
r load.
Figure 1. Gen
e
ral Stru
cture
of Parallel Active Powe
r F
ilter
3. Photov
alt
a
ic Gener
a
to
r Modeling
Electri
c
al energy needs
are
still increasi
ng over these
last years but production
con
s
trai
nts li
ke poll
u
tion [6] and glob
a
l
warmi
ng le
ad to develo
p
ment of re
n
e
wa
ble en
ergy
sou
r
ces, pa
rticularly ph
otovoltaic ene
rgy. D
ue to very limited conve
r
si
on e
fficiency, it is
necessa
ry to
optimi
z
e
all
the c
onversio
n
chain
an
d
spe
c
ifically
DC
-D
C
c
o
n
v
erte
r
s
b
y
us
e to
maximum po
wer p
o
int tra
c
king
strategi
e
s
[13] whi
c
h i
s
sh
own in (F
igure 2
)
.
Figure 2. Block di
agram of
typical MPPT system
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Grid
-conn
ect
ed Photovolta
ic Powe
r Syst
em
s and Power Qualit
y… (Brahim
Berba
oui)
5863
Photovoltaic
gene
rato
rs
co
nsi
s
t usu
a
lly of se
veral m
o
dule
s
interco
nne
cted in se
ries a
n
d
parall
e
l for a
given operat
ing voltage a
n
output
power. Photovoltaic gen
erators modeli
ng can
then b
e
de
du
ced
from th
ose of sola
r cell
s; many
studi
es
have b
een
alre
ady p
r
op
ose
d
u
s
ing
o
n
e
diode o
r
mo
re pre
c
i
s
e two
diode
s mod
e
ls. In this p
aper
we u
s
e
the conve
n
tio
nal sin
g
le dio
de
model p
r
e
s
en
ted on (Fig
ure 3).
Figure 3. Con
v
entional Sin
g
le Dio
de Mo
del
Iph is the photo generated curr
ent rel
a
ted to the illumination
level, Id the
diode current,
Rsh and Rs
are re
sp
ectiv
e
ly the shunt
and se
ries
resi
stan
ce
s. Base
d on (Fig
ure 3), the o
u
tpu
t
voltage and
current dep
en
den
ce can be
written in the
form:
sh
s
V
I
R
V
ph
R
I
R
V
e
I
I
I
t
s
1
0
(
1
)
a) Vt is the thermal voltag
e
written a
s
:
q
T
K
A
V
t
/
)
(
whe
r
e A is the ideality factor, K the Boltzman
n
con
s
tant, T
the
temperature
of the cell an
d q the eleme
n
tary cha
r
g
e
.
b) I
0
is the d
a
rk
cu
rrent. Comp
ared to
the me
a
s
ure
d
photo
c
u
rre
nt Iph_ref at
stand
ard
t
e
st
s
con
d
it
io
ns
(S
TC:
G
r
ef
=10
0
0
W
/
m
²,
Tref
=2
5
°
C), th
e ph
otocu
r
rent at a
nother ope
ra
ting
con
d
ition
s
ca
n be expre
ssed as:
)
(
,
REF
REF
PH
REF
ph
T
T
I
G
G
I
(2)
G is thesola
r
irradi
an
ce,
α
is the sho
r
t circuit curren
t te
mperatu
r
e
coefficie
n
t. Iph_ref
can b
e
take
n
to be the sh
ort cu
rr
ent at STC (Icc_
r
ef),Icc_
ref and
α
are g
ene
ral
l
y given by solar
module
man
u
facturer [1
4]. In the ca
se
whe
r
e the
cell tempe
r
atu
r
e Ta
mb not
is dete
r
min
e
d
dire
ctly by a tempe
r
ature sensor, it
can
be ded
uced from the followi
ng relatio
n
:
G
N
T
T
oct
amb
800
20
(3)
Tamb is the
ambient tem
peratu
r
e, No
ct is
the normal operatin
g cell tempe
r
ature given
in most case
s by the manufacturer. Fo
r the dark curre
n
t I
0
and we can write:
)
1
1
(
exp
)
(
3
,
0
0
T
T
AK
qE
T
T
I
I
REF
g
A
REF
REF
(4)
I
0
,ref is the dark
cu
rrent at STC and Eg
is t
he forbi
d
d
en ban
d ene
rgy. In the single diod
e
model, we a
s
sume
d Rsh to be infinite; the se
rie
s
re
si
stan
ce can b
e
derived in t
he form [7]:
AKT
qV
I
q
AKT
dI
dV
R
oc
VOC
s
exp
0
)
(
(5)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 586
1 –
5868
5864
Equation (1)
can b
e
solve
d
by num
eri
c
al method like Ne
wton Ra
phson
s.
)
(
)
(
1
n
n
n
n
X
f
X
f
X
X
(6)
The VSI is
controlle
d in
such
a way th
at it can
be u
s
ed to
inje
ct
sinu
soi
dal
cu
rre
nt into
the gri
d
fo
r
energy extra
c
tion f
r
om th
e Photov
oltai
c
cell
s
d
u
rin
g
line
a
r or non-li
nea
r
lo
ad
conditions. During non-linear load
condit
i
ons, VSI
can be used also as PAPF for harmonic and
rea
c
tive com
pen
sation. T
o
control the
perform
an
ce
and the effectivene
ss
of the Photovoltaic
cell
s, the VSI
is ope
rated b
a
se
d
on the concept of p-q
theory. The
control inp
u
t is a current error
sign
al whi
c
h in this appli
c
a
t
ion, is the differen
ce bet
ween the actu
a
l
current inje
cted by VSI and
the desi
r
ed o
r
refere
nce cu
rre
nt waveform.
4. Refe
renc
e
Curren
t
s G
e
neratio
n
The reference c
u
rrents
for the c
o
ntrol of t
he PAPF are calculated
us
ing the ac
tive and
rea
c
tive po
wer a
nalysi
s
in
a statio
nary
αβ
fra
m
e
(p-q
theory).
Loa
d cu
rrents an
d pha
se
volta
ges
of the three-p
hase sy
stem expre
s
sed
in
αβ
frame a
r
e
given by:
i
i
i
i
i
c
b
a
2
3
2
3
0
2
1
2
1
1
(7)
e
e
e
e
e
c
b
a
2
3
2
3
0
2
1
2
1
1
(8)
Whe
r
e i
a
, ib, ic a
r
e the l
o
a
d
cu
rrents an
d ea,
e
b
, ec
are th
e three-pha
se g
r
id vo
ltages.
The in
stanta
neou
s real p
o
we
r an
d the
instanta
neo
us ima
g
ina
r
y power a
b
sorbed by the l
oad
are, re
sp
ectiv
e
ly, defined a
s
follows:
t
t
t
t
t
p
i
e
i
e
l
(9)
t
t
t
t
t
q
i
e
i
e
l
(10)
P
l
and
q
l
are
made
up
of a
DC
and
an
AC
comp
one
nt, so
that th
ey may b
e
e
x
presse
d
by:
l
l
l
p
p
p
~
(11
)
l
l
l
q
q
q
~
(12)
Whe
r
e
1
p
and
1
q
are
DC
com
pon
ents
due
to f
undam
ental
currents while
1
~
p
and
1
~
q
are
AC
co
mp
on
en
ts
d
u
e
to
ha
r
m
on
ic
c
u
r
r
e
n
t
s
.
In
o
r
de
r to ge
nerate the refere
nce
cu
rrents,
a
balance bet
ween i
n
stantan
eous powers
supplied by t
he grid
and t
he PAPF
and drained by t
he
load i
s
to b
e
comp
uted. If
pg an
d q
g
a
r
e the real
an
d imagi
nary
i
n
stanta
neo
us powers
sup
p
lied
by the main, while p
f
an
d q
f
are the re
al and imagi
nary insta
n
ta
neou
s po
we
rs su
pplied by
the
PAPF, in order to compens
ate
reac
tive
power
and
eliminate harmonic current
s
,
the grid should
sup
p
ly
1
p
p
g
and q
g
=0.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Grid
-conn
ect
ed Photovolta
ic Powe
r Syst
em
s and Power Qualit
y… (Brahim
Berba
oui)
5865
The oscillatory component
of pl
is to be
fed by PAPF, while
ql m
u
st be fully fed
by the
PAPF bec
aus
e it is
als
o
poss
i
ble in this
way to
ac
hieve reac
tive
power
c
o
mpens
a
tion[9]. The
oscillatory part of pl is due to
harmoni
c
components[
10] , so if it
is fed to the load by the PAPF
,
grid cu
rrent remain
s sinu
soidal, while
th
e
loa
d
kee
p
s on
receiving
t
he same
am
o
unt
of
h
a
rm
o
n
ic
and fund
ame
n
tal curre
n
t. Powe
r bala
n
ce yields:
l
g
l
f
l
l
l
g
l
f
g
l
g
q
q
q
q
p
p
p
p
p
p
p
p
p
~
0
(13)
Previou
s
equ
ations n
eed t
o
be modifie
d
in or
d
e
r to
con
s
ide
r
pro
per o
peration
of the
capacitor on
the DC
side
of the inverter. The
capaci
tor stores energy
whi
c
h i
s
utilized
as
a
power
su
ppl
y for the
no
rmal
ope
rati
on of th
e P
APF. More
i
n
detail, i
n
norm
a
l o
perating
conditions the PAPF does not feed
acti
ve pow
er
because it shoul
d be
able to
supply
l
f
p
p
~
and q
f
= q
l
a
n
d
so only rea
c
tive power i
s
fed. For this
rea
s
on,
capa
citor voltage l
e
vel is co
nsta
nt
durin
g the
st
eady
state. In orde
r
to
re
gulate
DC vo
ltage level, it
is
ne
ce
ssa
ry
to control
a
c
tive
power bal
ance among the grid, load and PAPF.
When the load absorbs
a precise quantity of
power
l
p
and if
l
g
p
p
exc
e
ss
power is
drawn by the
PAPF,
whic
h increas
e
s
the
DC side
voltage. If
l
g
p
p
, since the load needs a preci
s
e am
ount
of power, the PAPF feeds the
remai
n
ing
pa
rt in orde
r to
have
l
f
g
p
p
p
and he
nce th
e DC v
o
ltage level
d
e
crea
se
s. To
c
ontrol the proper
amount of ac
tive power fe
d or
drawn by the PAPF,
it is
necess
ary
to
introduc
e
a gain fac
t
or
k
[8].
l
g
p
p
k
(14)
In normal conditions this gain is quit
e near unity, because the losses in PAPF
comp
one
nts
are n
egligi
b
le
. When
DC capa
citor
cha
r
ging i
s
ne
ed
ed, the gai
n
factor i
s
a
b
o
v
e
unity becau
se gri
d
mu
st supply an
add
itional amo
u
n
t
of active po
wer to the P
APF. When
DC
voltage level is too high, g
a
in factor i
s
regulate
d
to value
s
belo
w
unity, so a power le
ss than
l
p
is req
u
ired to the grid an
d the rem
a
ining
part of
l
p
is fed to the load by the PAPF.
Hen
c
e the in
stantaneo
us re
feren
c
e po
we
rs for the PA
PF are:
l
f
l
l
f
q
q
p
k
p
p
*
*
)
1
(
~
(15)
A transfo
rma
t
ion from instantaneo
us p
o
we
rs
to currents allows
gene
rating prop
e
r
referen
c
e for
curre
n
ts control according t
o
the followin
g
equatio
n:
q
p
e
e
e
e
i
i
f
f
f
f
1
(16)
5. Simulation Resul
t
s an
d Discus
s
io
n
The pro
p
o
s
e
d
Photovoltaic cell
s are n
o
t
onl
y capabl
e of supplyin
g
extracted solar po
we
r
to the powe
r
system, but it also
can si
g
n
ificantly mitigate harm
oni
c cu
rrents
wh
ic
h are drawn
by
non-li
nea
r lo
ads. In
orde
r to dem
on
strate the validi
t
y of the con
c
ept
s di
scu
s
sed
previou
s
l
y
a
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 586
1 –
5868
5866
simulatio
n
u
s
ing MATLAB/
SIMULINK e
n
vironm
ent
i
s
d
one
as it is
sh
own
in
Figu
re 4.
T
he
para
m
eters o
f
the system are sho
w
n in
Table 1.
Figure 4. SIMULINK Implementation of PAPF with PV
Table 1. System Param
e
te
rs
GRID
Source Voltage
V
s
220
V
Load Po
w
e
r P
L
80
kVA
Freque
nc
y
f
s
50
Hz
P
H
OT
OV
OL
T
A
I
C
CE
LLS
Nominal Power
P
T
24
KW
cells Vo
ltage V
T
850
V
PA
P
F
Sw
itching Fr
equ
enc
y
12 kHz
Output Filter
1
mH
DC Link Capacitor
8.8 mF
Capacitor DC Vo
ltage
2600 V
reference cu
rrent
p-q Method
VSI control
PWM + PI
The s
i
mulation res
u
lts
of the propos
e
d PAPF
with PV are shown in the Figure 5. PV
cell
s p
r
od
uce
s
le
ss tha
n
6
00W at 6
00
Volts,
so cell
s
a
r
e
conne
cted
in se
rie
s
and parallel
t
o
prod
uce e
n
o
ugh p
o
wer.
At 0.2 se
co
n
d
the p
hotov
oltaic p
o
wer
is in
crea
sing
what
ma
ke
s the
absorb
ed
current from th
e so
urce by
the non
lin
ear lo
ad d
e
crea
se
s. At approxim
ately 0.6
se
con
d
the photovoltaic
cells produ
ce
s 3% of
the power n
eed
ed
by the non linear loa
d
and
the
curre
n
t of th
e sou
r
ce de
cre
a
ses to 1
62.1 A (RM
S
), the curre
n
t supply de
cre
a
se (Fig
ure 5)
means
that t
he ac
tive power is
injec
t
ed by
PAPF to release the exc
e
s
s
power in the DC
bus
con
den
se
r, so as to
stabili
ze its volta
g
e
(Figu
r
e 6
)
.We ca
n say tha
t
the photovol
taic cells
starts
deliverin
g p
o
w
er to the
grid after it
ha
s fini
shed
fe
eding th
e PA
PF by all the
po
wer it ne
eds.
Finally, it is
clear that the PAPF inject
s appr
opriate amount of current
to miti
gate harm
oni
cs
gene
rated
by the non lin
e
a
r loa
d
and
a
t
the same ti
me deliver th
e exce
ss acti
ve powe
r
to the
grid.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Grid
-conn
ect
ed Photovolta
ic Powe
r Syst
em
s and Power Qualit
y… (Brahim
Berba
oui)
5867
(a)
(b)
(c
)
(d)
Figure 5. (a)
Phase
-
a lo
ad
current, (b
) Phase-
a
refere
nce
curre
n
t, (c) Pha
s
e
-
a th
e sup
p
ly
c
u
rrent, (d) Harmonic
s
p
ectrum of s
u
pply c
u
rrent Phas
e ‘a’, with (P
V).
Figure 6. Phase-a the Sup
p
ly Voltage
Waveforms
,
with a (PV)
Figure 7. DC-link Voltage
(a)
(b)
Figure. 8 (a)
pha
se-a the supply cu
rrent, (b) Harm
oni
c spe
c
trum of
sup
p
ly curre
n
t
Phase ‘a’,
without a (PV
)
.
0.6
0.6
2
0.64
0.
6
6
0.6
8
0.7
0.
72
0.74
0.
7
6
0.7
8
0.8
-
200
-
150
-
100
-50
0
50
100
150
200
Ti
m
e
(s
)
Loa
d cur
r
e
nt
(
A
)
0.
6
0.
62
0.
64
0.
66
0.
68
0.
7
0.
7
2
0.
74
0.
76
0.
7
8
0.
8
-
100
-8
0
-6
0
-4
0
-2
0
0
20
40
60
80
10
0
Tim
e
(s)
i
n
j
ect
ed cur
r
e
nt
(
A
)
0
0.1
0.2
0.3
0.4
0.
5
0.
6
0.7
0.8
-3
0
0
-2
0
0
-1
0
0
0
10
0
20
0
30
0
40
0
50
0
60
0
70
0
T
i
me (
s
)
S
o
ur
ce
cu
r
r
en
t
(
A
)
0
10
20
30
40
50
0
0.
1
0.
2
0.
3
0.
4
Fu
n
d
am
e
n
t
a
l (
5
0
H
z
)
=
162
.1
,
TH
D=
1
.
0
9
%
M
a
g
(
%
of
Fu
nd
am
ent
a
l
)
0.6
0.62
0.64
0.66
0.68
0.7
0.72
0.74
0.76
0.7
8
0.8
-
400
-
300
-
200
-
100
0
100
200
300
400
Ti
m
e
(
s
)
S
o
u
r
ce vo
l
t
ag
e (
V
)
0
0.
2
0.
4
0.
6
0.8
1
1.
2
0
200
400
600
800
1000
Ti
m
e
(
s
)
D
C
-
l
i
n
k vo
l
t
a
g
e
(
V
)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
-2
0
0
-1
0
0
0
10
0
20
0
30
0
40
0
50
0
60
0
70
0
Tim
e
(
s
)
S
o
u
r
c
e
cu
r
r
en
t
(
A
)
0
10
20
30
40
5
0
0
0.
1
0.
2
0.
3
0.
4
Ha
rm
onic
orde
r
F
u
n
d
a
m
e
n
t
al
(5
0Hz
)
=
16
6.
7
,
T
H
D
=
1.
0
9
%
M
a
g (
%
of
Fu
nda
m
e
nt
a
l
)
Har
m
onic
o
r
de
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 586
1 –
5868
5868
6. Conclusio
n
Photovoltaic
power
se
ems to be th
e fav
o
rabl
e
clea
n
energy source of the futu
re. So, to
optimize
its
u
s
e we have prop
osed a
d
i
rect co
upli
n
g
of Photovolt
a
ic
cell
s
with
parallel a
c
tive
power filter (PAPF). From
the re
sults obtained, it is proven that
by using the
proposed syst
em,
Photovoltaic power can
be
efficient
ly extracte
d by
sol
a
r
cell
s an
d i
n
jecte
d
into t
he g
r
id by PA
PF
whi
c
h ha
s two function
s; the first is fee
d
ing t
he line
a
r
or no
n linea
r load
with h
a
rmo
n
ic
cu
rrent
mitigation
capability and
second inj
e
cting the
surplus power i
n
to the mai
n
s. Fi
nally and
according
to
the
obtain
ed results we ca
n
co
nsi
der
th
e propo
sed
system to be
efficient soluti
on
to the growi
n
g deman
d of power at the pre
s
ent an
d in the future.
Referen
ces
[1]
CM Chov
atia,
NP Gupta, PN
Gupta. Po
w
e
r Q
ualit
y Impr
oveme
n
t in a
PV Pane
l con
nected Gri
d
S
y
stem usin
g Shunt
Activ
e
F
ilter.
Internati
ona
l Jo
urna
l o
f
Co
mputer
T
e
chn
o
lo
gy a
n
d
Electron
ic
s
Engi
neer
in
g (IJCT
EE)
. 2012; 2(4).
[2]
V Busa, KK Narsingoju, GV Kuma
r. Simul
a
tion An
al
yis of
Maximum Po
w
e
r Co
ntrol of
Photo Volt
aic
Po
w
e
r S
y
stem
.
Internation
a
l
Journ
a
l o
n
Ad
vance
d
Electri
c
al an
d Electr
onics En
gi
neer
ing (IJAEEE).
ISSN (Print): 2278-
894
8. 201
2; 1(1).
[3]
GY Jeong, TJ Park, BH Kw
on.
Lin
e
-volt
age
sens
orles
s
active
pow
e
r
filter for r
e
a
c
tive p
o
w
e
r
compensation
. Electric Po
w
e
r Appl
icatio
ns, IEE Proceed
in
g
s
. 2000; 1(4
7
): 385-
390.
[4]
T
u
mbelaka, C
V
Na
yar, K
T
an, LJ Borle.
Active filterin
g
appli
ed to a l
i
ne-c
o
mmutate
d inverter fed
per
ma
nent
magn
et w
i
nd g
ener
ator
. Presented at Inter
natio
nal P
o
w
e
r Engin
eeri
n
g
Confere
n
c
e
IPEC200
3, Sin
gap
ore. 20
03.
[5]
W
ada, H F
u
jita
,
H Akagi.
Con
s
ider
ations
of a Shu
n
t Active F
ilt
er Based o
n
on Vo
ltag
e Detectio
n f
o
r
Installati
on o
n
a Lon
g Distrib
u
t
ion F
eed
er
’
. in
Proc. Conf. IEEE-IAS Ann. Meetin
g. 200
1: 157-1
63.
[6]
Yahfdh
ou, A Mahmo
ud, I Youm. Mode
li
ng an
d Op
timizatio
n
of a Photovo
l
taic
Generator
w
i
t
h
Matlab/Simulink.
Internatio
nal
Journ
a
l
of Inn
o
vative T
e
c
h
n
o
lo
gy a
nd Ex
p
l
orin
g En
gi
nee
ring (IJIT
EE)
ISSN: 2278-3
0
75. 201
3; 3(4).
[7]
H T
u
mbelak
a.
A Grid C
u
rre
nt
Contro
lle
d S
h
u
n
t Acti
ve P
o
w
e
r Filter Us
ing
P
o
lariz
e
d
Ram
p
time C
u
rre
nt
Contro
lle
d. Ele
c
trical an
d com
puter Eng
i
n
eeri
ng
Perth Curti
n
Universit
y
of T
e
chn
o
lo
g
y
. 200
6.
[8]
eEll’A
qu
ila A, Lecci A, Zanch
e
tta P, Liserre M.
Fuzz
y activ
e
filter
p
e
rform
anc
e
in
trans
ie
nt con
d
iti
ons.
EPE 2001.
[9]
M Izhar, CM H
adzer, M S
y
afr
udi
n, S
T
a
ib, S Idris.
Performance for pass
i
ve and activ
e
po
w
e
r filter in
reduc
ing h
a
rm
onics i
n
the dis
t
ributio
n s
y
ste
m
. 2004.
[10]
G Da
w
e
i, L
Qi
ngch
un, S
Xla
o
rui. D
e
si
gn
a
nd
per
forma
nc
e of
an
active
po
w
e
r filter
for
un
bal
anc
ed
loa
d
s. 200
2.
[11]
HH T
u
mbelak
a, LJ Borle.
Applic
atio
n of a Shunt Active Pow
e
r
F
ilter to Compe
n
sate
Multipl
e
No
n-
l
i
n
ea
r Lo
ad
s.
Presente
d
at Australas
i
an
Univers
i
ties
P
o
w
e
r E
ngi
ne
e
r
ing
Confer
en
ce (AUPEC)
.
Melb
ourn
e
, Au
stralia. 20
02.
[12]
Z
hang C
h
a
o
, Ren Z
i
-Hu
i
, Z
hang Yi-J
un, Ma Xi
ao-P
i
ng. S
hunt Active Po
w
e
r F
ilter S
y
st
em Desi
gn fo
r
Inter-harmonic.
Internati
o
n
a
l Jo
urn
a
l
of Pow
e
r Electron
ic
s and
Dri
v
e Syste
m
s
DOI: 10.11591/ijpeds.v3i4.4442
[13]
Raje
ndr
a Ap
ar
nathi, V
ed V
y
as D
w
i
v
ed
i. A
Voltag
e C
ontr
o
ller
in
Photo-
Voltaic S
y
stem
w
i
t
h
B
a
tter
y
Storage
a
n
d
App
licati
ons.
Internati
o
n
a
l
Jour
nal
of
Pow
e
r El
ec
tronics
and
Drive
Syste
m
s
DOI: 10.11591/ijpeds.v3i4.4549
[14]
Nur Moh
a
mma
d, Md Asiful Islam,
T
a
requl K
a
rim,
Quazi De
l
w
ar Hoss
ai
n. Improve
d
Solar
Photovolta
i
c
Arra
y
Mo
del
w
i
th F
L
C Based
Maximum Po
w
e
r Point T
r
acking
. Internatio
n
a
l Jour
nal of E
l
ectrical a
n
d
Co
mp
uter Engi
neer
ing (IJECE
)
DOI: 10.11591/ijec
e
.v2i6.
1328
Evaluation Warning : The document was created with Spire.PDF for Python.