TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 2, May 2015, pp. 222 ~ 22
7
DOI: 10.115
9
1
/telkomni
ka.
v
14i2.742
3
222
Re
cei
v
ed
Jan
uary 29, 201
5
;
Revi
sed Ap
ril 10, 2015; Accepted Ap
ril 25, 2015
Rotor Position Sensorless Control of BLDC Motor
based on Back Emf Detection Method
M. Murugan*
, R. Ja
y
a
bha
rath, C. Guru
nath
an
K.S.Rangas
am
y col
l
e
ge of T
e
c
hno
log
y
,T
iruchen
go
de, Indi
a
.
Corresp
on
din
g
author, e-mai
l
: marimuruga
n81
@
g
mai
l
.
co
m
A
b
st
r
a
ct
In this paper a
n
improve
d
ba
ck emf
d
e
tecti
on me
tho
d
is
p
r
opos
ed. T
h
e
motor
n
eutra
l
voltag
e
i
s
ele
m
enate
d
a
n
d
the ph
ase b
a
ck e
m
f
z
e
r
o
crossin
g
poi
nt
can be
directly
extract
ed by
detectin
g
volta
g
e
differenc
e
bet
ween the phas
e te
r
m
inal and the
midpoint of
the
dc link. Here filt
ering c
i
rcuit
is
not
needed
and the BL
DC
motor is pr
ovid
ed w
i
th PW
M control of 10
0%
duty ratio w
h
ich is present
ed in this pap
er. T
o
perfor
m
the i
n
v
e
rter co
mmutat
ion, t
her
e is a
nee
d of six co
mmutati
on si
gn
als w
h
ich is o
b
t
aine
d by se
nsi
n
g
only o
ne of the three ph
ase
termi
nals th
at reduc
es t
he cost of the sensing ci
rcu
i
t. T
he reducti
on of th
e
imbal
anc
e in the six co
mmut
ation si
gna
ls w
h
ich are
cau
s
ed by the as
ymmetric
al be
havi
o
r of the thr
e
e
phas
e w
i
ndin
g
s
in BLDC
motor had b
e
e
n
reduce
d
in a
varied sp
eed
range. It simplifies th
e starting
proce
dure a
n
d
achiev
es the
motor perf
o
rma
n
ce ov
er a
w
i
de speed r
ang
e. T
h
is propos
ed
meth
o
d
is
ana
ly
z
e
d thr
o
u
gh the si
mu
lati
on resu
lts usin
g MAT
L
AB Simu
link.
Ke
y
w
ords
: BL
DC motor,
z
e
r
o
cross detector
,
sensorless, to
rque ri
ppl
e.
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Brushed
DC
motors de
pe
nd on
a me
chani
cal
syste
m
to tran
sfer
curre
n
t, while
AC an
d
bru
s
hle
s
s
DC m
o
tors u
s
e an
ele
c
tro
n
ic
me
chani
sm to
control
curre
n
t.
The
brushed
mo
tors
have a
woun
d a
r
matu
re
at
tache
d
to
the
center
with a
pe
rman
ent
magnet
bon
d
ed to
a
steel
ring
surro
undi
ng t
he rotor.
As t
he b
r
u
s
he
s
come into
cont
act
with the
commutator th
e current p
a
sse
s
through to the armature coils
. Br
u
s
h
e
d
motors a
r
e
not only la
rg
er tha
n
their
bru
s
hle
s
s
co
unter
parts; th
ey al
so h
a
ve a
sh
orter se
rvice l
i
fe.
The brushes i
n
the
bru
s
he
d moto
r a
r
e u
s
u
a
lly ma
de
of ca
rb
on
or graphite
co
mpoun
ds wh
ich
we
ar
du
ring u
s
e
[1-4].
These
brushes will
requ
ire
maintena
nce
and repl
ace
m
ent
over time, so the motor will ne
ed to be accessible to en
sure
contin
ued se
rvice.
As
the
bru
s
he
s wea
r
the
n
o
t
cre
a
te du
st but
noise
ca
used
by the
rub
b
i
ng
again
s
t the commutators [
5
-7].
AC ind
u
ctio
n
motors
and
BLDC moto
rs d
o
n
o
t dep
end
upon
th
e me
cha
n
ical
syste
m
(brushe
s
) to
co
ntrol
current.
The AC and
BL
DC
motors p
a
ss cu
rrent th
rough
the
st
ator
(ele
ctrom
agn
et) which i
s
con
n
e
c
ted to
AC p
o
wer
dire
ctly or vi
a a
solid
-state ci
rcuit. In
AC
indu
ction m
o
tors
the
roto
r
turn
s in
re
sp
o
n
se
to t
he
"i
n
ductio
n
" of a rotating
ma
gn
etic
field
within
the s
t
ator, as
the current
pass
e
s
[
8],[9].
Rather
than induc
i
ng t
he rotor in
a brus
hless
DC
motor,
pe
rma
nent m
agn
ets a
r
e
b
ond
ed
directly to
th
e rotor,
as th
e current
pa
sse
s
th
rou
gh t
h
e
stator, th
e po
les
on th
e ro
tor rotate in
relation
to th
e
e
l
e
c
tr
oma
gne
tic
po
les
c
r
ea
te
d
w
i
th
in
th
e
stator, creati
ng motion. A BLDC moto
r is highly
reli
able sin
c
e it doe
s not have any bru
s
he
s to
wea
r
out and
repla
c
e.
Advance
s
i
n
the semicond
uctor an
d m
agneti
c
mate
rial in
du
strie
s
made
it po
ssible
to
mas
s
-
p
ro
du
c
e
lo
w
co
st
B
L
DC
ma
chi
nes
in l
a
rge
qua
ntities. I
deally, the
s
e
motors can
be
deploye
d
in a
n
y of the are
a
s where mo
re traditi
o
nal
(brushed d
c
, synchro
nou
s,
and indu
ctio
n)
motors have
been u
s
e
d
. The BLDC mo
tors a
r
e pa
rt
icula
r
ly gainin
g
market sh
a
r
e in ro
botics,
con
s
um
er a
p
p
lian
c
e
s
, po
wer to
ols, a
nd man
u
fact
uring
autom
ation. A typical BL
DC m
o
tor
con
s
i
s
ts
of a
Perm
ane
nt
Magnet
Synchron
ou
s
m
a
chine (PMSM)
fed with a Voltage
So
urce
Inverter
(VSI). As the
roto
r
magnet
s typi
cally h
a
ve
hig
h
ele
c
tri
c
al
re
sista
n
ce, the
rotor lo
sses a
r
e
small
contri
b
u
ting the hig
h
e
r efficie
n
cy. The moto
r ca
se can b
e
en
tirely encl
o
se
d and p
r
ote
c
ted
from di
rt or
other foreign matter. A BLDC mo
tor,
for
the sam
e
mechani
cal work output, will
usu
a
lly be
smaller than
a b
r
ushed
DC m
o
tor, a
n
d
al
ways sm
aller th
an
an
AC i
ndu
ctio
n
motor.
The B
L
DC motor i
s
small
e
r be
cau
s
e its
bo
dy has less
heat to dissi
pate.
From that
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Rotor Po
sitio
n
Senso
r
le
ss Control of BLDC
Motor bas
ed on Back
EMF… (M. Murugan)
223
stand
point, B
L
DC moto
rs
use fe
we
r ra
w mate
rial
s to build, a
nd
are
better fo
r the environ
ment.
Brushle
ss m
o
tors h
a
ve longer
servi
c
e
lives
and are
cleane
r and
quieter be
ca
use they do not
have part
s
the rub o
r
we
ar during u
s
e [1
0-11].
2. Sensorles
s
Metho
d
Wi
th Ba
ck EMF
Differ
e
nc
e Estim
a
tion
The p
r
op
ose
d
schem
e util
ize
s
the Ba
ck EMF differen
c
e b
e
twe
en t
w
o p
h
a
s
e
s
for BLDC
sen
s
o
r
le
ss
drive instead
of using th
e ph
ase Ba
ck
EM
F. Figure
1 shows the e
q
u
i
valent circuit
of
an Y conn
ecti
on BLDC mot
o
r and the inv
e
rter top
o
logy
.
Figure 1. Circuit Diagram o
f
BLDC Moto
r and Inverter
The
ze
ro-cro
ssi
ng
points o
f
the ba
ck EM
F in e
a
ch p
h
a
s
e m
a
y be
an
attractive fe
a
t
ure to
use for
sen
s
i
ng, beca
u
se these poi
nts
are ind
epe
nd
ent of speed
and occu
r at rotor positio
ns
whe
r
e the p
hase win
d
ing
is not excited. Ho
wever, these point
s do not correspon
d to the
comm
utation instant
s.
Therefore,
the sig
nals mu
st be
pha
se shifted
by 90° electri
c
al befo
r
e the
y
can be u
s
e
d
for commut
a
tion. The detection of
the third harm
onic comp
on
ent in back EMF,
dire
ct cu
rrent
control algo
rithm and ph
a
s
e lo
cked lo
o
p
s have
bee
n pro
p
o
s
ed t
o
overcome t
h
e
pha
se-shiftin
g
probl
em.
Figure 2. Phase Back Emf of BLDC Mot
o
r
The Figu
re 2 sho
w
s the
Phase Back EMF of BLDC Motor. Table 1 disp
lays the
comm
utation
seq
uen
ce
with back EMF
differen
c
e e
s
timation meth
od whi
c
h impl
ies that po
sitive
sign
indi
cate
s the
current
ente
r
ing
in t
o
the
st
ato
r
windi
ng
and
the n
egative
sign
indi
cate
s th
e
curre
n
t leavin
g from the st
ator wi
nding.
At any
instant two stato
r
windi
ng
s are
energized a
n
d
one wi
ndin
g
is floating. Equation (1),
(2) & (3
) implies the v
o
ltage eq
uati
on of the st
ator
windi
ng
s.
an
a
a
a
a
an
e
d
t
di
L
i
R
V
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 222 – 227
224
bn
b
b
b
b
bn
e
d
t
di
L
i
R
V
(2)
cn
c
c
c
c
cn
e
dt
di
L
i
R
V
(3)
Table 1. Co
m
m
utation Seq
uen
ce with B
a
ck Emf Differen
c
e Estimat
i
on Method
To simplify the explan
atio
n of how to
oper
ate a three pha
se BL
DC m
o
tor, a
typical
BLDC m
o
tor with only three
coil
s is
consi
dered.
When moto
r coils a
r
e correctly sup
p
lie
d, a
magneti
c
field is cre
a
ted
and the rotor moves.
T
he most ele
m
entary co
m
m
utation driv
ing
method u
s
ed
for BLDC motors i
s
an on
-o
ff schem
e: a coil is eith
er condu
cting o
r
not con
d
u
c
tin
g
.
Only two win
d
ing
s
are
su
pplied at the same ti
me a
nd the third
windi
ng is flo
a
ting. Con
n
e
c
ting
the coils to th
e po
we
r
and
neutral
b
u
s in
duces the
current flo
w
. T
h
i
s
i
s
refe
rre
d t
o
a
s
trape
zoi
dal
comm
utation or
blo
c
k com
m
utati
on. The
stre
ngth of t
he ma
gnetic
field dete
r
min
e
s the fo
rce a
n
d
spe
ed of the motor. By varying the current flow
thro
ugh the coil
s,
the speed a
nd torqu
e
of th
e
motor can b
e
adju
s
ted. The mo
st co
mmon way to
control the
current flow is to control
the
averag
e
current flow th
ro
ugh the
coils. PWM (Pul
se Width
Mod
u
lation) is
used to a
d
ju
st the
averag
e voltage and the
r
e
b
y the averag
e curre
n
t, inducin
g the sp
e
ed.
3. Align and Go Techniq
u
e Used in BL
DC Mo
tor
In PM b
r
u
s
hl
ess
DC ma
chine
s
, the
m
agnitud
e
of
the b
a
ck EM
F is a
fun
c
tion of
the
instanta
neo
u
s
rotor
po
sition an
d h
a
s
trape
zoid
al v
a
riation
with
120º flat
spa
n
. Ho
weve
r,
in
pra
c
tice, it is difficult to measure th
e b
a
ck EMF, be
cau
s
e
of the rapidly
cha
n
g
ing
current
s in
machi
ne
win
d
ing
s
and i
n
d
u
ce
d voltage
s due to
pha
se
swit
ching.
Figure
3 sho
w
s th
e switch
ing
states of i
n
ve
rter
and
initial
roto
r
po
sition
of
BL
DC Mot
o
r. T
he
ba
ck
EMF is not
su
fficient en
oug
h
at startin
g
un
til the rotor
attains
some
speed. Th
erefore, it is
a u
s
ual practi
ce t
o
make the i
n
itial
accele
ration
unde
r ope
n-l
oop control u
s
ing a ramp
e
d
freque
ncy signal so that the ba
ck-EMF
is
measurable
for th
e
controll
er to
lo
ck in.
One
of
the
po
pular sta
r
ting
method
s i
s
“a
lign a
nd
go”,
i
n
whi
c
h the rotor is ali
gned
to the spe
c
ified po
si
tion b
y
energi
zing
any two pha
ses of the stat
or
and then the
rotor is a
c
celerate
d to the de
sire
d speed a
c
cordi
ng to the given com
m
utat
ion
seq
uen
ce
s. T
he
“alig
n a
n
d
go
”
method
suffers
dema
gnetization of perman
ent magnet
s due
to
large in
stanta
neou
s pe
ak
currents at sta
r
ting.
3.1. Allingment of
Rotor Position
In the BL
DC
motor, o
n
ly two
pha
se
s of
the
three
-
ph
ase
stato
r
wi
nding
s a
r
e
e
x
cited at
any time by
utilizing alternative six
excited voltage vectors
V
1
∼
V
6
, which a
r
e
sketched
in
Fig.
3(b
)
. Th
at is
why the
curre
n
t ca
n flo
w
in
to only two of
the th
ree
wi
n
d
ing
s
a
nd
co
mmutated
every
60°
of ele
c
tri
c
al
angle. At
stand
still, the
initial ro
tor
p
o
sition
is
alig
ned in
to o
n
e
of six p
o
sitio
n
s
that are dete
r
mine
d by the six excited
voltage
vectors to en
ergi
ze two p
h
a
s
es of the BLDC
motor.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Rotor Po
sitio
n
Senso
r
le
ss Control of BLDC
Motor bas
ed on Back
EMF… (M. Murugan)
225
After aligni
ng
the rotor po
sit
i
on, the
sta
r
t-up p
r
o
c
e
dure
is con
s
ide
r
e
d
for a
c
cele
ra
ting the
BLDC moto
r f
r
om
stan
dstill
up to
a
sp
eci
f
ic spee
d,
a
s
the sen
s
orl
e
ss
schem
e i
s
n
o
t self
-sta
rtin
g,
the motor
sh
ould be
start
ed and
can
b
e
bro
ught to
a ce
rtain spe
ed at whi
c
h t
he ze
ro
-cro
ssing
point of the b
a
ck-EMF
ca
n
be dete
c
ted.
As the fr
e
que
ncy is
gradu
a
lly incre
a
sed,
the roto
r spe
ed
also i
n
cre
a
se
s. The
mag
n
i
t
ude of a
ref
e
ren
c
e
voltag
e is
adju
s
ted
as
pro
p
o
r
tio
nal to the
rot
o
r
spe
ed. A pha
se a
ngle
can
be obtai
ned
from inte
g
r
ati
ng the rotor
speed
and th
e
pulse wi
dth
of
the gating si
g
nals i
s
modul
ated with the
referen
c
e voltage mag
n
itud
e. The six PWM sig
nal
s with
60° pha
se
di
spla
cem
ent are gen
erate
d
corre
s
po
nd
ing to th
e p
h
a
se
an
gle
wi
thout any
rot
o
r
positio
n information. Whe
n
the rotor sp
eed re
ache
s at 2500rpm, the back-EMF
can be sen
s
ed
to provide the
rotor po
sition
information a
nd the
syste
m
is switche
d
to the sensorless co
ntrol.
Figure 3(a
)
. Switchi
ng State of The Invert
er
Figure 3(b
)
. Initial Rotor P
o
sition
As it is well kno
w
n, the d
e
viation of thes
e voltage
vectors is every 60° of electri
c
al
angle. T
he
st
ator flux i
s
no
t orthog
onal t
o
the
rotor flu
x
gene
rated
by the pe
rma
nent-m
agn
et at
the begi
nning
of the sta
r
t-u
p
point
if the
conve
n
tional
alignme
n
t me
thod is
used.
Thus, th
e initial
motor torque
can’t obtai
n the maximum
value at this
t
i
me. Also, the
stator
windin
g
incu
rs a hig
h
uncontroll
abl
e curre
n
t by mean
s of the fixed dc
po
wer su
pply and
motor param
eters. Thi
s
mi
ght
damag
e the
stator win
d
ing
of the motor i
f
the active
time for ali
gnin
g
a rotor p
o
si
tion is too l
o
n
g
.
The co
nventi
onal sta
r
t-up
method
reve
als so
me
une
xpected
d
r
awbacks that
mi
ght de
gra
d
e
the
perfo
rman
ce
of the BL
DC
motor. To
ov
ercome th
ese
re
stri
ctions, a
sim
p
le start
-
up method
n
o
t
only to achie
v
e the maximum sta
r
ting
motor torqu
e
but also to
control the
stator
current
is
prop
osed. Th
e prin
ciple of
this techniq
ue ca
n
be remarka
b
le a
s
explaine
d in Figure 3. The
curre
n
t
path
and po
sition of
the
i
n
itial voltage
ve
cto
r
V
i
are
sho
w
n in
Figu
re
3
re
sp
ectively. In
Figure 4 flow
cha
r
t for prop
ose
d
start
-
up
me
thod sen
s
orle
ss o
p
e
r
ati
on have be
en
explained.
Figure 4. Flow Ch
art for P
r
opo
se
d Start-Up M
e
thod
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 2, May 2015 : 222 – 227
226
Unli
ke the
ca
se in th
e
con
v
entional met
hod
wh
e
r
e
on
ly two stato
r
windi
ng
s are
excited,
all thre
e
stato
r
wi
ndin
g
s are en
ergi
ze
d i
n
the
ca
se
of the p
r
op
ose
d
sta
r
t-u
p
scheme
by u
s
in
g a
spe
c
ific initial
voltage vector
V
i
(1,0,0).
As the roto
r is located bet
wee
n
Voltage
vector
V
1
and
V
2
,
the voltage
v
e
ctor
V
3
is o
r
thogo
nal to
V
i
. It is
cho
s
e
n
as th
e
next a
pplied
voltag
e vecto
r
i
n
order
to achieve m
a
ximum start
i
ng motor torque at st
art-up. This met
hod ca
n pre
v
ent a surg
e
of
curre
n
t that
may dam
age
the moto
r a
s
i
n
the
ca
se
of
utilizing
the
convent
ion
a
l method,
a
nd also
it is robu
st with motor
pa
rameter chan
ges. T
he m
o
tor may
rotat
e
reve
rsely d
u
ring
alig
nm
ent
according to the roto
r po
sition before alig
nment.
4. Simulation Resul
t
s
The clo
s
e
d
loop co
ntroll
e
r
for a three
phase b
r
u
s
hless DC m
o
tor is mod
e
l
ed usin
g
MATLAB/Simulink i
s
sh
own in Figure 5. Perman
ent M
agnet Synchronou
s mo
to
r with trap
ezoidal
back EMF
is model
ed a
s
a Bru
s
hl
ess DC Moto
r.
The
cont
rolle
r receives th
e a
c
tual
spe
e
d
sign
als a
s
its
input, conve
r
t
s
it in to appropria
te voltag
e sign
als. Th
e gate sig
nal
s are gen
erat
ed
by compa
r
ing
the actual speed
with the refere
n
c
e speed. Thu
s
a
closed loop
spe
ed control
is
achi
eved with
the help of PI contro
l, present in the con
t
roller blo
c
k. The thre
e ph
ase
stator ba
ck
EMF signal
s
are inp
u
t of the Zero Crossing
Dete
ct
or. The output of the Ze
ro Crossin
g
Dete
ctor
is given to th
e PI controlle
r, whi
c
h
have
the i
nput
s from the Ze
ro
Cro
s
sing
Det
e
ctor an
d a
c
tual
spe
ed
of th
e BLDC
mot
o
r. Th
e MA
TLAB sim
u
la
tion dia
g
ra
m
of ove
r
all
are
obtain
e
d
for
prop
osed con
c
ept
s.
Figure 5. Simulink Mo
del o
f
propo
sed S
ensorle
ss BL
DC
Drive
After aligning
the rotor p
o
s
ition to a know
n initial condition, the
open lo
op st
art- up
method is im
plemente
d
to run the motor to the
rated spe
ed. By attaining the spe
c
ific rated
spe
ed the
B
L
DC moto
r
switch
es to
th
e Sen
s
orl
e
ss co
ntrol
whe
r
e the b
a
ck
e
m
f is d
e
tecte
d
.
Figure 6 sh
o
w
s the Spe
e
d
Respon
se
Curve of the BLDC Motor.
Figure 6. spe
ed re
spo
n
se curve
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Rotor Po
sitio
n
Senso
r
le
ss Control of BLDC
Motor bas
ed on Back
EMF… (M. Murugan)
227
5. Conclusio
n
In this pape
r,
the back emf
zero
crossin
g
point ca
n be dire
ctly extracted by sen
s
ing the
differen
c
e be
tween the
m
with pro
p
e
r
PWM strateg
y
. To obtain the six com
m
utation sig
n
a
ls,
there
is no
n
eed
of moto
r neut
ral volta
ge a
nd
no fil
t
ering
ci
rcuit. Pwm
duty ratio can
re
ach
maximum a
s
100% with
no extra po
wer suppli
e
s f
o
r sen
s
ing
ci
rcuit. Ba
sed
on the propo
sed
method the
r
e
is po
ssible t
o
implem
ent in indu
strial
a
pplication wit
h
low
co
st.O
nly three m
o
tor
terminal
volta
ges want to
be me
asured
thus
eradi
ca
ting the
nee
d for
motor
neutral
volta
ge.
Run
n
ing th
e
machi
ne i
n
sensorle
ss mo
de is then
projecte
d, in th
is pa
pe
r, ma
king
use of t
h
e
innovative ze
ro-crossin
g d
e
tection al
gorithm. The
ap
plicatio
ns of
bru
s
hle
s
s DC (BLDC) mot
o
rs
and drive
s
ha
ve grown sig
n
ificantly in rece
nt y
ears i
n
the applia
n
c
e ind
u
stry a
nd the autom
otive
indu
stry. Sensorl
e
ss BL
DC drive is very
pref
e
r
abl
e for comp
act, lo
w co
st, low m
a
intena
nce, and
high reliabilit
y system. Th
e co
nvention
a
l sen
s
o
r
le
ss method b
a
sed on n
eutral motor poi
nt has
limited its ap
plicatio
n sin
c
e it has relat
i
ve spee
d ra
nge, suffe
rin
g
from hig
h
comm
on Mo
de
voltage noi
se
and high fre
q
uen
cy swit
chi
ng noi
se.
Referen
ces
[1]
Becerra
RC, J
ahns
T
M
, Ehsani
M.
F
our-q
u
adra
n
t se
nsorl
e
ss br
ushl
ess
ECM driv
e.
In
Procee
din
g
,
IEEE- APEC’9
1 Confer
enc
e. 199
1: 202-
209.
[2]
Che
ng KY, T
z
ou YY. Desig
n
of a sensor
less commutation IC
for BLDC motors.
IEEE
Transaction on
Power Electronics
. 2003; 1
8
(6
): 1365-1
3
7
5
.
[3]
Damo
dhar
an
P, Vasud
e
va
n
K. Sens
orl
e
ss brus
hless
D
C
motor
driv
e
bas
ed
on
the
zero-cross
in
g
detectio
n
of b
a
ck e
l
ectromot
ive forc
e (E
M
F
) from the
lin
e vo
ltage
d
i
fference.
IEEE T
r
ansaction
on
Energy C
onver
sion
. 20
10; 25(
3): 661-6
68.
[4]
José
Carl
os G
a
mazo-R
ea
l, E
r
nesto V
á
zq
ue
z-Sánch
e
z, Ja
i
m
e Gómez-Gi
l. Positi
on
an
d S
pee
d C
ontro
l
of Brushl
ess D
C
Motors Usin
g Sens
orless T
e
chn
i
qu
es a
n
d
Applic
atio
n T
r
ends.
Se
nsors 201
0
, 201
0;
10: 690
1-6
947.
[5]
Jung
DH,
Ha I
J
. Lo
w
-
c
o
st se
nsorl
e
ss co
ntrol
of
brus
hl
ess
DC m
o
tors
usi
ng
a freq
ue
nc
y-ind
epe
nd
ent
phas
e shifter.
IEEE Transaction on Power Electronics
. 20
00
; 15(4): 744-7
5
2
.
[6]
Lai
YS, Sh
yu
F
S
,
T
s
eng SS.
Ne
w
i
n
itia
l p
o
s
ition
detecti
on
techn
i
qu
e for
three-p
has
e br
ushl
ess D
C
motor
w
i
t
h
o
u
t positi
on a
nd c
u
rrent sens
ors.
IEEE Transaction on Indus
trial Applications
.
2003; 3
9
(2)
:
485-
491.
[7]
Lee
W
J
, Sul S
K
. A ne
w
starti
ng m
e
thod
of B
L
DC m
o
tors
w
i
thout p
o
sitio
n
s
ensor.
IEEE Tr
ansaction
on
Industria
l Appl
i
c
ations
. 20
06;
42(6): 15
32-
15
38.
[8]
Ogasa
w
a
r
a S,
Akag
i H. A
n
appr
oach
to
p
o
sitio
n
se
nsorl
e
ss driv
e for
brush
l
ess
DC
motors.
IEEE
T
r
ansactio
n
on
Industrial Ap
pl
icatio
ns.
199
1; 27(5): 92
8-9
3
3
.
[9]
Shen J
X
, I
w
as
aki S. Sensor
l
e
ss control
of ultrah
igh-s
p
e
e
d
PM brush
l
es
s motor usin
g PLL a
nd thir
d
harmo
nic back
EMF
.
IEEE T
r
a
n
sactio
n on Ind
u
strial El
ectron
ics.
2006; 5
3
(2
): 421-42
7.
[10]
Singh B, Singh S. Stat
e of the
art on
perma
n
ent mag
net
bru
s
hless
DC mot
o
r driv
es.
Jour
nal of
Pow
e
r
Electron
ics.
20
09;. 9(1): 1.
[11]
Su GJ, McKeever JW
. Lo
w
-
cost sensor
les
s
c
ontrol
of brushl
ess DC m
o
tors
w
i
th im
p
r
oved s
pee
d
rang
e.
IEEE Tr
ansaction on Power Electronics.
2004; 19(
2)
: 296-30
2.
[12]
M Murug
an, R
Je
yab
harat
h, P Veen
a. An Effi
ci
ent Active
Cl
amp R
e
son
ant
DC Li
nk for B
L
DCM Dr
ive
S
y
stems.
Euro
pea
n Jour
nal o
f
Scientific Res
earch
. 20
12; 8
8
(4): 475-
48
3.
[13]
S I
w
as
aki, J
X
Shen. Se
nsorl
e
ss control
of ultrah
igh-s
p
e
e
d
PM brush
l
es
s motor usin
g PLL a
nd thir
d
harmo
nic back
EMF
.
IEEE T
r
a
n
sactio
n on Ind
u
strial El
ectron
ics
. 2006; 5
3
(2
): 421-42
7.
[14]
K Vasu
dev
an,
P D
a
mod
har
an. Se
nsorl
e
s
s
brus
hless
D
C
motor
driv
e
bas
ed
on
the
zero-cross
in
g
detectio
n
of b
a
ck e
l
ectromot
ive forc
e (E
M
F
) from the
lin
e vo
ltage
d
i
fference.
IEEE T
r
ansaction
on
Energy C
onver
sion.
20
10; 25(
3): 661-6
68.
[15]
JW
McKeever, GJ Su. Lo
w
-
cost sensor
les
s
c
ontrol
of brushl
ess DC m
o
tors
w
i
th im
p
r
oved s
pee
d
rang
e.
IEEE Tr
ansaction on Power Electronics
. 2004; 19(
2)
: 296-30
2.
[16]
M Muruga
n, R Je
yab
harath
,
P Veena. Stabil
i
t
y
A
nal
ys
i
s
of BLDC Motor Drive ba
sed on Inp
u
t
Shap
ing.
Intern
ation
a
l Jo
urna
l of Engin
eer
ing
and T
e
ch
no
log
y
. 2013; 5(5): 4
339-
434
8.
[17]
Se
yed
Mohs
en
mir b
a
g
heri, S
e
yed
Saj
j
e
d
S
a
le
hi Gh
ale
h
S
e
fid, S
y
e
d
Mo
hamme
d H
o
ss
ein M
ous
avi
.
Investigati
ng th
e effect of diffe
rent PW
M Modes
on Rip
pl
e Reducti
on in F
i
v
e
Phase BL
DC
Motor
w
i
t
h
Ne
w
Meth
od.
T
E
LKOMNIKA Indo
nesi
an Jo
u
r
nal of Electric
al Eng
i
ne
eri
ng.
2014; 1
2
(7): 5
129-
513
6.
[18]
Min-Ya
n DI, Fuzz
y
C
ontro
l Anal
ysis
w
i
t
h
Ba
ck Emf in W
a
shin
g Machi
nes.
T
E
LKOMNIKA Indones
ia
n
Journ
a
l of Elec
trical Eng
i
ne
eri
ng.
201
4; 12(5)
: 3825-3
8
3
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.