TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 3, Dece
mbe
r
2
015, pp. 553
~ 558
DOI: 10.115
9
1
/telkomni
ka.
v
16i3.898
5
553
Re
cei
v
ed Se
ptem
ber 8, 2015; Re
vi
sed
No
vem
ber 1
0
,
2015; Accep
t
ed No
vem
b
e
r
28, 2015
An Optimized Resonant-cap Ka-band IMPATT Oscillator
for Broadband Communication
L.P. Mishra
1
, M.N. Mohan
t
y
*
2
, S.
Chakraborty
3
, M.
Mitra
4
1,2
Dept. of ECE, SOA Universi
t
y
, Bhub
an
es
w
a
r, India
3
Dept. of ECE,
MCKV Institute of
Engine
eri
n
g
,
Ho
w
r
ah, Indi
a
4
Dept. of ENT
C
, IIEST
, Shibpur, W
e
st Bengal, Indi
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: mihirmoh
ant
y@soa
univ
e
rsit
y.ac.i
n
A
b
st
r
a
ct
De
ma
nd for
capac
ity an
d
ba
ndw
idth
i
n
creas
ing
da
y-by-day in
t
he area
of w
i
reless
communic
a
tio
n
.
One of the soluti
ons is th
e
utili
z
a
ti
on
of frequ
ency b
a
n
d
s
for broa
dba
n
d
co
mmun
icati
o
n
that is re
lated
to satel
lite c
o
mmu
n
ic
at
ion. M
o
stly Ka-ba
nd
is
used
in s
a
te
l
lit
e co
mmu
n
icati
on. In this
pa
p
e
r,
an atte
mpt is taken to d
e
si
gn
an opti
m
i
z
e
d
r
e
son
ant-c
a
p
Ka-ba
nd osc
ill
ator. To obtain
o
scillati
on fro
m
Ka
-
ban
d IMPAT
T
devic
e, it has been e
m
be
dde
d
in a reson
ant
cavity for w
h
ich reson
ant cap
structure is used
.
F
r
om this stu
d
y
, it is found t
hat
the su
pp
ly
D.C voltag
e f
r
om th
e t
op of
the
di
ode pro
v
ides a
matchi
ng
netw
o
rk betw
een the di
ode a
nd the lo
ad to achi
eve maxi
mum p
o
w
e
r. Keepi
ng the bre
a
k
dow
n voltag
e
of
the IMPAT
T
di
ode
fixe
d, the
variati
on
of b
i
a
s
curre
nt
h
e
lps
for d
e
tai
l
ed
st
udy
an
d
mec
h
anic
a
lly
tun
i
ng
has
bee
n do
ne w
i
th
a variati
on
of cap h
e
ig
ht, Cap
dia
m
eter
as w
e
ll as by v
a
ryin
g
the
pos
ition
of the short us
ing
slidi
ng sh
ort tuner an
d verifi
e
d
exper
i
m
e
n
tal
l
y. Opti
mi
z
a
t
i
o
n
result is
ma
de
to
get maxi
mu
m output
w
i
t
h
max
i
mu
m effici
ency for a
n
op
timi
z
e
d ca
p h
e
i
ght, di
a
m
et
er,
and
positi
on
of slidi
ng s
hort tuner. W
i
th the
s
e
facts the w
o
rk i
s
presente
d
dif
f
erence tun
i
n
g
meth
ods for th
e reson
ant cap
IMPAT
T oscill
ator
.
Ke
y
w
ords
: re
sona
nt cap
IMPATT oscillat
o
r, Ka-ba
nd IM
PA
TT oscillat
o
r, mec
h
a
n
ica
l
t
uni
ng
of IMPATT,
slidi
ng sh
ort tuner
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Wirel
e
ss and satellite com
m
unications
are
r
apidly growing industries
which are slated
for
explo
s
ive gro
w
th
in em
ergin
g
cou
n
tri
e
s
a
s
well as cou
n
trie
s with
advan
ced
e
c
onomie
s.
F
r
om
the ra
dio to
satellite TV, the Intern
et to cellul
a
r
com
m
unication, p
eople
are
co
mmuni
cating
more
now than
eve
r
b
e
fore. A
n
d
it is
preci
s
ely
this
co
mmun
i
cation
that i
s
ca
usi
ng
exp
onential
growth
in scie
nce a
nd te
chn
o
log
y
stand
ard
o
f
living and
eco
nomi
c
p
o
w
er.
Thi
s
fa
ct alone
is
what
sep
a
rate
s th
e first wo
rld
from the developi
n
g
. The re
se
arch in the area of wirel
e
ss
comm
uni
cati
on h
a
s be
e
n
prog
re
ss i
n
many
way
s
. Autho
r
s h
a
ve be
en
worki
ng
on
M
I
MO
techni
que
s f
o
r effi
cient
communi
catio
n
. Similarly t
he mo
bile
eq
uipment l
o
ca
tion an
d velo
city
have been a
nalyze
d
for the sam
e
. Ne
verthele
ss th
e hand
off has bee
n left for efficient a
n
d
seaml
e
ss
se
rvice by many
resea
r
chers
[1-4]. But the domina
n
t tre
nd in wi
rel
e
ss comm
uni
cati
on
system
s i
s
to
wards broad
b
and a
ppli
c
ati
ons
su
ch
a
s
multimedia fil
e
tran
sfer, vi
deo tran
smission
and
Inte
rnet acce
ss. The
s
e
ap
plic
ations req
u
ire mu
ch hig
her dat
a
tran
smi
ssi
on
rate
s th
an th
ose
curre
n
tly use
d
for voice
transmissio
n
appli
c
at
io
ns. To a
c
hi
eve the
s
e
hig
her data
rat
e
s,
sub
s
tantially l
a
rge
r
b
and
wi
dths a
nd hi
g
her
ca
rri
e
r
fre
quen
cie
s
a
r
e
req
u
ire
d
. A key roadbl
ock to
impleme
n
ting
these sy
ste
m
s at K
-
ba
nd
(18
-
26.
5 G
H
z)
and
Ka-ba
nd (26.5
-
40
GHz) i
s
th
e n
eed
to develop h
a
rd
wa
re whi
c
h meets the requi
rem
ent
s for high data rate tran
smissi
on in a co
st
effective man
ner.
IMPATT (IMPact Avalanche ioni
zation
Tran
sit Tim
e
) diod
e is
a PN Ju
ncti
on diod
e
operates
at reverse bia
s
to brea
k do
wn an
d
can
gene
rate RF power, wh
en it is prop
erly
embed
ded i
n
a re
son
ant ca
vity.
In cou
r
se of re
se
a
r
ch
different
stru
cture
s
of IMP
A
TT diode
s a
r
e
being devel
o
ped by different scie
n
tists using di
fferent semi
con
ducto
r materi
als. The
s
e d
a
ys
IMPATT diode can op
erat
e up to a frequen
cy of 450 GHZ. Thu
s
, it is coverin
g
micro
w
ave,
millimeter wa
ve,
sub
-
milli
meter wave range
of
fre
q
u
enci
e
s. Be
ca
use
of the
availability of th
ese
HF ra
nge
s, IMPATT diod
e day-by-day
beco
m
ing ve
ry
importa
nt in the field of different type
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 553 – 558
554
comm
uni
cati
ons mentio
ne
d
above
and
also be
comi
n
g
a
strategi
c
device fo
r the
use
of defe
n
s
e
peopl
e.
By mean
s of
different
me
thods of tuni
ng
IMPATT
diode
s
ca
n b
e
turned
ove
r
a
wi
de
freque
ncy
ra
nge. In ou
r p
r
oblem the
IMPATT diode
had the
optim
um freq
uen
cy
of 36 G
H
Z
(Ka-
band
), but th
ese
diod
es can give
a rea
s
on
able
amo
unt of po
we
r f
r
om a
freq
ue
ncy rang
e of
34 to
37 GHZ and
can offer m
any sub
-
ba
n
d
s un
der Ka
-band for
different types of
commu
nication.
Thoug
h he
re
the autho
rs h
a
ve indige
no
usly devel
o
p
ed the re
so
n
ant cavity with a po
st and
cap
stru
cture, but the suitab
ility of this method is co
mpa
r
ed at t
he end
with other m
e
thod
s of tuning
su
ch a
s
varying bia
s
cu
rre
n
t, position of
sliding
sho
r
t tuner et
c.
The re
so
nant
cap IMPATT
oscillator
wa
s first re
p
o
rted
by Lee [5] for the millimeter wave
band
an o
w
i
ng to thei
r simplicity of constructi
o
n
a
nd go
od p
e
rf
orma
nce in
microwave a
nd
millimeter
wa
ve freque
ncy
band
s ma
de i
t
very attracti
ve. A wide va
riation of me
chani
cal tunin
g
by varying
th
e sli
d
ing
sho
r
t tune
r fo
r
a
re
so
nant ca
p
IMPATT was ob
se
rved by
Misawa
a
nd
Kenyon [6] for low fre
q
u
ency IMPATT diode
s.
In 1972 Grove
s
and Le
wi
s [7] vary
various
stru
ctural pa
rameters of th
e re
son
ant cap to
obtai
n
maximum po
wer
output at
low fre
que
n
c
y.
Mallik
et.al
[8
] in 1
983
de
ri
ved an
em
piri
cal fo
rmul
a
u
s
ing
thei
r exp
e
rime
ntal d
a
ta related
to
cap
diamete
r
and
the oscillati
on frequ
en
cy. Compute
r
aided de
sig
n
and analysi
s
of broa
dba
nd
comm
uni
cati
on pe
rformed
by autho
rs [
9
-10]. Al
so, the IMPATT o
scill
ator h
a
s
been
utilize
d
for
the same a
n
d
used fo
r Ka band [11
-
14]
2. Design
Dema
nd
s on wirel
e
ss com
m
unication
s have moti
vated the develo
p
ment of RF front-end
circuits toward tens of gigahertz
to achi
eve high-data-rate transm
i
s
sion. Ka band oscillators
are
esp
e
ci
ally de
sign
ed fo
r lo
w
co
st comm
erci
al a
ppl
i
c
a
t
ions.
T
he explosi
on of
cel
l
ular pho
ne
s and
the Intern
et
follows the
next larg
e communi
catio
n
s te
chn
o
log
y
, broad
ban
d co
mmuni
cation
resea
r
ch for large a
m
ou
nt of band
width
that
translate
s to large a
m
ount of inform
ation.
In this
pie
c
e
of wo
rk,
it ha
s b
een
tried
for the
de
sig
n
of Re
so
nant
cap
IMPATT
Oscillato
r
for Ka Band
operation. It can be
useful i
n
sate
llite
bro
adba
nd
com
m
unication fu
rther it h
a
s
b
een
optimize
d
usi
ng m
e
chani
cal tunin
g
. Au
thors h
a
ve u
s
ed
a
re
so
n
ant cap
cavity in
whi
c
h t
he
device i
s
pla
c
ed between t
he bottom b
r
oad wall of a
millimeter
wa
ve guide a
nd
the bottom fa
ce
of a circula
r
metal disc in
the resona
nt cap,
a
s
sh
o
w
n in Fig
u
re
1. A consta
nt current po
wer
sup
p
ly is u
s
ed a
s
a bia
s
throug
h the
post an
d
th
e disc st
ru
cture of the
re
son
ant cap. The
purp
o
se is to
study the eff
e
ct of the
ca
p diam
ete
r
a
nd cap h
e
igh
t
of a resona
nt cap IMPA
TT
oscillator
and
the effect of
plane
of the short
o
n
the o
scill
ation fre
q
uen
cy and
po
wer output. T
h
e
output power can be opti
m
ized
wh
en
the device-circuit interactio
n will take pl
ace. The basic
theory of the desi
gn is expl
ained a
s
follo
ws.
Figure 1.
Sch
e
matic representation of Ka band IMPATT Oscillato
r
The resona
nt cap
co
nsi
s
ts
of disc-p
ost
structu
r
e
with
a flat disc in t
he H
plan
e. The di
sc
and bottom
broa
d wall o
f
the waveg
u
ide form
s a
radial line
cavity around
the diode. The
gene
rated
mi
cro
w
ave
po
wer p
r
op
agate
s
in the
ra
dial
dire
ction of t
he di
sc, a
nd i
s
getting
co
u
p
led
to the waveg
u
ide thro
ugh
the open vert
ical ed
ge
s of
the radial
cav
i
ty. The disc
of the resona
nt
cap a
c
ts a
s
an imped
an
ce transfo
rme
r
and help
s
to match the impeda
nces
betwe
en the low
impeda
nce di
ode a
nd the
high imp
eda
n
c
e
wavegui
d
e
so th
at ma
ximum gene
rated RF
ene
rg
y
can b
e
tran
sferred to the load.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Optim
i
zed
Resona
nt-ca
p
Ka-ba
nd IMPATT Oscill
ator for Bro
adb
and… (L.P. Mish
ra)
555
These p
o
st
a
nd di
sc st
ru
ctur
e
also p
r
ovi
des a lo
w
pa
ss
type
filter to byp
a
ss th
e rip
p
le
pre
s
ent in
the
power
sup
p
l
y
. The re
son
ant cavity is
such th
at it ca
n be al
so
use
d
as
an exte
rnal
heat sin
k
for t
he IMPATT diode.
Whe
n
dire
ct
curre
n
t (DC) bias is a
ppli
ed to
the inp
u
t terminal
s of the oscill
a
t
or, AC
energy is
produ
ced
at the outp
u
t termin
als.
A
C
si
gnal
an
d ra
dio fre
q
uen
cy (RF)
are
synonymo
us,
in the simpl
e
st term
s. Also a
n
os
cillat
o
r can b
e
de
fined as
a DC to RF
ene
rgy
conve
r
ter.
The total current is comp
ose
d
of con
ductio
n
cu
rre
nt and displ
a
ceme
nt cu
rre
nt only
becau
se the
diffusion
cu
rre
nt is n
egli
g
ibly sma
ll.
The total current de
nsity
is given
by the
expre
ssi
on.
I
total
=
q
(
n
,
v
gn
+
p, v
gp
) +
∈
The
sp
atial
variation
of
electri
c
field
in th
e
spa
c
e
ch
arge l
a
yer i
s
o
b
tain
ed from
Poisson’
s eq
uation a
s
:
=
[
+ (p
-n
)]
Whe
r
e:
E = electri
c
field,
q = ele
c
troni
c charge,
N
D
= ioni
ze
d d
onor d
e
n
s
ity,
N
A
= ioni
ze
d a
c
ceptor d
e
n
s
i
t
y,
p = hole d
e
n
s
ity,
n = ele
c
tron d
ensity,
= permittivity of the semicondu
ctor.
The device n
egative re
sist
ance and rea
c
ta
n
c
e are ob
tained from th
e followin
g
:
Z
R
=
Xdx
.
C
o
nd
uc
ta
nc
e G
=
R
22
RX
Z
ZZ
Susceptan
ce
B = -
x
22
RX
Z
ZZ
With el
ect
r
o
m
agneti
c
rad
i
ation effe
cts mu
ch m
o
re
su
btle at K
a
-ba
nd f
r
eq
u
enci
e
s,
and
with
greate
r
su
sce
p
tibility to parasitic effect
s
and l
o
sse
s
,
si
gnifica
ntly greater a
ttentio
n is given
in t
he
techni
que, pa
rticula
r
ly at high power lev
e
ls. The
expe
rimental setu
p, and its result are explai
ned
in the followin
g
se
ction 3.
3. Experimental Setup a
nd Res
u
lts
This
work is going to prese
n
t differe
nt
tuning me
thods fo
r re
son
ant ca
p IMPATT
Oscillator.
But the study of
an
am
plitude control
and stability i
s
a different
aspec
t and thus
no
t
con
s
id
ere
d
h
e
re. T
he
exp
e
rime
ntal a
r
rangem
ent
fo
r
the study
of reso
nant ca
p Ka-ba
nd
IMP
A
TT
oscillator i
s
as shown in Figure 2.
Indigen
ou
sly develop
ed Ka
-ban
d SDR I
M
PATT di
od
e
is u
s
ed. T
he
diode
oscillat
e
s ove
r
a ra
nge
of 34
to 38
GHz
with a brea
kdo
w
n voltag
e of
45v. A maxi
mum po
we
r o
u
tput of 90
m
w
for a m
a
ximum d
c
bia
s
curre
n
t of 1
40mA for
occurre
n
ce of t
he o
scill
ation
.
A variation
of
oscillation fre
quen
cy and p
o
we
r output d
ue to the vari
ation of dc bi
as current is
sho
w
n in Fig
u
re
3. In the g
r
a
ph the
po
we
r outp
u
t increases
non
-lin
early
with d
c
bias current
and
rea
c
h
e
s
a
maximum value and then
starts to fall gradu
a
lly but the freque
ncy increa
se
s more or le
ss
linearly. It i
s
becau
se i
n
th
e G
-
B
slot of
Figure 4
whe
r
e th
e
circuit l
o
cu
s ta
ke
s a
turn. Th
erefore,
the negative
con
d
u
c
tan
c
e
corre
s
p
ondin
g
to the
poin
t
of interse
c
ti
on between t
he active a
n
d
passive characteri
stics de
cre
a
se
s afte
r rea
c
hin
g
a m
a
ximum.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 553 – 558
556
Figure 2. Experime
n
tal arrangem
ent of re
sona
nt cap
Ka-ba
nd IMPATT oscillator
Figure 3. Plot of oscillatio
n
freque
ncy an
d
power outp
u
t vs DC bi
as
current
Figure 4. G-B
plot of Si- IMPATT for different
dc bia
s
curre
n
t density
The
di
men
s
io
n
of
the re
so
nant cap ha
s a
ma
jo
r
im
pa
ct
on output power and
freque
ncy.
As [8], the relation betwee
n
freque
ncy a
nd ca
p dimen
s
ion i
s
depi
ct
ed as:
f
=C/
=
.
Whe
r
e
D is th
e diamete
r
of the re
son
ant cap a
nd L i
s
the heig
h
t of the re
so
nant cap. It has bee
n
experie
nced
with the varia
t
ion of the cap heigh
t, kee
p
ing the ca
p diamete
r
con
s
tant and vice-
ver
s
a.
IMPATT diod
e always o
p
e
rate
s at reverse bia
s
to
brea
k d
o
wn
. As the bre
a
kd
own
voltage i
s
fi
xed, it sh
ows
with va
ryin
g the
bia
s
current
so th
at the tuni
n
g
is do
ne.
This
experim
ental
result is sh
own in Table 1
(
a
)
and 1
(
b)
re
spectively.
Table 1
(
a). V
a
riation of out
put power an
d freque
ncy
with ca
p heig
h
t for a cap di
ameter of
(D
) = 2.7mm
Cap Height (
mm)
Output Po
wer
(m
W)
Freque
nc
y
(
G
Hz)
1 53.1
39.48
1.1 60.24
35.52
1.2 66.95
34.61
1.3 73.9
33.75
1.4 82.25
32.92
1.5 85.01
32.14
1.6 89.01
31.4
1.7 87.25
30.68
1.8 85.29
30
1.9 79.79
29.34
2 73.01
28.72
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
An Optim
i
zed
Resona
nt-ca
p
Ka-ba
nd IMPATT Oscill
ator for Bro
adb
and… (L.P. Mish
ra)
557
Table 1
(
b). V
a
riation of out
put power an
d freque
nc
y
with ca
p diam
eter for a cap
height = 1m
m
Cap Diameter (D
) (mm)
Output Po
wer
(m
W)
Freque
nc
y
(GHz)
2.1 32.01
43.54
2.3 42.34
40.91
2.5 60.67
34.57
2.7 74.85
36.49
2.9 84.85
34.61
3.1 87.41
32.93
3.3 77.25
31.4
3.5 59.15
30
3.7 43.14
28.72
3.9 32.22
27.55
4.1 24.12
26.47
3.1. Mechani
cal Tuning
As mention
e
d
that the paper deali
ng wit
h
opt
imal tuni
ng of IMPATT diode to ge
t an idea
about the be
st method for tunning so that a diode
can ope
rate o
v
er a wide ra
nge. Variatio
n of
oscillation f
r
e
quen
cy of th
e o
scillato
r
b
y
varying
me
cha
n
ical pa
ra
meters of th
e
re
son
ant
ca
vity,
su
ch
a
s
ca
p height, cap di
ameter
and
the
po
sition
of
the sli
d
ing
short tun
e
r i
s
called m
e
chan
ical
tuning. The d
epen
den
ce o
f
the oscillati
on frequ
en
cy on the cap height and
cap diamete
r
wa
s
investigate
d
and
presente
d
the
Tabl
e 1
(
a) an
d
(b).
It is ob
se
rved
that the
oscill
ation frequ
e
n
c
y
decrea
s
e
s
wi
th the i
n
crea
se
of
cap
dia
m
eter
and
ca
p hei
ght a
s
p
e
r th
e
relatio
n
. “(D+L
)
/
=K”
given by
Gro
v
es a
n
d
Le
wi
s a
n
d
Malli
k
et.al
wh
ere
‘K
’
is a
con
s
t
ant an
d e
qua
l to 0.4
5
a
nd
is
the ope
rating
wavelen
g
th ‘
D
’ is the
ca
p diamete
r
and
‘
’ is the p
o
st length. The
above form
ul
a
tells that for
a parti
cula
r v
a
lue of ‘
D
’ a
nd ‘
L
’ the
co
rre
sp
ondi
ng f
r
equ
en
cy wh
en eq
ual to t
h
e
optimum de
si
gn frequ
en
cy of the diode
then the po
we
r output is ma
ximum.
In the first m
e
thod of tuni
ng a vari
atio
n of
bia
s
current from a
ra
nge of 5
0
to
160 mA
results a va
riation in the freque
ncy ran
ge of 34 to
3
8
GHz. Again
by varying the ca
p heig
h
t
or
cap
diamete
r
a freq
uen
cy
variation
of 28 G
H
z to
4
0
GHz i
s
po
ssi
ble. On th
e othe
r ha
nd
a
freque
ncy va
riation
of 34
to 37
GHz i
s
po
ssi
ble fo
r
a variatio
n of
the p
o
sitio
n
of slidi
ng
sh
o
r
t
tuner
3 to 8
mm ra
nge. B
u
t from the
d
i
ode a
maxi
mum po
we
r
output of a
b
o
u
t 85 m
W
o
n
an
averag
e is ob
tained in all the
method
s a
nd at a distan
ce of
λ
/2 fro
m
the positio
n of sliding short
tuner.
The va
riation
of p
o
wer
an
d fre
que
ncy
due to
vari
a
b
le p
o
sitio
n
of slid
e
soft
tuner is
plotted in Fig
u
re 7. Fo
r a cavity resonat
or
the freq
ue
ncy of oscillat
i
on is given b
y
:
f =
C/2
Whe
r
e ‘a’ is t
he bro
ad pla
n
e
dimen
s
ion,
‘b’ is the narrow pla
ne dim
ensi
o
n and ‘d
’ is the length
o
f
the recta
ngul
ar
cavity re
so
nator.
No
w v
a
riation
of
th
e po
sition
of
slidin
g
sho
r
t t
uner represe
n
ts
the variation
of the length
of t
he cavity and thu
s
re
son
a
nt freq
u
ency is va
rying. The g
r
ap
h of
Figure 5 is sh
owin
g the po
wer at differe
nt reso
nant
a
nd anti re
son
ant con
d
ition
of the cavity.
The o
u
tput
spectrum
of th
e re
so
nant
cap Ka
-ba
nd I
M
PATT o
scill
ator
wa
s inve
stigated
by using a
sp
ectru
m
analy
z
er a
nd the resultin
g phot
ogra
ph is
sho
w
n in Figu
re
6.
Figure 5. Vari
ation of outpu
t power a
nd freque
nc
y with
positio
n of the slidin
g sh
ort tuner
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 553 – 558
558
Figure 6. Output spe
c
tru
m
of reso
nant cap Ka-b
and I
M
PATT oscill
ator
4. Conclusio
n
Earlier works we
re
relate
d
to tunnin
g
of
IMPATT oscillator at X
-
ba
nd, but o
u
r p
aper is
for Ka band
Oscillation. In this
paper three different
methods of tuning of a K
a
-band IMPA
TT
oscillator are described. Out of
these three methods variation of
cap diameter or cap height
gives a wid
e
range for tu
ning of about
12 GHz b
u
t in the other two metho
d
s,
which a
r
e very
easy but giv
e
s a fre
que
n
c
y ran
ge of variation of
o
n
ly 3 GHz. Thus thi
s
pap
er give
s a cl
ear
insight to the designer
and user
of Ka-band IMPAT
T oscillator.
A coherent
study of tuning
prop
ertie
s
of
resona
nt
cap
IMPATT o
s
cillator at
Ka-b
and
ha
s b
e
e
n
carried
out
by me
ch
ani
cal
and ele
c
troni
c mea
n
s. It is expe
riment
ally obs
e
r
ved
that output power of IM
PATT oscillat
o
r
passe
s th
rou
gh a
maximu
m, with a
n
o
p
timum
com
b
ination
of cap di
amete
r
and
ca
p hei
g
h
t.
Thus after
co
mpari
s
o
n
, it i
s
b
e
ing
foun
d
that th
e
met
hod
of tunin
g
by variation
o
f
cap
hei
ght
a
n
d
cap di
amete
r
sho
w
s the effective re
sult.
Referen
ces
[1]
Mihir N Mo
han
t
y
, Mona
lisa B
hol, La
xm
i Pra
s
ad Mishr
a
, Sanjat Kumar Mis
h
ra. Desi
gn a
n
d
Anal
ys
is o
f
Mimo S
y
stem
for UWB
Communic
a
tion.
Internati
o
n
a
l
Jour
nal
of
W
i
reless
& M
obil
e
Netw
ork
s
(IJWMN).
2014;
6(2): 101-10
9
.
[2]
Mihir N
a
ra
ya
n
Moha
nt
y
.
Perf
ormanc
e Ana
l
ysis
of MIMO
Wirelss S
y
st
em
w
i
t
h
Array
Antenna.
ARP
N
Journ
a
l of Eng
i
neer
ing a
nd Ap
plie
d Scie
nces.
2013; 8(1
0
): 8
06-8
10.
[3]
Mihir N
a
ra
ya
n
Moha
nt
y
,
La
xmi Prasa
d
Mis
h
ra, Saum
en
dr
a Kumar M
o
h
a
n
t
y
. D
e
sig
n
of
MIMO Space-
T
i
me Code for High D
a
ta Rat
e
W
i
reless C
o
mmunicati
on.
IJCSE
. 2011; 3(
2): 693-6
97.
[4]
S Band
opa
dh
a
y
a, LP Mis
h
ra,
D S
w
a
i
n, Mihir
N Moha
nt
y
.
D
e
sign of DF
E Ba
sed MIMO Communicati
on
S
y
stem for Mobil
e
Movi
ng
w
i
t
h
Hig
h Vel
o
cit
y
.
Intern
ati
ona
l Journ
a
l
of Computer
Scienc
e an
d
Information T
e
chno
log
i
es.
20
14; 1(5): 31
9-3
23.
[5]
CA L
ee,
L B
a
l
dorf, W
W
e
ig
h
m
an, G Kam
i
n
s
k
y
. T
e
chno
lo
gical
d
e
ve
lopm
ent ev
olvi
ng
from R
e
searc
h
on Re
ad Di
od
e
.
IEEE
Trans. On Electron Devices.
19
66;
3
:
75-180.
[6]
T
Mis
w
a,
ND
Ken
y
o
n
. An
Oscillator
C
i
rcuit
w
i
th
CAP str
u
cture for
mil
l
i
m
eter
w
a
ve I
M
PATT
diode
.
IEEE Trans. On Microw
ave Theory & Tech.
197
0; 18: 969.
[7]
IS Groves, DE
Levis. Res
ona
nt Cap structur
e for IMPAT
T
diod
es.
Electron. Lett. (
G.B).
1
972;
8: 98.
[8]
KK Mall
ik, M Sridh
a
ran, SK
Ro
y
.
Some s
t
udies
on th
e
effect of Reso
nant-ca
p
o
n
the osc
ill
at
o
r
performa
nce of
x-ba
nd Gats a
nd Si IMPAT
T
oscill
ators.
JIETE.
1983; 29: 215.
[9]
Subal Kar, S
Bhanja, S Sas
m
al.
Co
mputer
-ana
lytical
Ch
a
r
acteri
z
a
ti
on of
Reso
nant-c
ap
Circuit fo
r
Microw
ave Oscillators
an
d P
o
w
e
r Co
mb
ine
r
s
. Progress In
Electroma
gne
tics Rese
arch
S
y
mp
osi
u
m
.
Pragu
e, Czech
Repu
blic. 2
0
0
7
: 27-30.
[10] Suba
l
Kar.
Co
mp
uter-a
ide
d
Desig
n
an
d C
h
aracteri
z
a
t
i
on
of a Br
oa
d-ba
n
d
Mil
l
i
m
et
er-w
ave So
urce
at
34GH
z
. Pr
ogre
ss in Electrom
agn
etics Rese
arch S
y
m
pos
iu
m. Prague, Cz
ech Re
pu
blic. 200
7: 27-3
0
.
[11]
T
apas Kumar
Pal, JP Ba
ner
j
ee. Stu
d
y
of
Efficienc
y
of Ka-b
a
nd IMPA
T
T
Diodes
an
d Oscill
ato
r
s
arou
nd Optimiz
ed con
d
iti
on.
Internatio
nal J
o
u
r
nal of Adva
nc
ed Scie
nce a
n
d
T
e
chno
lo
gy.
201
1; 26.
[12]
T
apas Kumar
Pal, JV Pr
asa
d
,
JP
Ban
e
rj
ee.
Stud
y of
Vari
o
u
s T
uning
pr
op
erties
and
Inj
e
ction
Locki
ng
of Reso
na
nt-ca
p
IMPATT Oscillator.
Inter
nati
ona
l Jour
na
l of
Engi
neer
in
g a
nd T
e
ch
nol
ogy
.
2010.
2(
5):
329-
335.
[13]
Mani
dip
a
N
a
th.
Desi
gn
a
nd
C
haracte
r
i
zatio
n
of Micr
ostrip I
M
PATT
Oscilla
tor.
Internatio
n
a
l J
ourn
a
l
of
Advanc
ed R
e
s
earch i
n
Co
mp
uter and C
o
mmu
n
ic
ation En
gin
eeri
ng.
20
1
3
; 2(11).
[14]
Han-Y
oun
g L
e
e
, W
an-Sik Ki
m.
T
he MMIC VCO Desig
n
fo
r W
i
reless S
y
stems at Ka-Ba
n
d
.
Journ
a
l of
Electrical E
ngi
neer
ing & T
e
ch
nol
ogy.
20
10; 5(1): 151-
15
5.
Evaluation Warning : The document was created with Spire.PDF for Python.