TELKOM
NIKA
, Vol.11, No
.3, March 2
0
1
3
, pp. 1665 ~ 1673
ISSN: 2302-4
046
1665
Re
cei
v
ed
No
vem
ber 5, 20
12; Re
vised Janua
ry 2
6
, 20
13; Accepted
February 8, 2
013
A Novel Calibrator for Electronic Transformers
Based on IEC 61850
Baoxia
ng Pa
n
Jian
gsu Institut
e of Metrolog
y
Guang
hu
a Street 3rd Nan
jin
g
Jian
gsu Ch
in
a 025
84
636
98
0/025
84
636
98
0
e
-ma
i
l
:
bx_
p
an@y
a
ho
o
.
co
m.cn
A
b
st
r
a
ct
It is necessary for electronic
transformer to mak
e
cali
brati
on befor
e putti
ng it into pract
i
ce. T
o
solve the pr
obl
ems i
n
actua
l
calibr
a
tio
n
pro
c
ess, a nov
el
electro
n
ic tran
sformer ca
libr
a
tor is desig
ned
. In
princi
pl
e, this system ad
opts
both
the direc
t
method a
nd
the differ
enc
e meth
od, w
h
ich
are tw
o popul
ar
meth
ods for e
l
ectronic transf
o
rmer cali
brati
on, by this
w
a
y the app
licati
o
n
of the syst
em i
s
extende
d w
i
th its
relia
bi
lity impro
v
ed. In the system
d
e
si
gn, ba
sed on virtu
a
l i
n
strument tech
nol
ogy, La
bVIEW and WinPC
a
p
toolkit are used
to develop the
applic
ation sof
t
w
a
re, and it
is
abl
e to calibrat
e
those electro
n
ic transformer
s
follow
i
n
g
the standar
d of IEC 6185
0.
In the calcul
ation of
ratio and p
h
a
s
e error bas
ed
on fast F
ouri
e
r
transform, a new
w
i
ndow
function is introd
uced, and th
u
s
the accuracy of calibration,
influenc
ed by
the
freque
ncy vibr
ation, is
i
m
pro
v
ed. T
h
is res
e
arch pr
ov
id
es theor
etic sup
p
o
r
t and pr
actical
referenc
e to t
h
e
deve
l
op
ment o
f
intelli
gent cal
i
b
rator for electr
onic transfor
m
ers.
Ke
y
w
ords
: transformer cal
i
br
ation; el
ectron
i
c
trans
former; direct metho
d
; differenc
e method.
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
For a long time, electrom
ag
netic cu
rrent
and voltage transfo
rme
r
s h
a
ve been do
minated
in relay protection a
nd current/voltage
measu
r
em
ent [1]. However, with further inc
r
eas
e
of
transmissio
n
voltage gra
de an
d po
wer
capa
city
of
the syste
m
, it is difficult for traditi
onal
transfo
rme
r
s
to overcome
their in
herent
disa
dvant
ag
es a
c
co
rdin
g
to ele
c
trom
a
gnetic i
ndu
cti
o
n
prin
ciple. On the contra
ry, elec
troni
c tra
n
sformers usi
ng photoni
cs
techn
o
logy a
nd optical fib
e
r
sen
s
in
g tech
nology mana
ge to overco
me the af
ore
m
entione
d sh
ortco
m
ing
s
. Thus it beco
m
es
an inevitable
trend to use
electro
n
ic transfo
rme
r
s a
s
the sig
nal
sou
r
ce for m
easure
m
ent
and
relay protecti
on in po
wer
systems [2].
Electro
n
ic tra
n
sformers dif
f
er greatly wi
th
traditional transfo
rme
r
s in sen
s
ing p
r
incipl
e
and se
co
nda
ry output, whose se
con
d
a
ry outputs
ar
e digital si
gnal
s or ana
log sign
als.
The
existing calib
ration
system
s ca
nnot be
applie
d to el
ectro
n
ic tran
sformers
yet. Thus,
calib
rat
i
on
method
s an
d device fo
r calibrating
ele
c
tronic tran
sformers have al
ways b
een th
e re
sea
r
ch fo
cu
s
both in Chin
a and abro
a
d
[3]. There are two type
s of calibrati
on approa
ch
es no
w: the
dire
ct
method
and
the differe
nce metho
d
. Apart from a
c
cu
rate results, the fo
rme
r
can
al
so o
b
t
ain
harm
oni
c co
mpone
nt, output amplitud
e
and ph
ase in
formation, h
o
w
ever,
with a
high de
man
d
for
acq
u
isitio
n device
s
. On the contrary, the latter
doe
sn’t ask a lot for the acquisi
tion device
s
, but
requi
re
s that the electronic transformer
output is
stri
ctly equal to the stand
ard
electroma
gne
tic
trans
former output [4].
Combi
n
ing th
e above t
w
o
calib
ration
method
s with
the mature
differen
c
e m
easurin
g
module fro
m
traditional
cal
i
brato
r
s, a no
vel multi-
app
roa
c
h ele
c
tro
n
ic tran
sform
e
r cali
brato
r
is
prop
osed in this pap
er. Ap
plicatio
n of the devic
e is e
x
tended. App
r
op
riate cali
b
r
ation metho
d
s
can
be
cho
s
en in a
c
cord
ance with
practical sce
n
e
.
Meanwhile,
the equi
pme
n
t redu
nda
ncy is
ensured to improve the reli
ability of the system.
2. Calibratio
n
Method
An
aly
s
is
This se
ction
mainly introd
uce
s
two kin
d
s of
exsiting calibratio
n
method
s for electroni
c
transfo
rme
r
s, the direct me
thod and the
differen
c
e me
thod.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel
Calib
rator fo
r Elect
r
oni
c Tra
n
sfo
r
m
e
rs Ba
sed
on IEC 6185
0
(Baoxi
ang P
A
N)
1666
2.1. Direct M
e
thod
The di
re
ct method i
s
con
d
u
c
ted b
y
deliv
ering
digital si
gn
als of the
stand
ard
electroma
gne
tic tran
sfo
r
m
e
r a
nd the
e
x
aminate
el
e
c
troni
c t
r
an
sforme
r to
com
puter
and l
e
tting
the softwa
r
e comp
ute pha
se and ratio errors
betwe
en them. Those sig
nal
s are obtained from
the se
co
nda
ry outputs
of the sta
nda
rd t
r
an
sform
e
r
a
nd the tran
sforme
r u
nde
r
test after
sig
nal
con
d
itioning and
an
alog
-t
o-digital co
nverting,
or
Eth
e
rnet p
a
cket
decodin
g
[5]. The traditio
nal
electroma
gne
tic tran
sform
e
r is
gen
era
lly
adopted as
the stan
dard.
F
o
r st
anda
rd cu
rre
nt
transfo
rme
r
, the voltage signal propo
rtional to
the seco
nda
ry cu
rrent ca
n be
gaine
d as th
e
stand
ard by
mean
s of a prop
er a
c
curate resi
stan
ce. For stan
d
a
rd voltage t
r
an
sform
e
rs, an
accurate voltage divide
r is used to re
du
ce the
amplit
ude of se
con
dary voltage to a suitable l
e
vel
for analo
g
-to
-
digital co
nverting.
The dire
ct method ha
s high deman
ds
for the sampl
i
ng circuit, which mu
st ad
opt the
synchro
nou
s
sampli
ng met
hod. Let
x
[
n
]
and
y
[
n
] d
e
note stan
da
rd sam
p
led d
a
ta and
sam
p
led
data und
er te
st re
spe
c
tivel
y
. Then FFT
(Fa
s
t Fou
r
ier Tran
sformati
on) i
s
empl
oyed to cal
c
ul
ate
the fundame
n
tal frequen
cy compone
nts of both si
gn
als. The RMS
values are d
e
fined as A
x
and
A
y
resp
ectivel
y
and the initi
a
l pha
se
s a
r
e
φ
x
and
φ
y
. After that, the ratio error
ε
can be o
b
tain
ed
from
x
x
y
A
A
A
(1)
The pha
se e
r
ror
φ
e
can b
e
cal
c
ulate
d
by
y
x
e
(2)
A typical block diagram of electroni
c transfo
rme
r
ca
librato
r base
d
on direct
method is
s
h
ow
n
in
F
i
gu
r
e
1
.
Figure 1. Block di
agram of
electro
n
ic tra
n
sformer
cali
brato
r
ba
sed
on dire
ct met
hod
Standard tran
sform
e
r doe
s not have
to
adopt the
sa
me rated tran
sform
e
r ratio with the
electroni
c on
es wh
en usi
ng dire
ct method, so
as to facilitate the selecti
on of standard
transfo
rme
r
.
Not only ph
a
s
e a
nd ratio
error, but al
so fundam
ent
al and h
a
rm
o
n
ic am
plitude
s can
be obtaine
d from the mea
s
ureme
n
t. Howeve
r, grea
t errors may be introd
uce
d
for the pha
se
error me
asurement if sign
als a
r
e not
sampled
simul
t
aneou
sly. What’s mo
re, to assu
re hig
h
accuracy, the
acqui
sition
card
with high
quality must
be ado
pted. In a way the cost is in
crea
sed.
And cal
c
ul
ation erro
rs i
n
the software
pro
c
e
ssi
ng
must al
so b
e
small
eno
ugh to me
et the
requi
rem
ents.
Those
sho
r
tcoming
s
all set
a
limit for the application o
f
direct metho
d
.
2.2. Diffe
ren
ce Method
In the case o
f
employing d
i
fference met
hod,
first, the
difference b
e
twee
n outpu
ts of th
e
stand
ard t
r
an
sform
e
r
and t
he tran
sfo
r
m
e
r un
de
r test
sho
u
ld b
e
g
o
tten after
si
gnal
con
d
itioning
or digital
-
to-a
nalog
conve
r
t
i
ng. After that, the di
fferen
c
e
signal
and
standa
rd
sig
nal will b
e
se
nt
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
Vol. 11, No
. 3, March 20
13 : 1665 – 1
673
1667
to IPC (Industrial Personal
Compute
r) t
h
rou
gh dat
a
acq
u
isitio
n ca
rd. By applying some
software
algorith
m
, the pha
se an
d
ratio errors can be o
b
tained finally [6]. Taking the cali
bratio
n of
electroni
c vol
t
age tra
n
sfo
r
mer fo
r exam
ple, the ba
si
c prin
ciple
of d
i
fference met
hod i
s
sho
w
n
in
Figure 2.
r
p
s
e
s
K
U
p
U
Figure 2. Basic pha
so
r dia
g
ram b
a
sed o
n
differen
c
e
method
In Figure 2,
U
s
and
K
de
note the fun
damental
RMS value of
the se
co
nda
ry voltage
output and the rated ratio of the electro
n
ic volt
age transfo
rme
r
un
der test (EVT
UT) resp
ectiv
e
ly.
And
U
p
is th
e fundame
n
tal RMS value of the primary voltage
under te
st.
φ
is the pha
se
differen
c
e re
sulting
from co
nverting
the
prima
r
y voltage to the
se
conda
ry voltag
e of EVTUT.
φ
s
rep
r
e
s
ent
s the fundam
enta
l
initial pha
se
angle of p
r
im
ary voltage u
nder te
st, whi
l
e
φ
p
represents
the fundam
e
n
tal initial ph
ase
angl
e of
se
con
dary vo
ltage outp
u
t from EVT
UT.
φ
r
stand
s for
the
innate ph
ase error of the st
anda
rd tra
n
sf
orme
r.
φ
e
is d
e
fined a
s
the pha
se erro
r o
f
EVTUT.
First of all, it i
s
a
s
sumed th
at the innate
pha
se e
r
ror o
f
the se
con
d
a
r
y voltage out
put ha
s
been
com
p
e
n
sate
d for E
V
TUT. The
n
, after being
multiplied by
the rated
rati
o, the se
con
dary
voltage outp
u
t of EVTUT
shall
be
co
mpared
with
the funda
me
ntal RMS val
ue of the
pri
m
ary
voltage. As the pha
se erro
r
φ
e
is small e
noug
h,
ε
and
φ
e
can be
re
written a
s
P
p
p
s
U
ac
U
U
KU
(3)
p
e
U
cb
(4)
The com
p
lex error can be
defined as
p
p
e
U
U
U
jcb
ac
j
e
,
where its
real
part re
pre
s
e
n
t
s the ratio error a
nd the imagina
ry par
t
represe
n
ts the pha
se error. Thu
s
, the ratio
and ph
ase errors
can b
e
easily figu
red
out as lo
ng
as the diffe
re
nce
sign
al a
nd the sta
n
d
a
rd
sign
al have b
een obtai
ned
in advan
ce.
No
w, relative
erro
rs impo
rted from the
m
easurement
device ha
s
a little effect on the
measurement
results of p
hase and
ratio errors
si
nce the differen
c
e meth
od d
oes n
o
t req
u
ire
much for the device. A differenc
e measuring device with hi
gh
sensitivity a
nd stability can
guarantee hi
gh measure
m
ent accuracy as long as
the two signa
ls unde
r test get close to
one
anothe
r eno
u
gh. The only
defect of differen
c
e meth
od lies in its
stri
ct deman
d that the rated
se
con
dary o
u
tput of the
elec
troni
c tra
n
sformer
sh
o
u
ld be
nea
rl
y equal to th
e output of t
h
e
stand
ard tra
n
s
form
er. A typical blo
c
k diagra
m
of electroni
c tran
sf
orme
r calib
ra
tors ba
se
d on
differen
c
e me
thod is sho
w
n
in Figure 3.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel
Calib
rator fo
r Elect
r
oni
c Tra
n
sfo
r
m
e
rs Ba
sed
on IEC 6185
0
(Baoxi
ang P
A
N)
1668
Figure 3. Block di
agram of
electro
n
ic tra
n
sf
ormer cali
brato
r
ba
sed on
differen
c
e method
3. Design Sc
heme
This p
ape
r d
e
sig
n
s a
nov
el elect
r
oni
c
transfo
rme
r
calibrato
r com
patible with
b
o
th th
e
dire
ct metho
d
and the differen
c
e meth
od, which
ca
n calib
rate b
o
th the electronic tra
n
sfo
r
mer
with analo
g
o
u
tput and tha
t
with digital output. T
he ap
plicatio
n ran
g
e
of the calibration system
is
extended
ba
sed on
the d
e
sign sch
e
me
p
r
opo
se
d in th
i
s
pa
pe
r, mea
n
whil
e, the sy
stem reliabilit
y
is improved
by using
syst
em re
d
und
an
cy desi
gn. As sh
own in
F
i
gure
4, the whol
e syste
m
is
comp
osed
o
f
signal
ad
justment
mo
dule, differe
nce
mea
s
u
r
ement mo
d
u
le, bala
n
ci
ng
comp
en
satio
n
module, d
a
ta acqui
siti
on modul
e,
indu
strial pe
rson
al com
p
u
t
er, application
softwa
r
e, and
so on.
Figure 4. Block di
agram of
electro
n
ic tra
n
sfor
mer
cali
brato
r
ba
sed
on multiple a
ppro
a
che
s
In the calib
ration plan o
f
direct met
hod, high
-a
ccuracy tra
d
itional ele
c
tro
m
agneti
c
voltage/cu
rre
n
t tran
sform
e
r is u
s
e
d
a
s
calib
ration
st
anda
rd. Be
si
des, d
a
ta a
c
quisitio
n
card
with
high sam
p
lin
g rate and high pre
c
isi
on is use
d
to sample the output of calibra
tion standa
rd
and
transfo
rme
r
u
nder test. Th
roug
h
comp
rehen
sive
con
s
ide
r
ation, thi
s
pa
pe
r ad
op
ts NI PCI
-
40
70
and NI PCI
-
4
461 from
Nati
onal Inst
rume
nt Co. to
fulfill analog
-to-dig
i
tal conve
r
si
o
n
. NI PCI-40
7
0
is use
d
for ca
librating tho
s
e electro
n
ic transfo
rme
r
s with digital output, and NI PCI-44
61 is used
for cali
brating
those
one
s
with an
alog
output an
d suppo
rting di
gi
tal-to-a
nalo
g
conve
r
si
on
with
high preci
s
io
n. The main
perform
an
ce of NI
PCI-407
0 is a
s
follows: 1.8 MS/s maximum
sampli
ng rate
with 10-bit resol
u
tion; 23
bit maximu
m resol
u
tion with 5S/s sa
mpling rate; input
rang
e of AC voltage from ±100 mV to 300 V; input
range of AC cu
rre
nt from 20 mA to 1
A. T
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
Vol. 11, No
. 3, March 20
13 : 1665 – 1
673
1669
main pe
rform
ance of NI
PCI-44
61 i
s
as fo
llo
win
g
: 2 sim
u
ltane
ously
sampl
e
d anal
og in
p
u
ts
interfaces;
2
simultan
eou
sl
y updated
an
alog o
u
tput
s
interfaces;
11
8 dB dyna
mi
c rang
e, 24
-b
it
resolution;
20
4.8 KS/s max
i
mum sampli
ng rate; 92
kHz alia
s-free
band
width; in
put ra
nge f
r
o
m
±316 mV to 4
2
.4 V.
In the plan of difference
method, for calibrati
n
g
the
electro
n
ic transfo
rme
r
wi
th digital
output, first th
e data pa
cket
s from m
e
rgi
ng unit of
ele
c
troni
c tran
sforme
r a
r
e de
cod
ed in the I
P
C
by applicatio
n softwa
r
e, and then the curre
n
t/vol
tage values obt
ained from d
a
ta packets
are
conve
r
ted into analog sig
n
a
l by NI PCI-4461 after be
ing pro
c
e
s
se
d by interpola
t
ion algorithm
. I
t
sho
u
ld be no
ted that the interpol
ation
algorith
m
is use
d
to eliminate pha
se
error cau
s
ed
by
digital-to
-anal
og conversio
n
. After the a
bove-m
ention
ed processin
g
, the
anal
og
output of digit
a
l-
to-anal
og con
v
erter in NI P
C
I-44
61 is p
r
oce
s
sed
by b
a
lan
c
ing
com
pen
sation mo
dule, and the
n
it
is comp
are
d
with the
an
alog o
u
tput
of stand
ar
d tran
sform
e
r i
n
the differe
n
c
e m
e
a
s
ure
m
ent
module. At last, the outputs of differen
c
e m
easure
m
ent module a
nd stan
dard tran
sform
e
r a
r
e
simultan
eou
sl
y sampled by analog-to
-dig
ital conver
te
rs in NI PCI-4461, so ratio error and ph
a
s
e
error can be
compute
d
according to
Eq.(3)
and
Eq.(4) by the appli
c
atio
n softwa
r
e. For
calib
rating th
e ele
c
troni
c t
r
an
sform
e
r
with analo
g
ou
tput based o
n
differen
c
e
method,
we
use
the prin
ciple
simila
r to that of calibrating
the el
ectroni
c tran
sformer with digital o
u
tput, in which
the operation
of digital-to-a
nalog
conve
r
sion
can b
e
o
m
itted.
In our desi
g
n
sche
m
e, the preci
s
ion
sig
nal
adju
s
tme
n
t module is use
d
to convert the
se
con
dary o
u
t
put of stand
a
r
d tra
n
sfo
r
me
r to sm
all voltage
sign
al, so the si
gnal
can be
sa
mple
d
by data acq
u
i
s
ition card. In
orde
r to improve t
he mea
s
uring p
r
e
c
i
s
io
n of differen
c
e method, the
balan
cing
co
mpen
sation
module i
s
u
s
ed to comp
e
n
sate fo
r the
pha
se a
nd a
m
plitude of
si
gnal
unde
r test ro
ughly. To make the sch
e
m
e easi
e
r
to
understan
d, we will intro
duce som
e
key
techn
o
logie
s
in details, su
ch a
s
implem
entati
on of si
gnal adj
ustm
ent module,
desi
gn of net
work
data ca
pture
and an
alysi
s
module, sele
ction of error
analysi
s
algo
rithm and so o
n
.
3.1. Implementa
tion of Signal Adjus
t
ment Modul
e
The se
co
nda
ry outputs of st
andard voltage and
curre
n
t transfo
rme
r
s a
r
e 57.7 V and 0.1
A, 1 A or 5 A
respe
c
tively,
whi
c
h cann
ot directly
be
sampled by an
alog-to
-di
g
ital conversio
n
. To
satisfy the requireme
nts
of data a
c
qu
isition
card
for sampl
ed
sign
als a
nd t
o
make it more
suitabl
e for p
r
acti
cal
calib
ration, a pre
c
i
s
ion
sign
al a
d
justme
nt module h
a
s to
be desi
gne
d
.
It
sho
u
ld meet
the needs of signal tran
sform
a
tion
both for standa
rd cu
rre
n
t and voltage
transfo
rme
r
o
u
tputs. In our schem
e, the adjustm
ent module con
s
i
s
ts of linear regulate
d
power
sup
p
ly circuit
,
voltage tra
n
sformation
circuit,
cu
rre
n
t transfo
rm
ation ci
rcuit and relay dri
v
ing
circuit, who
s
e
block diag
ra
m is sh
own in
Figure 5.
Figure 5. Block di
agram of
signal a
d
ju
stment modul
e
Among them,
the linear re
gulated po
we
r sup
p
ly
circu
i
t provides p
o
we
r for cu
rrent and
voltage tran
sf
ormatio
n
circuits. After inputting AC
22
0 V, it can generate th
ree
kind
s of outp
u
ts,
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel
Calib
rator fo
r Elect
r
oni
c Tra
n
sfo
r
m
e
rs Ba
sed
on IEC 6185
0
(Baoxi
ang P
A
N)
1670
DC
+12 V, -1
2 V and +5 V. In the volta
ge tran
sfor
m
a
tion ci
rcuit, a pre
c
i
s
ion resi
stor i
s
use
d
to
divide the vol
t
age outp
u
t o
f
AC 57.7 V f
r
om the
sta
n
dard
tran
sfo
r
mer, an
d the
n
followed by
an
operational
amplifier to output a voltage sign
al
of AC 4 V
suitabl
e for analo
g
-to
-
digi
tal
conve
r
si
on. The
current transfo
rmatio
n
circui
t i
s
also
adopte
d
to transfo
rm the se
co
n
dary
curre
n
ts of 0.
1 A, 1 A or 5 A from the st
anda
rd
curre
n
t transfo
rme
r
to a voltage
sign
al of AC 4 V.
To switch f
r
o
m
0.1 A, 1 A and 5 A, a
rel
a
y drivi
ng
circuit is
employ
ed. Co
nsi
deri
ng the a
c
cura
cy
deman
d for
calibratio
n
, so
me expe
rime
nts a
r
e
con
d
u
cted to
test
the erro
r of si
gnal a
d
ju
stment
module. And
the results a
r
e sho
w
n b
e
lo
w.
Table 1. Error Test Re
sult
s of Signal Adjustment Mo
d
u
le
1. Curr
ent tra
n
sformation
Percentage
Amplitude transformation
error
(%
)
Phase transform
ation
error
(’
)
100%
0.019
0.45
50%
0.018
0.33
20%
0.003
0.23
10%
-0.007
0.17
2. Voltage transf
o
rmation
Percentage
Amplitude transformation
error
(%
)
Phase transform
ation
erro
r (’
)
120%
-0.012
-0.37
100%
-0.011
-0.26
80%
-0.012
-0.52
From Ta
ble
1 we can se
e the accura
cy of
voltage and cu
rre
nt transfo
rmatio
n parts in
sign
al adju
s
t
m
ent modul
e can exa
c
tly meet the desi
g
n requi
rem
e
n
t
s.
3.2. Design
of the
Ne
t
w
o
r
k Da
ta Capture and Anal
y
s
is Module
Electro
n
ic tra
n
sformers h
a
v
e two kin
d
s
of out
put: digi
tal sign
als a
n
d
analo
g
si
gn
als. The
electroni
c tra
n
sformer
with digital outp
u
t fo
llows IEC 618
50-9-1/
2 stand
ard,
and pa
ckets
the
sampl
ed valu
es of prima
r
y current and
voltage sig
n
a
l
s into a messag
e
, which is to be exported
throug
h the
netwo
rk
port.
The IEC 61
850-9-1 st
an
dard ill
ustrates a u
n
idi
r
e
c
tional multidrop
point-to
-
poi
nt fixed link ma
pping, which
only sup
p
o
r
ts the "SendM
SVMessage"
servi
c
e. To m
eet
real
-time re
q
u
irem
ents, a
pplication lay
e
r data
i
s
m
appe
d dire
ctl
y
to the data link laye
r in
comm
uni
cati
on, thus the pre
s
entatio
n layer, se
ssi
on
layer, transp
o
rt layer and
netwo
rk laye
r is
all empty. Th
e IEC 61
850
-9-2
stand
ard
illustra
te
s a
mappin
g
ba
sed on ISO/IEC 88
02-3 lin
k and
mixed proto
c
ol stack. On the
one ha
nd,
it support
s
b
o
th the "Send
MSVMessag
e
" servi
c
e, which
is mappe
d directly to the
link layer, an
d
the "GetMSVCBValue
s
/SetMSVCBValue
s
" servi
c
e,
whi
c
h i
s
map
ped to MMS
(Manufa
c
turi
n
g
Me
ssa
ge S
pecifi
c
ation
)
. On the oth
e
r
hand, it can n
o
t
only su
ppo
rt
point to poi
nt comm
uni
cati
on, but al
so
transfo
rm d
a
ta
on the n
e
two
r
k. In gen
eral, to
calib
rate the
electro
n
ic transfo
rme
r
wi
th di
gital output, we have to receive
and analyze its
netwo
rk data
packa
ge firstly. This de
si
gn u
s
e
s
ap
pli
c
ation softwa
r
e
that run
s
on
the
i
ndu
strial
person
a
l co
m
puter to finish
the above functi
on, which is develo
ped
based on
Win
P
Cap tool
kit.
WinPcap n
e
twork d
e
velop
i
ng toolkit i
s
bas
ed on
Wi
ndo
ws
syste
m
and p
r
ovid
es di
re
ct
acce
ss to net
work for
win3
2 appli
c
ation
s
, by us
ing
which, un
derlyi
ng network p
a
ckets
can b
e
captu
r
ed,
se
nt and filtered c
onveni
e
n
tly. Based
on
WinPCap tool
kit, we
can
dev
elop
appli
c
ation
s
on the comp
uter ea
sily to receive
an
d a
nalyze the
ne
twork pa
cket
s from el
ectronic
transfo
rme
r
s
with digital o
u
tputs, so the desi
gn a
n
d
develop
me
nt pro
c
e
ss
o
f
the system
is
simplified greatly.
WinPCap include
s a module runni
ng on operatin
g
system kernel level, which ca
n
provide a di
rect interfa
c
e
to the network device
driv
er. By this way, WinPcap
can bypa
ss the
comm
uni
cati
on proto
c
ol stack an
d pro
v
ide packets
from the lin
k layer for upper ap
plications
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
Vol. 11, No
. 3, March 20
13 : 1665 – 1
673
1671
dire
ctly. In addition, a dy
namic li
nk li
bra
r
y
at the bottom nam
e
d
Packet.dll
and o
ne lib
rary
indep
ende
nt of the ope
rating
syste
m
named
Wp
cap.dll a
r
e also
provi
ded by Wi
n
P
Cap.
WinPCap full
y consid
ers the optimiz
ation of the performa
n
ce and
efficiency, so after settin
g
the
Ethernet card
corre
c
tly,
ca
pturing or se
nding
m
e
ssa
ges on
the
n
e
twork can re
ach
mi
cro
s
e
c
ond
level by using the functio
n
s pr
ovided
by it. Conseq
uently, the
delay requi
re
ment of IEC
6185
0
for sampl
ed value messa
ges can be satisfie
d.
In
gene
ral, the step
s of packet captu
r
e and
analysi
s
u
s
in
g WinPCap a
r
e sh
own as f
o
llows:
Step 1: Find and op
en the
netwo
rk e
qui
pment.
Step 2:
Set
filter conditio
n
s and only captur
e the message
s of sampled values. The IEC
6185
0-9
-
2 m
e
ssag
es in
cl
ude G
OOSE
(Gen
eri
c
Ob
ject Ori
ented
Substation
Event) message
s
and sa
mpled
value messa
ges, wh
ere E
t
hernet type co
d
e
is use
d
to distingui
sh
these two ki
nds
of message
s.
The Etherne
t type code of GOOSE
messag
es i
s
0x88b8, and
that of sampl
e
d
value me
ssa
ges i
s
0x88
b
a
. In our
system, we focu
s only on th
e sam
p
led v
a
lue me
ssag
es,
whi
c
h a
r
e
used for
applyin
g
voltage
and
cu
rre
nt si
gn
al
s to
device
s
. So the
r
e i
s
a filter
con
d
ition
sho
u
ld be
set
that the Ethernet type co
d
e
must
be 0x
88ba, by this
way only those messag
es
o
f
sampl
ed values will be captured.
Step 3: Capture data p
a
ckets.
Wi
nPCap provid
es
two kin
d
s of
methods to
capture
netwo
rk p
a
ckets namely the callb
ack
mode an
d t
he dire
ct mod
e
. We use di
rect mo
de in
the
system be
ca
use of the high real
-time requi
rem
ent of the sampl
ed value me
ssage
s, so that
whe
never
a
packet a
rrive
s at the
n
e
twork
device, WinPCap ju
st c
aptures
an
d retu
rn
s it to the
use
r
. In the
dire
ct mode, packet captu
r
e process
is simila
r to the
way of interrupt, which h
a
s
highe
r execution efficien
cy.
Figure 6. Format of Ethern
e
t frame with
prio
rity
Step 4: Analysis data pa
ckets. For ca
librati
on, firstl
y, we should
parse the sampled
value me
ssa
ges f
r
om
el
ectro
n
ic tran
sform
e
rs
ca
ptured
by
WinPCap. I
E
C 61
850
-9
-1/2
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
A Novel
Calib
rator fo
r Elect
r
oni
c Tra
n
sfo
r
m
e
rs Ba
sed
on IEC 6185
0
(Baoxi
ang P
A
N)
1672
messag
es u
s
e the Ethe
rn
et frame fo
rmat with
p
r
io
rity based o
n
ISO/IEC 88
02-3. T
he fra
m
e
format is defi
ned as
sho
w
n in Figure.6,
where
we can see that PDU is
ap
pli
c
ation data u
n
it,
inclu
d
ing
sa
mpled val
u
e
s
and
other re
lated info
rm
a
t
ion, and th
e
outsid
e
pa
rt
of PDU i
n
cl
u
des
netwo
rk info
rmation su
ch
as pre
a
mbl
e
, MAC add
ress an
d so
on, by usin
g whi
c
h we
can
determi
ne th
e corre
c
tne
s
s of the messag
e. In
this step, the co
rre
sp
ondi
ng sampl
ed dat
a of
voltage or current sign
al
is extracted
from
PDU according to
the type of the electro
n
ic
transfo
rme
r
u
nder te
st.
In our
de
sign,
the sy
stem a
pplication
sof
t
ware
is deve
l
oped ba
sed mainly
on La
bVIEW.
So we pa
ckage the net
work data
ca
pture an
d an
alysis fun
c
tio
n
s ba
se
d on
WinPCa
p for a
dynamic library, which p
r
ovide
s
para
m
eters
confi
guratio
n, data out
put and other function
interfaces. La
bVIEW use
s
the CLF
(Call Libra
r
y Fun
c
tion) no
de to call libra
ry function
s.
3.3. Selectio
n of Error Analy
s
is Algo
rithm
In order to compute the ratio erro
r an
d phase e
rro
r, the RMS
value and phase of
fundame
n
tal comp
one
nt of the input sig
nal shoul
d
be
obtained firstly by Fourier transfo
rmatio
n.
FFT is usu
a
ll
y used in power ha
rmo
n
ic analysis
an
d
detection, where syn
c
h
r
o
nou
s sampli
n
g
is
requi
re
d. But in fact, the samplin
g freque
ncy of
analo
g
-to
-
digi
tal converte
r is not an exact
multiple of th
e sig
nal fre
q
uen
cy, whi
c
h
is fluctu
ant.
Con
s
e
quently
, in the practi
cal a
ppli
c
atio
n
,
FFT ca
n ca
u
s
e un
avoida
b
l
e sign
al sp
e
c
tral le
akage
and pi
cket fence effe
ct. In orde
r to red
u
ce
the effect of
sign
al spe
c
tral leakag
e and pick
et fence effect, the sampled si
g
nals should
be
multiplied
by a
wei
ghting wind
ow before
FFT.
Thi
s
pape
r u
s
e
s
t
he weightin
g
wind
ow
ω
(
n
) as
follows
:
)
(
6
1
)
2
6
1
(
2
6
1
)
96
11
3
(
)
2
1
8
5
(
2
1
)
6
96
(
)
8
2
1
(
2
2
1
6
1
6
1
)
(
3
2
2
3
3
2
2
3
3
2
2
3
3
N
N
n
N
n
N
n
N
N
n
N
Nn
n
N
N
n
N
n
N
n
n
n
n
.
1
4
3
1
4
3
2
1
2
4
1
4
0
N
n
N
N
n
N
N
n
N
N
n
(5)
jC
N
j
j
e
W
e
N
e
W
)
(
)
2
/
(
sin
)
8
/
(
sin
)
(
0
2
4
4
(6)
whe
r
e
)
2
/
(
sin
)
8
/
(
sin
)
(
4
4
0
N
W
, C=
N
/2. Eq.(5) an
d Eq.(6) a
r
e
resp
ectively
time-domai
n
and
freque
ncy
-
do
main expression
s of the
weightin
g windo
w pro
p
o
s
ed in thi
s
p
aper,
which
can
redu
ce
spe
c
tral leakage a
n
d
decrea
s
e th
e in
terferen
ce
of harmoni
cs effectively [7].
Electri
c
sig
n
a
l
can b
e
expressed by
p
i
i
i
i
t
f
A
t
x
0
)
2
cos(
)
(
, where
f
i
,
A
i
an
d
φ
i
are
re
spe
c
tively the freq
u
ency,
am
plitu
de, and
ph
ase of the
i
th
ha
r
m
on
ic
;
p
is the orde
r of
the
highe
st ha
rm
onic. Me
an
while, we a
ssume that
x
(
n
) is the di
screte expressi
on of
x
(
t
). The
wind
ow fun
c
tion
ω
(
n
) give
n by Eq.(5) is used to we
ight
x
(
n
), and
the weighte
d
sign
al
x
ω
(
n
) is
given by follows:
)
(
)
(
)
(
n
n
x
n
x
1
,
,
2
,
1
,
0
N
n
. (7)
Con
s
id
erin
g of asynchro
n
ous
sampli
ng
, we assume
that
m
T
T
1
. (8)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
Vol. 11, No
. 3, March 20
13 : 1665 – 1
673
1673
whe
r
e
T
1
is the perio
d of electri
c
sig
nal
,
T
ω
is the sampling time, m is a integer that is neare
s
t t
o
T
ω
/ T
1
, and
λ
is the remai
n
der. By comb
ining Eq.(5
)
, (6),
(7), (8), we can o
b
tain the formul
as
of
comp
uting th
e fundame
n
ta
l amplitude
A
and ph
ase
φ
of
x
(
n
), whi
c
h
are sh
own a
s
follows:]
)]
(
/[
)
(
2
0
W
m
X
A
. (9)
C
m
X
)]
(
arg[
. (10)
whe
r
e
∆ω
=2
π
/N
,
X
ω
(
k
) is
the FFT spe
c
trum value of
x
ω
(
n
). In ord
e
r to comp
ute
λ
,
we assu
me
that
N
i
s
an
even nu
mbe
r
, let
x
1
(
n
)
=x
ω
(
n
) and
x
2
(
n
)
=x
ω
(
N
/2+
n
), whe
r
e
0
≤
n
≤
N
/2-1. Meanwhile,
we a
s
sume
that
X
1
(
k
) an
d
X
2
(
k
) a
r
e t
he FFT
sp
ectrum value
s
of
x
1
(
n
)
an
d
x
2
(
n
), an
d the
corre
s
p
ondin
g
pha
se val
ues a
r
e
Φ
1
(
k
) a
nd
Φ
2
(
k
), whe
r
e
k=
0,1,2,…
N
/2
-1
. Then there
is
λ
=
(
Φ
1
(
m
)
-
Φ
2
(
m
))/2
π
.
4. Conclusio
n
After studyin
g two calib
rat
i
on app
roa
c
h
e
s of el
ect
r
o
n
ic tran
sfo
r
m
e
rs, na
mely the dire
ct
method a
nd t
he differe
nce
method, a m
u
lti-way el
ect
r
oni
c tra
n
sfo
r
mer
calib
rato
r is
pro
p
o
s
ed
in
this pape
r. Base
d on virtual instrum
ent
technolo
g
y,
the calibratio
n
device mai
n
ly relies on
the
softwa
r
e al
g
o
rithm a
nd u
s
e
s
the data
acq
u
isition
system a
s
a
n
adjun
ct. It can effe
ctively
calib
rate the
electroni
c tra
n
sformers b
o
t
h with
digital
output and
a
nalog o
u
tput. In addition, the
calib
ration d
e
vice ad
opts two kind
s
of calib
ra
tion
method
s at the same t
i
me, makin
g
its
appli
c
ation e
x
pande
d, the equipme
n
t redun
dan
cy
ensu
r
ed a
nd the relia
bility of the syste
m
improve
d
.
Ackn
o
w
l
e
dg
ement
This
work
wa
s finan
cially
sup
porte
d by
Gene
ral Ad
ministration o
f
Quality Supervisio
n
,
Inspe
c
tion a
n
d
Quarantine
of t
he People'
s Re
publi
c
of Chin
a.
Referen
ces
[1]
Saba
hi M, Goh
a
rrizi AY, Hoss
eini S
H
, Sharifi
an MBB an
d Ghare
hpeti
an G
B
. F
l
exi
b
le P
o
w
e
r Electro
n
ic
T
r
ansformer.
IEEE Transactions on Power
Electronics
. 20
10; 25(8): 2
159
-216
9.
[2]
Z
h
i Z
hang, Li
Hon
gbi
n. An Accurate S
y
st
e
m
for
Onsite
Cali
brati
on of Electron
ic T
r
a
n
sformers
w
i
th
Digital Output.
Review
of Scie
ntific Instrumen
t
s
. 2012; 83(6):
0651
11- 0
651
11-7.
[3]
Ning W
e
iho
ng,
Yang Yi
ha
n, Li Jin
g
, Z
han
g
Guoqi
ng a
n
d
Yu W
enbi
n. Revie
w
o
n
De
velo
pment o
f
T
r
ansformer Calibration.
Pow
e
r System Prot
ection a
nd C
o
n
t
rol
. 2009; 3
7
(1
0): 131-1
35.
[4]
Che
n
W
enshe
ng, Gu Lixin. Rese
arch on t
he App
licati
o
n
of Electronic Voltag
e T
r
ansformer.
Eas
t
Chin
a Electro
n
i
c
Pow
e
r
. 2009;
37(8): 132
7-1
330.
[5]
Yang H
u
i
x
i
a
, Guo W
e
i and
Den
g
Ying
jun.
Stud
y
an
d C
o
mparis
on o
n
Severa
l Differe
nt Electronic
T
r
ansformer Calibration Methods.
Pow
e
r System Protecti
o
n
and C
ontro
l
. 200
9; 37(2
2
): 99-10
1.
[6]
Hu Ha
oli
a
n
g
, Li Qian, Lu Sh
ufeng, Ya
ng Shi
hai, Li
H
e
an
d
Li De
ng
yu
n. C
o
mparis
io
n of T
w
o El
ectron
ic
T
r
ansformer Error Measuri
ng
Methods.
Hi
gh Voltag
e
Eng
i
ne
erin
g
. 201
1; 37
(12): 302
2-3
0
2
7
.
[7]
Che
n
F
u
shen
g
,
Ou
Chaol
ong
,
W
an Quan and Li Kai. Desi
gn and Dev
e
lo
pment of Calib
rator for the
Electron
ic T
r
ansformer.
Electronic Me
asure
m
e
n
t & Instrumentatio
n
. 201
1; 48(54
1): 55-5
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.