TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 1, Octobe
r 201
5, pp. 19 ~ 2
9
DOI: 10.115
9
1
/telkomni
ka.
v
16i1.875
3
19
Re
cei
v
ed
Jul
y
8, 2015; Re
vised Augu
st
12, 2015; Accepted Augu
st
28, 2015
Power Generation and Voltage Regulation of 132kV
Karbala grid using DFIG Wind Turbine Generator
Qasim Kamil Mohsin*, Xiangning Lin, O
w
ol
abi Sunda
y
,
Asad
Waq
a
r
State Ke
y
L
a
b
o
rator
y
of Elect
r
omag
netic En
gin
eeri
ng, Hu
a
z
hon
g Univ
ersi
t
y
of Scienc
e a
nd T
e
chnol
og
y,
W
uhan 4
3
0
074
, Hubei Prov
inc
e
, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: phd.qas
im@
y
a
h
o
o
.com
A
b
st
r
a
ct
Due to i
n
crea
sing d
e
m
a
nd
on el
ectrica
l
ener
gy in
Ira
q
an
d to hav
e clea
n en
er
gy that i
s
envir
on
me
ntal
frien
d
ly, w
i
nd
en
ergy w
o
uld
be
on
e
of th
e
most
import
ant a
n
d
pro
m
i
s
ing
sourc
e
s
of
renew
ab
le en
ergy to achi
e
v
e this goal.
T
h
is pap
er di
scussed the r
easo
n
s to use the Dou
b
ly-
F
eed
Inductio
n
Gen
e
rator (DF
IG)
amon
gst the a
v
aila
bl
e ty
pes
of w
i
nd turbin
e gen
erators,
and i
n
sectio
n
(4)
illustrat
e
Motiv
a
tions to se
lec
t
place to the
w
i
nd fa
rm co
n
s
truction. usin
g decu
p
li
ng
method (th
e
vec
t
or
control str
a
teg
y
) to cha
n
g
e
r
eactive
pow
er
of DF
IG 2MW
conn
ected t
o
mi
ddl
e
of the
1
32KV tra
n
s
m
is
sio
n
line (K
arba
la n
o
rth – Ala
h
kad
e
r) w
i
thout
effect about the ac
tive pow
er ge
n
e
rated fro
m
DF
IG itself w
i
th
fixe
d
w
i
nd sp
eed
v
a
lu
e ass
u
med
to prov
id
e th
e volta
g
e
reg
u
l
atio
n, an
d co
ntrol of th
e tr
ans
missi
on
li
n
e
In
add
ition to
po
w
e
r gener
ating
.
By using PS
CAD/EMT
DC,
different si
mul
a
tion r
e
sults ar
e pres
ented
b
a
s
e
d
on vari
ous sce
nari
o
s.
Ke
y
w
ords
:
wind energy conversion systems (WECS),
DFIG, AC/DC/AC
Conv
erters, GRS, RSG
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Due to i
n
crea
sing
dema
n
d
of electri
c
al
energy
of Ira
q
and to
get
environ
menta
l
better,
the integratio
n of the Win
d
power into
power g
r
id wi
ll be a good
option du
e to the fact that is
clea
n and re
newable e
nergy sou
r
ce
an
d non-polluti
n
g
. There a
r
e
many feature
s
of wind p
o
w
er
conve
r
si
on
system compa
r
ed
with the
conve
n
tional
power g
ene
ration such a
s
the
r
mal p
o
w
er
gene
ration, n
u
cle
a
r po
we
r,
ga
s
p
o
wer, and die
s
el p
o
we
r. Wind p
o
we
r conve
r
sion system
can
decrea
s
e
the
emissio
n
s o
f
CO2
an
d o
t
her h
a
rm
ful
gases emi
ssi
on fro
m
conv
entional
po
wer
gene
ration
u
n
its. Each 1
-
MW
wind
po
wer ge
ne
ra
to
r redu
ce
s
6 t
ons of
NO2,
10 ton
s
SO
2, and
2000 ton
s
CO2 emi
ssi
on
s to the atmosphere pe
r
year. the main
advantag
e a con
s
id
era
b
le
the
efforts is bei
ng made to
gene
rate ele
c
tri
c
ity from rene
wable e
n
e
rgy so
urce
s are abu
nda
nce,
Among
st
the
rene
wa
ble en
ergy co
nversi
on system
s,
t
he wind
po
wer ha
s the most com
m
erci
al
pro
s
pe
cts [1]
.
Especi
a
lly in the last fe
w y
ears d
u
e
to the rapi
d
developm
en
t of wind po
wer
indu
strie
s
an
d Win
d
is the
one of the m
o
st ab
und
ant of energy nat
ure
sou
r
ce
s. The wi
nd e
n
e
r
gy
can be expl
o
i
ted by using
a wind ene
rgy conver
sio
n
system (WECS), com
p
ose
d
of a wind
turbine
with gear b
o
x to regulate
spee
d, electr
i
c
al g
enerator, and
powe
r
ele
c
tronic
conve
r
te
rs
and control
system.
The L
a
rge-si
ze
win
d
turbi
nes divided
i
n
to
two
type
s d
epe
nd
s to
the b
ehavio
ur of th
e
wind turbine
durin
g the variation
s
of wi
nd sp
eed:
fixed-spe
ed wi
n
d
turbine
s
an
d variable
-
sp
eed
wind tu
rbin
es [3]. In fixed-spe
ed
wind t
u
rbin
es
, th
re
e pha
se
sq
ui
rrel
ca
ge in
d
u
ction
gen
erators
are g
ene
rally
use
d
, sin
c
e
the gene
rat
o
r outp
u
t is
dire
ctly con
n
e
cted to the
grid, the rota
tion
spe
ed of the
gene
rato
r is f
i
xed (in
pra
c
ti
ce, it ca
n
b
e
vary a little a
ran
ge of typi
cally 2 to 3
%)
,
and
so i
s
the
rotation
spe
ed of the
win
d
turbin
e rot
o
r shoul
d be
fixed by use
gear
box. Any
fluctuation
i
n
wind sp
eed n
a
turally cau
s
es stre
sse
s
the me
ch
anical co
mpo
nent
s (sp
e
ci
ally the
gear b
o
x) for the wind turbine. In variable-sp
eed
wind turbine
s
, rotation sp
eed of the wind
turbine
roto
r i
s
allo
wed to v
a
ry as th
e wi
nd s
peed va
ri
es. Thi
s
p
r
events the u
s
e
of asyn
chron
ous
gene
rato
rs i
n
su
ch
win
d
tu
rbine
s
as the
rotation
spe
ed of the
ge
n
e
rato
r i
s
in
co
nstant
wh
en i
t
s
output is dire
ctly co
nne
cte
d
to the
grid.
The
sam
e
i
s
tru
e
for sy
nch
r
on
ou
s g
enerators
wh
ich
operate at consta
nt sp
ee
d wh
en
di
re
ctly con
n
e
c
ted to the g
r
id. Therefore
the dou
bly-fed
indu
ction
gen
erato
r
s come
into all
o
w th
e ge
nerat
or o
u
tput voltage
and
fre
quen
cy conn
ecte
d
to
grid to be mai
n
tained at co
nstant value
s
, no matter the turbine roto
r spe
ed fixed or variabl
e (a
nd
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 1, Octobe
r 2015 : 19 – 2
9
20
thus, don’t care to the wind sp
eed
), this is
a
c
hiev
ed by feedin
g
AC cu
rre
n
t
s of variabl
e
freque
ncy
an
d amplitud
e i
n
to the ge
ne
rator rotor
win
d
ing
s
, to be
capabl
e to kee
p
the am
plitu
d
e
of frequ
en
cy and
the
vo
ltages produ
ced
by th
e
g
enerator (at
stator)
con
s
t
ant, de
spite
the
variation
s
in the turbin
e rot
o
r sp
eed
cau
s
ed by fluctu
ations in
wind
spee
d [2].
The m
a
in
re
aso
n
s of
DFI
G
to
get mo
re
attention
and
appli
c
ati
on in
WE
CS
to u
s
ed
among
st the
available typ
e
s of
wind
turbine g
ene
ra
t
o
rs can b
r
iefl
y descri
be, its u
s
ed
in
ste
ad of
asyn
chrono
u
s
gen
erato
r
s: (a) DFIG-b
a
s
ed
WECS
a
r
e highly con
t
rollable, allo
wing maxim
u
m
power extra
c
tion ove
r
a la
rge
ran
ge
of
wind
spee
ds.
(b
) th
e a
c
tive an
d
rea
c
tive po
we
r
co
ntrol is
fully deco
upl
ed by in
depe
ndently controlling the
rot
o
r
curre
n
ts. (c) Ability to
sup
p
ly po
wer at
con
s
tant volt
age a
nd fre
q
uen
cy whil
e the roto
r
sp
e
e
d
varie
s
, Rot
o
r spee
d may
vary acco
rdi
ng to
wind
spee
d i
n
o
r
de
r to i
m
prove
win
d
g
enerator
efficiency, (d)Mechani
cal stre
ss
i
s
red
u
ced as
well as torque oscillations are
not transmitted to the grid; gu
sts of wind can be absorbed as
energy is
stored in the me
chani
cal
ine
r
ti
a of the turbi
ne. Finally, (e
) the DFI
G
- b
a
se
d WE
CS can
either inje
ct or ab
so
rb re
active po
wer from
the gri
d
, hence effectively partici
pating at voltag
e
control [2-5]. Usi
ng
synchronou
s g
ene
ra
tor in
wind tu
rbine
s
offers t
he same
adv
antage
s
(abo
ve)
as
wh
en
DFI
G
is u
s
ed. Bo
th types
of po
wer ge
ne
rato
r requi
re A
C
/
DC/ A
C
conv
erters.
Ho
we
ver,
the conve
r
te
rs in dou
bly-fed indu
ctio
n gene
rato
rs are signifi
cantly smaller than those
in
synchro
nou
s gene
rato
rs,
this i
s
b
e
ca
use
the
co
n
v
erters in
do
ubly-fed i
ndu
ction g
ene
rat
o
rs
conve
r
t abou
t 30% of the
nominal out
put power
while in the synch
r
on
ou
s g
enerators co
nvert
100% of
the
nominal
outp
u
t po
wer [3].
The
syn
c
hron
ous natu
r
e
of
PMSG m
a
y
cau
s
e
proble
m
s
durin
g sta
r
t-u
p
, synch
r
oni
zation and vol
t
age reg
u
lati
on and they
need a
cooli
ng syste
m
, si
nce
the magn
etic
material
s a
r
e
sen
s
itive to tempe
r
atur
e, the tempe
r
atu
r
e in Iraq its
so high
sp
ecia
lly
at summe
r season, they can lo
se th
eir m
agneti
c
propertie
s
. Hen
c
e DFIG is d
o
minantly u
s
ed
whe
n
com
p
a
r
ed amon
g asynchrono
us g
enerator
a
nd
PMSG [2]. Many pape
rs p
r
esented
stud
y
about
DFIG
control to
extract
maximu
m a
c
tive po
wer different
ca
se
s su
ch
gen
erat
or
o
u
tput
durin
g variou
s win
d
spe
e
d
and anoth
e
r pap
ers ex
plaine
d of DFIG wind turbine gen
erato
r
perfo
rman
ce
durin
g the disturb
a
n
c
e of
main
grid. F
o
r these ca
ses an
d others it’s had be
en
achi
eved by kept rea
c
tive power of DFI
G
to be or
n
ear to zero. I
n
this pap
er,
focu
s to ch
an
ge
the rea
c
tive p
o
we
r of
DFIG
and
kept the
active
po
we
r as
n
o
minal ra
ted
to
get an
other
benefit
as
well as a
c
tive powe
r
ge
n
e
ration to vol
t
age reg
u
lati
on and control; intereste
d
from the DF
IG
cap
ability to reactive
powe
r
exchan
ge
b
e
twee
n the
wi
nd turbine
ge
nerato
r
and t
he g
r
id. O
r
de
red
to pro
duce o
r
ab
so
rb a
n
amount of
re
active po
we
r to or from the g
r
id, with
the pu
rpo
s
e
of
voltage control. Use vecto
r
contro
l
strategy ba
sed
on
whi
c
h, the a
c
tive and
re
a
c
tive po
wer can
be co
ntrolle
d indep
ende
ntly. This pape
r orga
nized,
DFIG wind turb
ine perfo
rma
n
ce its expl
ai
ned
with m
a
them
atical
equ
ations in
secti
on 2
.In
se
ction 3, DFIG
with
Conv
erters Co
ntroller
mathemati
c
al
Model intro
duced on
which, the a
c
tive and re
act
i
ve powe
r
ca
n be co
ntroll
ed
indep
ende
ntly. The case
study it be illustrate
d
in
section 4. Co
ntrol strate
gy is proved to
be
effective by the sim
u
lation
results in
section
5. in se
ction 6
co
nclu
sio
n
ba
sed in si
mulat
i
on
res
u
lts.
2. DFIG Win
d
Turbine Pe
rforman
c
e
It
consi
ders
a
netwo
rk
with
Wind
turbine
catch
e
s the
wi
nd
energy thro
u
gh bla
d
e
s
of
its
rotor an
d tra
n
sfers it to
th
e roto
r
hub
system. The
rotor h
ub i
s
conne
cted
to
a lo
w spee
d
shaft
throug
h a
ge
ar b
o
x. The
high
spe
ed
shaft drive
s
t
he el
ectri
c
g
enerator which
co
nverts the
mech
ani
cal p
o
we
r to elect
r
ic po
wer a
nd
delivers it to the grid .a
s sh
own in Fig
u
re
1.
The te
ch
nical
pe
rform
a
n
c
e
of
DFIG
allo
ws to
extracti
ng m
a
ximum
energy fro
m
t
he
wind,
du
ri
ng
the low wi
nd
spe
e
d
s
, while
minimizin
g
mech
ani
cal stresse
s
on th
e turbine d
u
ri
ng gu
sts of wind.
For the
wind
spee
ds l
o
we
r than rated the roto
r is
ru
nning at
sub
-
synchro
nou
s
spe
ed an
d fo
r
high win
d
sp
eed
it
i
s
run
n
ing at
supe
r-syn
c
h
r
on
ou
s sp
eed.
The
model
of the
win
d
turbine
is
based on the
steady state
powe
r
ch
ar
a
c
teri
stics, wh
ere the ge
ne
rator
cou
p
led
to the turbine.
The outp
u
t p
o
we
r of the t
u
rbin
e is
give
n by t
he follo
wing
equatio
n: And acco
rding to [3, 6], and
[7].
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Gen
e
ration and Volt
age Regulati
on of 132KV Karbal
a grid
… (Qa
s
im
Kam
il Mohsin)
21
Figure 1. Structure of
DFIG
Coupl
ed to Wind T
u
rbi
n
e
3
1
,
2
Wt
P
w
PA
C
V
(1)
m
w
Rw
V
(2)
w
w
m
P
T
w
(3)
Let At =
π
R2, And Substituting (1
) and
(2) to (3) to g
e
t:
32
,
2
Pw
w
RC
V
T
(4)
The perfo
rma
n
ce
coefficie
n
t
of
turbine
Cp (
λ
,
β
) is a
functio
n
of t
he tip
sp
eed
ratio
(
λ
),
and th
e
pitch
angl
e of
the
rotor bla
d
e
s
(
β
). It is dete
r
mined
by a
e
rodynami
c
la
ws a
n
d
it will
b
e
cha
nge
d from
turbine to oth
e
r.
21/
116
,
0
.51
7
6
0
.4
5
0
.0068
i
P
i
Ce
(5)
1
3
10
.
0
3
5
0.08
1
i
(6)
Whe
r
e, p
w
i
s
Mechani
cal
power
of win
d
turbi
ne,
ρ
i
s
the
air
den
sity in Kg/m3
,
At is the a
r
e
a
covered
by the rotor
blad
es in
m2,
Cp
is Pe
rfor
m
a
nce
co
efficie
n
t of the turb
ine, Vw i
s
Wind
spe
ed (m/s
),
λ
i
s
Ti
p
spe
e
d
ratio
of th
e
roto
r bl
ade
tip spee
d to
wind
spee
d,
β
is Blade
pit
c
h
angle (deg
),
ω
m is the me
cha
n
ical sp
ee
d of the wind
turb
ine
(rad/
s), R i
s
the ra
dius of the a
r
ea
covered by the blade
s (m
).
3.
DFIG
w
i
th Conv
erters Mathem
atica
l
Model
A DFIG i
s
b
a
si
cally a
st
anda
rd, a
s
wou
nd
roto
r indu
ction
m
a
chi
ne
with i
t
s stato
r
windi
ng
s dire
ctly conne
cte
d
to the grid and its
roto
r windi
ng
s con
necte
d to the grid throu
g
h
a
conve
r
ter. Th
e AC/DC/AC IGBT voltage-sou
r
ce
Co
nverter i
s
div
i
ded to two
compon
ents: t
h
e
rotor
side
con
v
erter an
d the grid si
de co
nverter
with a
commo
n DC bus, [8].
3.1 The Ro
to
r-Side Conv
erter
(RS
C
)
The RS
C
with PWM it is
p
o
ssible
applie
s the voltag
e
to the roto
r wi
nding
s of
DFIG. The
purp
o
se of the RSC is to control the ro
tor cu
rre
nt
s such that the rotor flux posit
ion is optimal
ly
oriente
d
with respe
c
t to the stator flux in or
de
r that the desi
r
e
d
tor
que i
s
devel
oped at the shaft
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 1, Octobe
r 2015 : 19 – 2
9
22
of the ma
chin
e. The
RSC u
s
e
s
a to
rq
ue
(or speed
)
co
ntrolle
r to
reg
u
late the
win
d
turbi
ne o
u
tput
power
and
th
e stato
r
te
rmi
nals voltage
(or
rea
c
ti
ve p
o
w
er) m
e
a
s
u
r
e
d
at the
ma
ch
ine. The
po
wer
is controlled
in order to follow
a p
r
e-d
e
fined tu
rbin
e po
we
r-spe
ed cha
r
a
c
teri
stic to t
r
a
ck
the
maximum po
wer
point. Th
e actu
al ele
c
trical
output p
o
we
r from th
e gen
erato
r
t
e
rmin
als, a
d
d
e
d
to the total p
o
we
r lo
sse
s
(me
c
ha
nical
and el
ect
r
ical) is
co
mpa
r
e
d
with th
e re
feren
c
e
po
wer
obtaine
d fro
m
the
win
d
t
u
rbin
e
cha
r
a
c
teri
stic.
Us
u
a
lly, a Pro
p
o
r
tional-Integ
ral
(PI)
co
ntroll
er i
s
use
d
at th
e o
u
ter
cont
rol l
o
op to
red
u
ce
the po
we
r e
r
ror to
ze
ro. T
h
e ge
neri
c
po
wer control lo
op
is illustrated i
n
the
Fig.2.T
he
RS
C provides the
excit
a
tion of the
rotor for the induction machine
in orde
r to co
ntrol the torq
ue, hen
ce th
e spe
ed of
th
e DFIG an
d the po
wer fa
ctor at the stat
or
terminal
s. Th
e RSC provides a varyin
g ex
citation frequ
en
cy de
pendi
ng on the wind
spe
ed
con
d
ition
s
. The DFI
G
indu
ction ma
chi
n
e is
cont
rolle
d in a
synchronou
sly rotati
ng dq
-axis f
r
a
m
e,
w
i
th
th
e d-
a
x
is
or
ie
n
t
ed
a
l
on
g
th
e s
t
a
t
or
-flu
x
vector po
sition i
n
o
ne
comm
on im
pl
ementation
a
n
d
this i
s
called stator-flux orientation (S
FO) vect
o
r
control. In thi
s
way, a
de
cou
p
led
co
ntrol
betwe
en the rotor ex
citation cu
rrent and the elec
t
r
i
c
al torq
ue is obtained. Consequ
ently,
the
active a
nd
re
active p
o
wers a
r
e
co
ntroll
ed in
depe
nd
ently from
ea
ch
other.
Th
e ge
neral Pa
rk’
s
model of a
n
indu
ction ma
chine is i
n
trod
uce
d
. Us
ing t
he stati
c
stat
or-orie
n
ted re
feren
c
e fram
e,
without
saturation, the vector equ
ation
s
of The
Stator and rotor vol
t
age Equatio
ns
with con
s
tant
coeffici
ent in the d-q frame
are [4, 9], and [10]:
s
q
sq
s
s
q
s
s
d
s
d
sd
s
s
d
s
sq
d
VR
i
dt
d
VR
i
dt
(7)
rq
rq
r
r
q
s
l
i
p
r
d
rd
rd
r
r
d
s
l
i
p
r
q
d
VR
i
dt
d
VR
i
dt
(8)
The
stator an
d Rotor fluxe
s
a
r
e
rel
a
ted
to
the stator and roto
r cu
rrents
i
n
the
d
-
q
fram
e
as:
s
qs
s
q
m
r
q
s
ds
s
d
m
r
d
Li
L
i
Li
L
i
(9)
rq
r
r
q
m
s
q
rd
r
r
d
m
s
d
Li
L
i
Li
L
i
(10)
Whe
r
e, Rs, Rr, Ls, and
Lr are
the
re
sista
n
ces
an
d self-in
duct
ances of the
stato
r
a
nd
rotor
windi
ng
s
Re
spectively, an
d Lm
is the
mutual in
d
u
c
t
a
n
c
e
be
tw
een
a
s
t
a
t
or
and
a
r
o
tor
w
i
nd
in
gs
whe
n
they
are fully alig
ne
d with
ea
ch
o
t
her.
ω
s is th
e syn
c
h
r
on
ou
sly fre
quen
cy
and
ω
slip is
the
slip frequ
en
cy,
ω
slip =
ω
s-
ω
e
w
h
er
e,
ω
e = P
ω
m, P is p
o
le
pairs a
nd
ω
m is th
e
rot
o
r'
s
mech
ani
cal
speed. Vs i
s
the stator vo
ltage im
po
se
d by the gri
d
. The roto
r voltage Vr
is
controlled by
the rotor-side
conve
r
ter a
n
d
use
d
to
perform gen
erator contro
l. Th
e vector
cont
rol
strategy
appli
ed to the
DFI
G
con
s
ist
s
o
n
ma
king
th
e
stator flux in
quad
ratu
re
with the
q-axis of
the Park
reference frame, therefo
r
e
0
s
ds
s
d
m
r
d
s
m
m
s
sq
L
i
Li
Li
(11)
From the Equ
a
tion (9
) and
(11
)
:
m
s
qr
q
s
L
ii
L
(12)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Gen
e
ration and Volt
age Regulati
on of 132KV Karbal
a grid
… (Qa
s
im
Kam
il Mohsin)
23
mm
s
r
d
s
dr
q
s
Li
i
ii
L
(13)
By Substituting (12
)
and (1
3) in (1
0), to obtain
2
2
2
()
(1
)
m
rd
r
m
rd
m
s
S
m
rq
r
r
q
Sr
L
LL
i
i
L
L
Li
LL
(14)
By introduci
n
g the leakage
coefficie
n
t
σ
with:
2
1
m
s
r
L
LL
(15)
Then:
2
m
rd
m
s
r
r
d
S
rq
r
r
q
L
iL
i
L
Li
(16)
Substitute (1
6)
in
to (8)
to get
the roto
r Voltage
a
nd f
l
ux equ
ations are
(scale
d t
o
be
num
eri
c
ally
equal to the a
c
per-p
ha
se value
s
):
rd
r
d
rr
d
r
s
l
i
p
rr
q
rq
rq
r
r
q
r
s
l
i
p
o
m
s
r
rd
di
VR
i
L
L
i
dt
di
VR
i
L
L
i
L
i
dt
(17)
Whe
r
e, Lo eq
uivalent indu
ctance i
s
:
2
m
O
S
L
L
L
(18)
Assu
ming th
at the stator
flux
is station
a
ry in the fra
m
e (the d
-
axi
s
is ali
gne
d with the
stator-flux-lin
kag
e
vector)
and ne
gle
c
tin
g
the
stator'
s
resi
stive voltage dro
p
, and
from so:
,0
sd
s
s
q
an
d
(19)
And,
0,
s
ds
q
s
Va
n
d
V
V
(20)
Subs
titute (19), (20) to (7)
s
qs
s
s
q
s
s
VV
R
i
, from which obtain:
s
ss
q
s
s
VR
i
(21)
From (11), (21) to get:
()
s
qs
s
q
ms
sm
VR
i
i
L
(22)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 1, Octobe
r 2015 : 19 – 2
9
24
Figure 2. Vector Cont
rol Structu
r
e fo
r RSC
From the roto
r voltage (1
7) and from Fig
u
re 2 then:
'
'
rd
rd
r
r
d
r
rq
rq
r
r
q
r
di
vR
i
L
dt
di
vR
i
L
dt
(23)
To en
su
re
be
st tra
cki
ng
of the rotor
dq-axis
current
s,
vrd a
nd vrq
comp
en
satio
n
term
s
are
add
ed to
obtain th
e referen
c
e
voltage
s vrd*
an
d vrq*
as sh
own i
n
Fig
u
re 2 a
c
co
rdin
g to
Equation (24)
*'
*'
()
rd
rd
s
l
i
p
r
r
q
rd
rq
s
l
i
p
m
m
s
r
rd
vv
w
L
i
vv
w
L
i
L
i
(24)
The active an
d rea
c
tive po
wer at
stator termin
als a
r
e
given by:
Ss
d
s
d
s
q
s
q
Ss
q
s
d
s
d
s
q
PV
i
V
i
QV
i
V
i
(25)
The active an
d rea
c
tive po
wer at rotor t
e
rmin
als i
s
gi
ven by:
rr
d
r
d
r
q
r
q
rr
q
r
d
r
d
r
q
PV
i
V
i
QV
i
V
i
(26)
The ele
c
trom
agneti
c
torqu
e
equatio
n:
es
d
s
q
s
q
s
d
Ti
i
(27)
3.2. The Grid
-Side Conv
erter (GSC)
The G
S
C control
s
the flow of
real an
d rea
c
tive powe
r
t
o
the g
r
id, throu
gh the
grid
interfaci
ng in
ducta
nce. The objective o
f
the GSC
is to keep the dc-li
n
k voltag
e level con
s
tant
rega
rdl
e
ss
of
the mag
n
itud
e an
d di
re
ctio
n of th
e
rotor
power. T
he v
e
ctor
control
method i
s
used
as
well, with
a referen
c
e
frame o
r
ient
ed alon
g the
stator volta
ge vecto
r
po
sition, ena
bli
ng
indep
ende
nt control of the active a
n
d
rea
c
tive p
o
we
r flowi
n
g
betwee
n
th
e grid a
nd t
h
e
conve
r
ter.
Th
e PWM
conv
erter is curre
n
t reg
u
lated,
with the
d-axis
cu
rre
nt u
s
e
d
to
regul
ate
the
dc-li
n
k voltag
e and the q
-
axis cu
rrent comp
one
nt
to regul
ate th
e rea
c
tive p
o
we
r. A simi
lar
analysi
s
of the d-q current
s co
ntrol carri
ed out
for the GSC can likewi
s
e be do
n
e
for the cont
rol
of the convert
e
r d-q cu
rrent
s [10]:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Gen
e
ration and Volt
age Regulati
on of 132KV Karbal
a grid
… (Qa
s
im
Kam
il Mohsin)
25
1
1
Cd
Cd
Cd
cho
k
e
e
chok
e
C
q
C
d
Cq
Cq
Cq
chok
e
e
chok
e
C
d
C
q
di
VR
i
L
w
L
i
V
dt
di
VR
i
L
w
L
i
V
dt
(28)
The ang
ula
r
positio
n of the grid voltage
in Figure 3 i
s
calculated a
s
:
1
ta
n
(
)
c
ee
c
v
wd
t
v
(29)
Whe
r
e, Vc
α
and
Vc
β
a
r
e
the conve
r
ter grid-sid
e voltage
statio
na
ry frame com
pone
nts. The
d-
axis of the ref
e
ren
c
e frame
is aligne
d wit
h
the voltage angul
ar po
siti
on
θ
e of grid.
Figure 3. Vector Cont
rol Structu
r
e fo
r G
S
C
Since the
am
plitude of the
grid voltag
e is co
n
s
tant, Vcd i
s
co
nsta
n
t, and Vcq i
s
zero. so
the converter active
and reactive
power flow It will
be proportional
to icd and i
c
q
respectiv
e
ly.
To realize d
e
c
ou
pled
co
ntrol of Fig
u
re
3
,
simila
r com
pen
sation
s a
r
e intro
d
u
c
ed l
i
ke
wise of
RSC
in Equation (24):
*'
*'
()
c
d
e
c
hok
e
c
q
c
d
c
d
c
q
e
c
hok
e
c
d
c
q
vw
L
i
v
v
vw
L
i
v
(30)
The refere
n
c
e voltag
e Vcd* a
nd V
c
q* a
r
e the
n
tran
sform
ed by inverse-P
a
rk
transfo
rmatio
n to give3-p
hase voltage
Vabc*
for the final PWM signal g
e
neratio
n for
the
conve
r
ter IG
BT switching.
3(
)
3
3(
)
3
C
c
dc
d
c
q
c
q
c
dc
d
C
c
dc
q
c
q
c
d
c
dc
q
PV
i
V
i
V
i
QV
i
V
i
V
i
(31)
From Eq
uati
on (31) dem
onstrates tha
t
the ac
tive
and
rea
c
tive
powers fro
m
the g
r
id-si
d
e
conve
r
ter a
r
e
controll
ed by
the icd and i
c
q current co
mpone
nts.
4. Case Stud
y
132
kv Karb
a
l
a no
rth tra
n
smi
ssi
on n
e
twork
co
nn
ected to Al
ahkade
r tra
n
s
missio
n
netwo
rk by two tran
smi
s
si
on line type teal (the
rm
al rating 120MV
A
) with dista
n
c
e 90
km. the site
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 1, Octobe
r 2015 : 19 – 2
9
26
whi
c
h p
a
sse
s
throug
h it,
these
tran
sm
issi
on lin
es, i
t
s de
se
rt an
d Elevated
a
r
ea to
obtai
n
a
highe
r
wind
spe
ed
or (i.e
. its op
en
pl
ace
to g
e
t m
a
x win
d
spe
ed a
nd
no
effect of th
e n
o
ise
obtaine
d fro
m
gene
rato
rs to the live of urba
n city
).
Con
s
id
er Ala
h
ka
der
netwo
rk i
s
the term
inal
netwo
rk
co
nsists of two transfo
rme
r
s
1
32/
33
kv, 63MVA, and feeders 3
3
KV, feeds cem
ent
factory be
sid
e
the netwo
rk, and re
side
ntial area
s
n
earby, the la
rge
s
t load is taken from this
netwo
rk
whi
c
h doe
s not e
x
ceed 7
5
MW.since the
lo
ad is lo
w, most time Alahka
der n
e
twork
sup
p
lied
by o
ne of tra
n
smi
ssi
on lin
es
an
d anoth
e
r
wo
rk a
s
off line from one
si
de
and b
e
cau
s
e
of
distan
ce, thi
s
make the transmi
ssion
line suffer fr
o
m
over volta
ge an
d its
effect to in
sul
a
tions
and
som
e
ti
me da
mag
e
of voltage tra
n
sforms
conn
ected
on
it. From
above
m
ention th
ere
are
two rea
s
o
n
s to sele
ct wind
turbine gen
e
r
ator at
this p
l
ace, one
sati
ation of the transmi
ssion li
ne
and second
thermal rat
ed of transmissi
on line
s
with low lo
ad co
nsumpt
ion. So can
be
exploitation to con
s
tructio
n
wind tu
rbi
ne farm to
achi
evement
powe
r
ge
n
e
ration
and
to
prote
c
tion th
e tran
smi
ssi
o
n
line from o
v
er voltage I
n
fluen
ce
s. Wi
th ability of DFIG win
d
turbine
to obtain
the
s
e t
w
o
ca
se
s. The
rated
p
o
we
r
size of
DFIG
win
d
tu
rbine
farm
s u
n
limited in
thi
s
pape
r it’s de
pendi
ng to
e
c
on
omics
an
d politi
c
s r
e
a
s
on
s, con
s
e
q
uen
ce used singl
e DFIG wind
turbine. To
study the impa
ct of DFIG wi
nd tu
rbin
e to 132KV tran
smissi
on line v
o
ltage, and a
c
tive
power by interconn
ectio
n
of DFIG 0.69kv, 2MW
to
middle of transmi
ssion li
ne as sho
w
n
in
Figure 4 a
c
ro
ss t
w
o
step
of tran
sform
e
rs
one
0.69
kv/11kv, then
transfe
r th
ro
w 11
kv feed
e
r
to
se
con
d
tra
n
sf
orme
r 1
1
kv/1
32kv
whi
c
h
conne
cted t
o
tran
smi
ssi
on li
ne. In this stu
d
y su
ppo
se t
h
e
wind
spe
ed i
t
s 5m/s a
c
co
rding to
NA
SI monthl
y data of wind
at Karbala
ci
ty, the load a
t
Alakhd
er n
e
twork 10
MW,
sup
p
lied fro
m
Karbala n
o
rt
h grid.
The sy
stem p
a
ram
e
ters of the interconn
ection a
r
e sh
own b
e
lo
w:
1)
Tran
smi
ssi
on
line para
m
et
ers: 13
2kV, 1
20MVA, 50Hz, with R1
=0.
097
Ω
/k
m,
X=0.387
Ω
/
k
m
,
R0=0.327
5
Ω
/k
m, X0=
1
.274
Ω
/k
m
2)
DFIG
Pa
ram
e
ters: 2MW, 0.69kV,
5
0
Hz,
IGBT AC/DC/AC PWM
converte
rs, ve
ctor
control mod
e
l
.
Different
ca
ses
studie
s
were
con
d
u
c
te
d usi
ng PS
CAD/EMT
D
C to demon
st
rate the
power flow a
nd voltag
e
magnitud
e
of
tran
smi
ssi
on
line
by
cha
nge
re
active
po
we
r of
DFIG
sho
w
n in
se
ction 5.
5. Simulation
w
i
th Re
sul
t
and Dis
c
us
sion
The si
mulati
on don
e for 132KV, 12
0MVA, 50HZ
,
three ph
ases T
r
an
smi
s
sion lin
e
con
n
e
c
ted
of
Karbal
a n
o
rth
to Alah
ka
der network
with
dista
n
ce of
9
0
km
supply t
he lo
ad
10M
W
at Alahkade
r
netwo
rk. A
ssuming th
e loa
d
is l
o
w
and
p
u
re
re
sistive,
to sho
w
th
e e
ffect of ch
ang
e
in re
active p
o
we
r of
DFI
G
with
rate
d
2MW to
volt
a
ge p
r
ofile a
n
d
the
active
power tran
sfer of
transmissio
n line betwe
en
two netwo
rks ,the total ti
me of the simulation it is 10 se
c. different
ca
se
s of simu
lation are d
o
n
e
as sho
w
n b
e
low:
Figure 4. Circuit Diagram for Simulation
Model
5.1. Activ
e
Po
w
e
r Supply
to Load
w
i
thout DFIG.
The
simul
a
tio
n
do
ne
for ci
rcuit
dia
g
ra
m
is in
Figu
re
4 with
out
DFI
G
conn
ectio
n
. From
the Simulatio
n
re
sult in Fi
gure
5 the a
c
tive powe
r
su
pplied from K
a
rbal
a no
rth
netwo
rk, to t
h
e
load at Alahkehde
r network acro
ss tran
smissio
n
li
ne
is 10M
W, sin
c
e Alah
kad
e
r
terminal net
work
and loa
d
is lo
w at it so, the transmi
ssion
line su
p
p
ly reactive po
we
r aro
und 1.8
MVAR to Karbala
north
network. And Simulat
i
on result in F
i
gure
6
Rep
r
e
s
ent tran
smi
s
sion
line volta
ge ma
gnitud
e
value little more than rated
(131.8
0
- 1
32.
2) KV.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Gen
e
ration and Volt
age Regulati
on of 132KV Karbal
a grid
… (Qa
s
im
Kam
il Mohsin)
27
Figure 5. Active and Re
acti
ve Power Flo
w
in
Tran
smi
ssi
on
Line witho
u
t DFIG
Figure 6. Voltage at Interco
nne
ction Poin
t
without DFI
G
Con
n
e
c
tion
5.2. Activ
e
Po
w
e
r Supply
to Load
w
i
th DFIG.
In this ca
se the simul
a
tion
done for
circuit diag
ram
is in Figu
re
4 for three
case
s of
rea
c
tive po
wer suppli
ed o
r
injectio
n fro
m
DFIG to transmi
ssion li
ne with
out effected to it
s a
c
tive
power suppli
e
r to load:
5.2.1. DFIG Supply
Activ
e
Po
w
e
r
and
Rea
c
tiv
e
Po
w
e
r
(Q
w
i
n
d
=0)
The Simulati
on re
sult of F
i
gure
7 sh
ows the
a
c
tive power
suppli
ed from Ka
rb
ala no
rth
netwo
rk, to th
e load in
ca
sed (5.1
) de
creased from
1
0
MW to 8M
W, re
sult fro
m
the DFIG
supply
2MW. The
re
active po
wer supply at th
e tran
smis
sio
n
line to Karbala no
rth ne
twork it be le
ss
than
case(A) result
from re
actan
c
e of
transfo
rme
r
s
which
co
nne
ct
of DFIG to transmi
ssion li
ne,
this i
s
de
crea
se i
n
rea
c
tive po
wer an
d le
ads to bal
an
ce tran
smi
s
sio
n
line volta
g
e
at rate
d valu
e
(131.8
0
- 1
32.
20) KV as
sh
own in
simula
tion result of Figure 8.
Figure 7. Active and Re
acti
ve Power Flo
w
in
transmiss
ion line with DFI
G
Reac
tive Power
(Q = 0MVA
R)
Figure 8. Volt
age at Inte
rconne
ction P
o
i
n
t with
DFIG Reac
tive Power (Q
= 0MVAR)
5.2.2. DFIG Supply
Activ
e
Po
w
e
r
and
Absor
b
Re
a
c
tiv
e
Po
w
e
r (Q
w
i
nd =
-1
MVAR)
The Simulatio
n
re
sult of Fig
u
re 9
sh
ows t
he a
c
tive po
wer tra
n
sfe
r
red
from Karbala
north
netwo
rk at it be sam
e
in case (5.2.1) it
8MW,
while
the rea
c
tive power it be d
e
crea
se to zero
sin
c
e the rea
c
tive power
control of
DFIG reg
u
la
ted t
o
absorb 1M
var so, thi
s
lead to re
du
ce in
transmissio
n line voltage rated to (13
1
.60- 1
32.00
) KV as sh
own
in simulatio
n
result of Figure
10.
Figure 9. Active and Re
acti
ve Power Flo
w
in Tra
n
smi
ssi
on Lin
e
wit
h
DFIG Absorb
Rea
c
tiv
e
Pow
e
r (Q
= -1MV
AR)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 1, Octobe
r 2015 : 19 – 2
9
28
Figure 10. Voltage at Interconne
ction Poi
n
t with DFIG
Abso
rb
Rea
c
tiv
e
Power
(Q =
-1M
VAR)
5.2.3. DFIG Supply
Activ
e
Po
w
e
r
and Inject Reac
tiv
e
Po
w
e
r (Q w
i
n
d
= 1MV
A
R)
The Simul
a
tion result of Figure 11
sh
ows t
he a
c
tive po
we
r tran
sferred f
r
om
Karba
l
a
north
network, to the lo
ad
same
in
ca
se
(5.2.1
), an
d
ca
se
(5.2.2
) i
t
be 8M
W,
while the
re
acti
ve
power it be increa
se to -2Mvar si
nce the rea
c
tive power contro
l of DFIG se
tting to provide
1Mvar, a
nd t
h
is
re
sulted
t
o
in
cre
a
se in
trans
missio
n
line voltag
e (132.00
- 1
32.
40) KV a
s
sh
own
in simulatio
n
result of Figure 12
Figure 11. Active and rea
c
tive powe
r
flow in tran
smi
s
sion lin
e with
DFIG inje
ct
Rea
c
tiv
e
po
w
e
r (Q
= 1MVA
R)
Figure 12. Voltage at Interconne
ction Poi
n
t with DFIG Inject Rea
c
tive Powe
r (Q
= 1MVAR)
6. Conclusi
on
To in
crea
sing
po
wer ge
ne
ration of I
r
aq
and
enviro
n
m
ental
con
c
e
r
n
s
n
eed
s to
in
stalling
wind turbine
gene
ration fa
rms, there two important
thing
s
to con
s
truction n
e
w
wind farm
s o
n
e
type of gen
erators an
d second the
pla
c
e
to inst
all
it.
T
h
is
p
ape
r sho
w
s both and con
c
lu
de
s
u
s
e
DFIG fro
m
others types
of (WE
CS) a
n
d
sele
ct
132K
V transmi
ssio
n line conn
ects between th
e
Karbal
a no
rth
netwo
rk
and
Alahka
der
n
e
twork fo
r co
nstru
c
tion
wi
nd farm
witho
u
t others pla
c
es.
The
Control
and o
peratio
n of a DFIG-based
wind
power g
ene
ration sy
stem
unde
r bal
an
ced
sup
p
ly voltage con
d
ition
s
with vector
control st
rateg
y
allows de
couple
d
or ind
epen
dent con
t
rol
of both active and re
activ
e
powe
r
of DFIG hav
e be
en investigat
ed. Simulation results pro
v
ed
ability with
effectively and
efficiency of
DFIG to
do two
options i
n
tran
smi
ssi
on line
one active
power ge
neration, an
d
se
con
d
re
a
c
tive
po
we
r co
ntrol and
this
mean voltag
e profile co
ntrol,
without effect
ed to cha
nge
in active po
wer produ
ce
d from DFIG.
Evaluation Warning : The document was created with Spire.PDF for Python.