TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5807 ~ 5813
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.580
4
5807
Re
cei
v
ed Fe
brua
ry 16, 20
14; Re
vised
Ma
rch 29, 20
14; Accepted
April 15, 201
4
Hybrid PSOGSA Method of Solving ORPD Problem with
Voltage Stability Constraint
J.Jithend
r
an
ath*, A.Sriha
r
i Babu, G.Durga Sukum
a
r
Schoo
l of Elect
r
ical En
gin
eeri
ng, Vign
an U
n
i
v
ersit
y
*Corres
p
o
ndi
n
g
author, em
ail
:
1jjithe
ndra
nat
h@gma
il.com
A
b
st
r
a
ct
T
h
is pa
per
pr
esents a
new
hybri
d
evo
l
uti
o
nary b
a
se
d al
gorith
m
base
d
on PSO a
nd
GSA for
solving optimal reactive power di
spatch
problem
in power system
. T
he problem
was designed as a Mult
i-
Objective cas
e
w
i
th loss min
i
mi
z
a
t
i
o
n
and v
o
ltag
e stabi
lity as obj
ectives.
Generator
ter
m
i
nal v
o
ltag
es, tap
setting of tran
sformers
an
d
reacti
ve
pow
er
gen
eratio
n of
capac
itor ba
n
ks w
e
re taken
as opti
m
i
z
a
t
i
o
n
varia
b
les.
M
o
d
a
l ana
lysis method
is ad
op
ted
to
assess
the v
o
ltag
e
stability
of sy
stem. Th
e a
b
o
v
e
prese
n
ted
pro
b
l
e
m
w
a
s so
lve
d
on
b
a
sis of
e
fficient
a
nd r
e
li
abl
e tech
niq
u
e
w
h
ich takes
the a
d
va
ntag
es
of
both PSO
and GSA. The pr
opos
ed
method has be
en tested on IEEE
30
bus
system
wher
e
obtained
results w
e
re found satisfact
o
ri
ly to a
large ext
ent that
of repo
rted earl
i
er.
Ke
y
w
ords
:
opt
imal reactiv
e
p
o
w
e
r dispatch,
mo
da
l ana
lysis
,
PSO, GSA.
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Optimal po
wer flow
(OP
F
) is a
n
op
timization to
ol use
d
to sched
ule the
control
para
m
eters
o
f
powe
r
syst
ems i
n
su
ch
a ma
nne
r
t
hat the o
b
je
ctive function
is minimi
ze
d
or
maximize
d. Operating
co
nstrai
nts of e
quipme
n
ts
, secu
rity requi
rement an
d st
ability limits are
enforced
to t
he
solutio
n
[
1
]. Optimal
reactive
po
we
r di
spat
ch
problem i
s
an
OPF sub
-
pro
b
lem
whi
c
h h
a
s a
signifi
cant im
pact
on e
c
o
n
o
mic
and
secure
ope
ration
of po
we
r
systems [2]. On
e
of
the prin
cipal
tasks of a system
op
erator is to gu
arante
e
that netwo
rk p
a
ra
meters su
ch
as
voltage and
line load
s a
r
e kept
within
pred
efined
l
i
mits for hig
h
quality of servi
c
e
s
to the
con
s
um
er loa
d
poi
nt an
d p
o
we
r
system
stability.
Ho
wever,
chan
ge
s in
net
wo
rk topolo
g
y an
d/or
loadin
g
con
d
i
t
ions often ca
use
corre
s
p
o
nding vari
atio
n in voltage p
r
ofiles of p
r
e
s
ent day power
system
s. Thi
s
problem
ca
n be ad
dre
ssed thro
ugh
re
-dist
r
ibutio
n o
f
reactive p
o
wer
so
urce
s
with
con
c
omita
n
t
decrea
s
e i
n
t
r
an
smi
ssi
on l
o
sse
s
[3]. Th
e re
active p
o
w
er dispatch
has
a twof
old
goal thu
s
: to improve
system voltage profile
s an
d
minimizes
system lo
sses
at all times [4].
Reactive power flow
can be cont
rolled by suitably adj
usting the foll
owing facilities:
tap changi
ng
unde
r load tran
sform
e
rs,
generating units’ re
activ
e
powe
r
ca
p
ability variation, swit
ching
of
cap
a
cito
rs, switchi
ng
of u
n
load
ed
o
r
u
nused
lin
es
a
nd flexible A
C
tra
n
smissio
n
sy
stem
(FA
C
TS)
device
s
[5].
It is the
r
efore cl
ear that
rea
c
tive
po
wer a
nd volta
ge
control i
s
a
con
s
trai
n
ed,
nonlin
ear p
r
o
b
lem of con
s
i
dera
b
le comp
lexity.
2. Modal Anal
y
s
is for Voltage Stability
e
v
aluation:
Modal
analy
s
is i
s
on
e of
method
s fo
r
voltage
stabil
i
ty assessme
nt in po
we
r
systems.
This meth
od i
s
ba
sed o
n
ei
gen value a
n
a
lysis of ja
co
bian matrix.
The sy
stem steady state p
o
we
r
flow eq
uation
s
are
written as:
=
(1)
∆
P- in
cre
m
en
tal chan
ge in
bus real po
wer
∆
Q
-
increm
en
tal chan
ge in
bus rea
c
tive power
∆θ
-i
ncrem
ent
al cha
nge in
bus voltag
e a
ngle
∆
V-in
creme
n
tal cha
nge in
bus voltag
e magnitud
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 58
07 –
5813
5808
J
P
θ
, J
PV
, J
Q
θ
, J
QV
are the sub matri
c
e
s
o
f
jacobia
n
ma
trix.
If in above equation
∆
P is
made eq
ual to zero, then:
∆
∆
∆
and so
∆
∆
where
(
2
)
Calle
d the re
duced Jacobi
an matrix of system [6].
The sy
stem is voltage sta
b
le if the Eigen valu
e
s
of Ja
cobi
an are
all positive. Thus th
e
results fo
r vol
t
age sta
b
ility enha
ncement
usin
g mo
dal
analysi
s
fo
r the redu
ced
Jaco
bian m
a
tri
x
is wh
en:
Eigen
value
s
λ
i
> 0, the system is unde
r
stable
con
d
ition
Eigen
value
s
λ
i
< 0, the system is un
stab
le con
d
ition
Eigen
value
s
λ
i
= 0, the system is in criti
c
al con
d
ition a
nd may colla
pse.
3. Problem Formulation
The obj
ective
of the ORPD probl
em is to
mini
mize o
n
e
or mo
re obj
ective functio
n
s while
satisfying a n
u
mbe
r
of con
s
traint
s such as loa
d
flow, gene
rato
r bu
s voltage
s, load bu
s voltag
es,
swit
cha
b
le re
active po
we
r comp
en
satio
n
s, re
active
power g
ene
ration, tran
sfo
r
mer ta
p settin
g
and tran
smi
s
sion lin
e flow. In this paper two obj
ect
i
ve function
s are minimi
ze
d sep
a
rately
as
singl
e obje
c
ti
ve. Objective
function
s mi
nimize
d in thi
s
pa
per
and
con
s
trai
nts a
r
e formul
ated
as
s
h
ow
n
as
fo
llo
w
s
.
3.1. Minimization of
Real
Po
w
e
r L
o
ss
∑
2
cos
(
3
)
i,j
Є
1,2 ---N
l
3.2. Maximiz
i
ng the Voltage Stabilit
y
Margin
The
stability stating fa
ct
ors which is almo
st use
d
in all
appl
ication to
a
s
se
ss t
he
proximity of voltage coll
a
p
se. Thi
s
i
s
based on
ei
g
en value a
n
a
l
ysis of po
we
r flow ja
co
bi
an
matrix. This
state’s
ho
w a
particula
r bu
s can
su
stain
for given lo
a
d
ing
which is can
be ab
ove
than the ba
se
case [7].
3.3. Equalit
y
Cons
train
t
s
This are normal power flow equ
ation
s
, such
that e
v
ery possible
solution mu
st satisfy
this co
nst
r
ain
t
s.
∑
cos
sin
∑
sin
cos
(
4
)
N
B
Num
ber of
buse
s
in the
power sy
ste
m
N
G
Num
ber o
f
generato
r
s
P
i
and Q
i
are
real an
d re
act
i
ve powe
r
inje
cted at bu
s
i
G
ij
and B
ij
are
cond
ucta
nce
and su
scept
ance betwee
n
bus
i
an
d
j
, can b
e
self or mutual
values
3.4. Inequality
Constraints
These i
n
clu
d
e
the
syste
m
ope
rating
co
nstrai
nt
s that
are in
clu
ded
he
re. Th
e
p
a
rticul
ar
quantity of intere
st must be
operate
d
wit
h
in this
po
ssible ran
ge onl
y, then the system is
said t
o
operate in se
cure and
stab
le state.
These are ha
ndled by co
n
s
ide
r
ing p
ena
lty for eac
h of con
s
traint th
at are incl
ude
d in the
obje
c
tive fun
c
tion to
con
s
truct
a fitne
s
s fun
c
tion
for se
archi
ng th
e optim
al
sol
u
tion in
sea
r
ch
s
p
ac
e [8].
Q
Gi min
≤
Q
Gi
≤
Q
Gi max
i
Є
N
PV
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hybrid PSO
G
SA Method of Solving O
R
P
D
Probl
em
with Voltage Stability… (J.Jit
hend
ran
a
th)
5809
V
Gi min
≤
V
Gi
≤
Q
Gi max
i
Є
N
PV
N
PV =
Numbe
r
of voltage buse
s
V
Li min
≤
V
Li
≤
V
Li max
i
Є
N
PQ
N
PQ =
Numbe
r
of load bu
se
s
Q
Ci min
≤
Q
Ci
≤
Q
Ci max
i
Є
N
c
N
c
= Numb
er
of Switchabl
e
Capa
citors
t
k min
≤
t
k
≤
t
k max
i
Є
N
T
N
T
= Numb
er
of Tap ch
angi
ng Tra
n
sfo
r
m
e
rs
4. The H
y
brid PSOGSA Algorithm
In re
cent y
ears, many
heu
risti
c
e
v
ol
utionary
o
p
timization
a
l
gorithm
s h
a
v
e been
develop
ed. The goal of th
em is to find
the best out
come (gl
obal
optimum)
am
ong all po
ssi
b
le
inputs. In
order to
do t
h
is, a
heu
ri
stic
algo
rith
m sh
ould
b
e
equi
ppe
d
with two m
a
jor
cha
r
a
c
teri
stics to e
n
sure fi
nding
glob
al
optimum.
Th
e
s
e t
w
o m
a
in
cha
r
a
c
teri
stics a
r
e
exploration
and exploitati
on. Exploration is the abi
lity of an
alg
o
rithm to se
arch wh
ole p
a
rts of pro
b
l
e
m
spa
c
e
whe
r
e
a
s exploitatio
n
is the conv
erge
nce abilit
y to the best solutio
n
nea
r
a good
soluti
on.
The ultimate goal of
all he
uristi
c optimization
al
gorith
m
s i
s
to
bal
a
n
ce
the
abilit
y of exploitati
on
and explo
r
ati
on efficiently in orde
r to find global
o
p
timum. In the pre
s
ent conte
x
t,
two algo
rithms
namely PSO and GSA are
combi
ned to
define a ne
w
hybrid PSOG
SA algorithm
for solvin
g no
n-
linear o
p
timization pro
b
lem
s
[9].
4.1. Standar
d
PSO
PSO is an e
v
olutionary
computation t
e
ch
niqu
e whi
c
h i
s
propo
sed by Kenn
e
d
y and
Eberh
a
rt. Th
e PSO wa
s i
n
spi
r
ed f
r
om
so
cial b
eha
vior of bird flocking. It uses a
num
ber of
particl
es
(ca
ndidate
solut
i
ons) whi
c
h f
l
y around in
the search
spa
c
e to fin
d
best soluti
on
.
Mean
while, t
hey all lo
ok
at the b
e
st
particl
e
(b
e
s
t
sol
u
tion) in
their p
a
ths. I
n
othe
r
word
s,
particl
es
co
n
s
ide
r
thei
r o
w
n be
st sol
u
tio
n
s a
s
well a
s
the be
st sol
u
tion ha
s fou
nd so far. Ea
ch
particl
e in
PS
O shoul
d
con
s
ide
r
the
current po
siti
on, t
he
cu
rre
nt ve
locity, the di
stance
to p
b
e
s
t,
and the di
sta
n
ce to gb
est to modify its positi
on. PSO wa
s mathem
atically model
ed as follo
w:
v
i
t+1
=wv
i
t
+c
1
*
r
and(
pbe
st
i
-x
i
t
)+
c
2
*
r
an
d (
g
bes
t
i
-x
i
t
)
(
5
)
x
i
t+1
= x
i
t
+ v
i
t+
1
(
6
)
Whe
r
e v
i
t
is the velocity of particle
i
at iteration
t
,
w
is a weighting fun
c
tion,c
j
is
a
weig
hting fa
ct
or, rand
is a
random
nu
mb
er b
e
twe
en
0
and
1, x
i
t
is th
e current
po
si
tion of p
a
rticl
e
i
at iteration
t
,
pbest
t
is
the
pbe
st
of agen
t
i
at iteration
t
, and
gbest
t
i
s
the be
st sol
u
tion so far.
The first part
of (5),
wv
i
t
provide
s
expl
oration
ability for PSO. The second a
nd third
parts
, c
1
*
r
and
(
p
be
s
t
i
-x
i
t
) a
nd c
2
*rand
(g
best
i
-x
i
t
)
,
re
pre
s
en
t p
r
iva
t
e th
in
k
i
n
g
an
d c
o
lla
bo
r
a
tion o
f
particl
es
re
sp
ectively. The PSO starts
with rando
ml
y placin
g the particles in a p
r
o
b
lem sp
ace. In
each iteratio
n
,
the velocitie
s
of pa
rticle
s are
ca
l
c
ulat
ed u
s
ing
(5
). After definin
g the velo
cities,
the po
sition
o
f
masse
s
ca
n
be
calculate
d
a
s
(6
).
Th
e pro
c
e
s
s
of ch
angin
g
p
a
rticl
e
s’ po
sition will
contin
ue until
meeting an e
nd crite
r
io
n.
4.2. Standar
d
GSA
GSA is a
nov
el heu
risti
c
o
p
timization
m
e
thod whi
c
h has bee
n
p
r
o
posed
by
E. Ra
she
d
i
et al in 200
9. The ba
si
c p
h
ysical theo
ry which
GSA is inspired from is
the
Ne
wton’
s theo
ry that
states: Every
particle in th
e universe at
tract
s
ever
y other pa
rticl
e
with a force
that is direct
ly
prop
ortio
nal to the produ
ct of their ma
sses
and inv
e
rsely propo
rtional to the
squ
a
re
of the
distan
ce b
e
tween them.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 58
07 –
5813
5810
The GSA
wa
s math
ematically modele
d
as follo
ws. Suppo
se a
system with
N agent
s.
The al
gorith
m
start
s
with
ran
domly pl
acin
g all a
g
e
n
ts in
se
arch
spa
c
e.
Du
rin
g
all ep
ochs,
the
gravitational f
o
rces from ag
ent
j
on agent
i
at a specific time
t
is defined a
s
follow:
F
ij
d
(t)=
G(t)
∗
Є
(x
j
d
(t)- x
i
d
(t))
(7)
Whe
r
e
is the active gravi
t
ational mass related to agent
j
,
is the passive g
r
av
itational
mass rel
a
ted to agent
i
, G(t) is gravitatio
nal co
nstant
at time
t
,
Є
is a small co
nstant, and
(t)
is the Euclidi
an dista
n
ce b
e
twee
n two a
gents
i
an
d
j.
The
G(t
)
is ca
lculate
d
as (8
):
G(t)=G
o
*exp
(-
α
*iter/maxiter)
(8)
Whe
r
e
α
an
d
G
0
are de
scendin
g
coefficient a
nd i
n
itial value
re
spectively,
iter
is the
cu
rre
n
t
iteration, and
ma
x
i
te
r
is ma
ximum numb
e
r of iteration
s
.nTotal force
that acts on
agent
i
is
F
ij
d
(t)=
∑
∗
,
(
9
)
Whe
r
e
is a random n
u
mb
er in the interval [0,1]. The accel
e
ration of all agents sho
u
ld be
cal
c
ulate
d
as
follows:
ac
i
d
(t)
=
(
1
0
)
Whe
r
e
t
is a
spe
c
ific time and
is the mass of object
i.
The velocity and positio
n of agents a
r
e
cal
c
ulate
d
as
follows:
1
∗
(t)
(11
)
1
1
(
1
2
)
Whe
r
e
is a ra
ndom nu
mbe
r
in the interv
al [0, 1].
4.3. The H
y
b
r
id PSOGSA Algorithm
The basic idea of PSOGSA is to combi
ne the abilit
y of social thinking (
gb
est
) in PSO
with the l
o
cal search
capability of GSA. In orde
r to combine these algori
thms,
(13) i
s
proposed
as
follows
:
V
i
t+1
=wV
i
t
+c
1
’*
rand
* ac
i
(t)
+
c
2
’*rand*
(g
be
st
i
-x
i
t
)
(
1
3
)
Whe
r
e V
i
t
is the velocity of agent
i
at ite
r
ation
t
, c
j
’is a weightin
g factor,
w
i
s
a weig
hting
function, ra
n
d
is a rand
o
m
numbe
r betwee
n
0 an
d 1, ac
i
(t) is
the accele
rati
on of agent
i
at
iteration
t
, and g
best
is
the bes
t s
o
lution s
o
far. In eac
h it
eration,
the position
s
of particles
are
update
d
as fo
llows:
X
i
(t+1)
=
X
i
(t
)+
V
i
(
t
+
1
)
(
1
4
)
The p
r
o
c
e
ss
of updatin
g velocitie
s
a
n
d
posit
io
ns
wil
l
be sto
ppe
d
by meeting
an en
d
crite
r
ion. The
step
s of PSOGSA are re
prese
n
ted in Fi
gure 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hybrid PSO
G
SA Method of Solving O
R
P
D
Probl
em
with Voltage Stability… (J.Jit
hend
ran
a
th)
5811
In
it
ializ
atio
n
of
P
o
pul
a
t
i
o
n
Fit
n
e
ss Ev
alu
a
t
i
on
of
en
tire
p
opu
l
a
t
i
on
Up
dat
e
G
an
d
g
B
est
fo
r th
e
po
pul
a
t
i
o
n
Up
d
a
te v
e
lo
city
a
n
d
po
sit
i
on
C
a
lcu
l
ate fo
rces
&
accelerat
ion
s
f
o
r
all ag
ent
s
R
e
tu
rn th
e
bes
t
so
lu
tio
n
Is en
d
criteria
sat
isf
i
ed
No
Yes
Figure 1. Pro
c
e
ss Involved
in PSOGSA
5. PSOGSA Appro
ach to
ORPD Probl
em
The p
r
e
s
ent
ORPD p
r
oble
m
is im
plem
e
n
ted in th
e n
e
w
pro
p
o
s
ed
method
to m
a
ke
the
obje
c
tive fun
c
tion of i
n
terest a
s
mini
m
u
m a
s
po
ssi
b
le with
out
makin
g
the
solution va
ria
b
les
going o
u
t of the limits. Already the
unitary
GSA
algorithm
h
a
s b
een a
p
p
lied for the
same
probl
em i
n
[10
], to whi
c
h
a
hybrid
metho
d
is di
scusse
d he
re. Al
so t
here
exist
s
v
a
riant
metho
d
s,
for example a
s
stated in [1
1].
The d
e
ci
sion
variable
s
su
ch a
s
g
ene
ra
tor bu
s volta
ges,
rea
c
tive
power
gene
rated by
cap
a
cito
rs an
d tran
sformer tap settings
are
rep
r
e
s
e
n
ted a
s
can
d
id
ate sol
u
tion v
e
ctor,
su
ch
th
at
they are i
n
itia
lized
acco
rdi
ng to thei
r na
ture of va
riation in its practical situ
ation.
The fun
c
tion
of
each in
dividu
al in t
he
pop
ulation i
s
eva
l
uated
acco
rd
ing to
its fitne
s
s which i
s
t
he n
o
n
-
neg
ative
numbe
r that is to be minim
i
zed a
s
mad
e
by objective functio
n
.
The fitness fu
nction for the
pre
s
ent p
r
obl
em looks to b
e
:
Min F=P
loss
+ w*(E
max
)+Pen
V
+P
en
Q
(
1
5
)
Whe
r
e:
P
loss
is the total power lo
ss
in system
E
ma
x
is max eigen value of redu
ced
Ja
co
bian
w is pe
nalty for eige
n valu
e of matrix
Pen
V
is penal
ty for load bus variation
Pen
Q
is penal
ty for generat
or re
active po
wer limit viola
t
ion.
6. Simulation and Re
sults
To tes
t
the ef
fec
t
ivenes
s
of
the proposed
approac
h I
EEE 30 bus
sys
tem was
c
h
os
en as
the stand
ard model that h
a
s 6 g
ene
rat
o
rs, 2
4
load
bus a
nd 41 t
r
an
smi
ssi
on l
i
nes
with 4 tap
cha
ngin
g
tran
sform
e
rs. Th
e initial rang
e
for solution
s
were take
n a
s
sh
own in Table 1.
Table 1 Initial
Rang
e of Population
Sl.No.
Variable
Min
max
1
Gene
rator b
u
s voltage
0.95
1.05
2 Tap
setting
0.9
1.1
3
Reactive power
generation b
y
Ca
pacitor
0
5
6.1. Only
Lo
ss Minimization as Objec
t
iv
e:
Here the
obj
ective i
s
to m
i
nimize
the
p
o
we
r lo
ss in t
he
system
wi
thout con
s
ide
r
ing th
e
voltage sta
b
il
ity of system. It was ru
n
with di
ffere
nt control pa
ra
meter
setting
s an
d minim
a
l
solutio
n
was obtaine
d for
some fix
ed value
s
b
y
repeate
d
prog
ram
ru
n
s
. The
simil
a
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 58
07 –
5813
5812
impleme
n
tation by
metho
d
of
Differe
ntial Evolutio
n
(DE) i
s
propo
sed
in [1
2],
whi
c
h i
s
as t
a
ke
n
as on
e of refe
ren
c
e for p
r
e
s
ent stu
d
y.
The o
p
timal
values fo
r th
e sol
u
tion v
e
ctor was
o
b
tained fo
r
optimum
con
d
ition of
function an
d it was found
to be lie within the
rang
e of its minimum and maximum values
a
s
given in Tabl
e 2.
The optimal
control vari
abl
es obtai
ned i
n
this ca
se a
r
e as follo
ws:
Table 2. Solu
tion with Lo
ss Minimizatio
n
as only Obj
e
ctive
Variable
Value
o
b
tai
n
ed
V
1
1.094
V
2
1.025
V
5
1.091
V
8
0.950
V
11
1.051
V
13
1.068
T
11
0.995
T
12
1.022
T
15
1.100
T
36
0.989
Q
C1
0
3.984
Q
C1
2
1.012
Q
C1
5
0.002
Q
C1
7
3.956
Q
C2
0
3.836
Q
C2
1
3.945
Q
C2
3
3.992
Q
C2
4
3.012
Q
C2
9
2.948
P
los
s
4.578
E
mi
n
0.412
6.2. Multi-Ob
jectiv
e Case of Loss
Mini
mization
w
i
th Voltage Stabilit
y
No
w the
ca
se whe
r
e
bot
h the
obje
c
ti
ves of
lo
ss
minimization
and volta
ge
stability
enha
ncement
has b
een
consi
dered
with the fitness
function a
s
given in p
r
ev
ious
se
ction
to
obtain the ca
ndidate
soluti
on by PSOGSA mechani
sm. Since both
the objective
s are
con
s
id
e
r
ed
it is difficult to
obtain the minimum of both objecti
ve
s so we get the solutio
n
in the sea
r
ch spa
c
e
wa
s both are
acceptabl
e in narro
w differen
c
e a
s
co
mpared to the previou
s
ca
se. The resul
t
s o
f
this ca
se i
s
d
epicte
d
in Ta
ble 3.
Table 3. Solu
tion with Lo
ss Minimizatio
n
& Voltage Stability as Obje
ctives
Variable
Value
o
b
tai
n
ed
V
1
1.035
V
2
0.995
V
5
0.950
V
8
1.046
V
11
0.974
V
13
1.050
T
11
0.987
T
12
1.100
T
15
1.081
T
36
0.900
Q
C1
0
4.546
Q
C1
2
2.561
Q
C1
5
1.456
Q
C1
7
3.554
Q
C2
0
3.574
Q
C2
1
1.256
Q
C2
3
2.578
Q
C2
4
4.789
Q
C2
9
5.000
P
los
s
4.077
E
mi
n
0.897
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Hybrid PSO
G
SA Method of Solving O
R
P
D
Probl
em
with Voltage Stability… (J.Jit
hend
ran
a
th)
5813
Also in
p
r
esent context the p
enetratio
n
of
FA
CTS
devices in
system
is i
n
cre
a
si
ng,
hen
ce the sa
me pro
b
lem
has to be formulated with
con
s
id
eratio
n
of such devi
c
e'
s ope
ratio
nal
and
co
ntrol
constraints,
a
s
pres
ented
in
[13]. The
obt
ained
value
s
of po
we
r lo
ss and
minim
u
m
Eigen valu
es are the
utm
o
st mi
nimum
value
s
a
s
fa
r repo
rted
in
the literature.
On
compa
r
i
s
on
with the p
r
e
v
iously solve
d
algo
rithm
s
the co
mpa
r
i
s
on ta
ble
ca
n be framed
as d
epi
cted
in
Table 4.
Table 4. Co
m
pari
s
ion
with other Meth
od
s
Me
t
h
od P
loss
EP[4] 5.015
GA[7]
4.665
Real Coded
GA[
6
]
4.501
PSOGSA [P
ropo
sed]
4.077
7. Conclusio
n
This p
ape
r prese
n
ted a dy
namic m
u
lti modal
evoluti
onary alg
o
rith
m approa
ch for O
R
PD
probl
em
with
voltage
stabil
i
ty enhan
ce
m
ent a
s
m
a
in
con
s
trai
nt. T
he d
e
ci
sio
n
v
a
riabl
es
cho
s
e
n
to achieve th
e ab
ove o
b
je
ctive were th
e ge
ne
rato
r b
u
s volta
g
e
s
, reactive
po
we
r g
ene
ration
by
cap
a
cito
r ba
nks an
d tra
n
sformer tap
setting
s,
m
o
re
over thi
s
alg
o
rithm
provide
s
a
new
dimen
s
ion
in
solving
such kin
d
of m
u
lti va
riabl
e probl
em su
ch
that
the o
b
tained de
ci
sion
variable
s
a
r
e
within thei
r b
ound
arie
s. T
he mod
a
l an
alysis p
r
ovid
e
s
the bette
r informatio
n a
bout
voltage sta
b
il
ity asse
ssme
nt than a
n
y other i
ndex
referred in
literatu
r
e, so t
hat the p
r
obl
em
become
s
mo
re co
mplex, where t
h
is
pro
posed hyb
r
id
PSOGSA ca
n able to
solv
e with mi
nim
u
m
iteration
s
an
d
time as p
o
ssible.So, from
the pro
p
o
s
ed
work it can
be con
c
lude
d
that this mo
de
of solving mu
lti modal real
valued optimi
z
ation
p
r
obl
e
m
s ca
n be effectively appli
ed with varia
n
ts
in other po
we
r system p
r
o
b
l
ems a
s
well.
Referen
ces
[1]
HW Domme
l,
WF
T
i
nn
y
.
Op
t
i
mal po
w
e
r
flow
solutions.
IEEE trans. on
power app & sy
stem
s.
19
68
;
87: 186
6-1
876.
[2]
QH W
u
, JT
Ma. Po
w
e
r s
y
st
em optima
l
re
active p
o
w
e
r
disp
atch usi
n
g
evoluti
o
n
a
r
y
progr
ammin
g
.
IEEE trans. on power system
s
.
1995; 10(
3): 1243-
124
8.
[3]
KY Le
e, YM P
a
rk, JL Ortiz. O
p
timal
rea
l
and
reactiv
e
po
w
e
r
dis
patch.
E
l
ect
r
ic power system
r
e
search
.
198
4; 7: 201-2
12.
[4]
B Das, C Patv
ardh
an. A ne
w h
y
brid
evol
ut
i
onar
y strate
g
y
for reactive p
o
w
e
r
dis
patch.
Electric pow
er
system
researc
h
. 2003; 6
5
: 83
-90.
[5]
P Kessel, H
Glavitsch. Esti
mating th
e vo
l
t
age sta
b
il
it
y
of po
w
e
r s
y
st
ems.
IEEE Trans. on Power
system
s.
19
86;
1(3): 346-3
54.
[6]
S Duraira
j
, PS Kanna
n, D Devar
a
j. Appl
i
c
ation
of Gen
e
tic Algorit
hm
to Optimal Reactive Po
w
e
r
Dispatc
h
incl
ud
ing Vo
ltag
e Stabilit
y Co
nstrai
n
t.
Journal of En
ergy & Enviro
n
m
e
n
t.
2005; 4:
63-7
3
.
[7]
P Aruna Je
ya
n
t
h
y
, Dr D Deva
raj. Optimal Re
acti
ve Po
w
e
r D
i
spatch for Volt
age Stab
ilit
y e
nha
nceme
n
t
usin
g real co
d
ed ge
netic al
g
o
rithm.
Internat
ion
a
l Jour
nal o
f
Comp
uter an
d Electrical En
gin
eeri
n
g
, Aug
201
0: 2(4); 179
3-81
63.
[8]
LDB T
e
rra, MJ
Short. Security
c
onstra
i
n
ed r
eactive p
o
w
e
r
disp
atch.
IEEE Trans. on power system
s,
199
1; 6(1): 106
6-10
71.
[9]
S Mirjal
ili, SZ
Mohd
Hash
im. A Ne
w
H
y
bri
d
PSOGSA Al
gorithm for Fu
nction Optim
i
z
a
tion,
IE
EE
Internatio
na
l confere
n
ce o
n
Co
mp
ut
er and
Information Ap
plicati
on. Ch
in
a
. 2010; 3
74-3
77.
[10]
Duma
n S, Sonmez Y, Guvenc
U, Yoruk
e
ren N. Ap
plic
ation
of gr
avit
ation
a
l se
arch
algor
ithm f
o
r
optima
l
reacti
ve po
w
e
r d
i
s
patch pr
obl
em
.
Innovatio
ns i
n
Intell
ige
n
t Systems a
n
d
Appl
icatio
n
s
(INIST
A),
Internatio
nal Sy
mp
osiu
m o
n
. 201
1; 1: 519-5
23.
[11]
Cha
ohu
a Dai,
W
e
iron
g Che
n
,
Yunfang Z
hu, Xu
e
x
i
a
Z
hang.
Seeker Optimi
zation Al
gorith
m
for Optimal
Reactiv
e
Po
w
e
r Dispatch.
IEEE Transactions
on Power System
s
. 2
009; 2
4
(
3
):121
8-1
231.
[12]
Lin
da Slim
ani,
T
a
rek Bouktir.
Optimal Po
w
e
r F
l
o
w
So
luti
on
of the Algeria
n Electrica
l
Ne
t
w
ork us
in
g
Differenti
a
l Ev
oluti
on
Alg
o
rith
m.
T
E
LKOMNIKA Indo
nes
ian
Jour
nal
of E
l
ectrical
Eng
i
n
e
e
rin
g
.
2
012
;
10(2): 19
9-2
1
0
.
[13]
Lakshm
i
Ravi,
Vaid
ya
nath
a
n
R, Shishir Ku
mar D,
Prathika Appa
ia
h, SG
Bharathi Da
san. Optima
l
Po
w
e
r F
l
o
w
with H
y
bri
d
Dist
r
ibute
d
Gener
ators an
d Unif
ied C
ontro
ller.
T
E
LKOMNIKA Indon
esia
n
Journ
a
l of Elec
trical Eng
i
ne
eri
ng.
201
2; 10(3)
: 409-42
1.
Evaluation Warning : The document was created with Spire.PDF for Python.