Indonesian Journal of Electrical Engineering and Computer Science V ol. 1, No . 1, J an uar y 2016, pp . 138 152 DOI: 10.11591/ijeecs .v1.i1.pp138-152 138 Bit Err or Rate Anal ysis of MC-CDMA Systems with Channel Identification Using Higher Or der Cum ulants Mohammed Zidane 1,* , Said Safi 2 , Mohamed Sabri 1 , and Ahmed Boumezzough 3 1 Depar tment of Ph ysics , F aculty of Sciences and T echnology , Sultan Moula y Slimane Univ ersity , Moro cco 2 Depar tment of Mathematics and Inf or matics , P olydisciplinar y F aculty , Sultan Moula y Slima ne Univ ersity , Morocco 3 Depar tment of Ph ysics , P olydisciplinar y F aculty , Sultan Moula y Slimane Univ ersity , Morocco *Corresponding author , e-mail: zidane .ilco@gmail.com Abstract The aim of this paper is to contr ib ute to study the prob lems of the b lind identification and equal- ization using Higher Order Cum ulants (HOC) in do wnlink Multi- Carr ier Code Division Multiple Access (MC- CDMA) systems . F or this prob lem, tw o b lind algor ithms based on HOC f or Broadband Radio Access Netw or k (BRAN) channel are proposed. In the one hand, to assess the perf or mance of these approaches to identify the par ameters of non minim um phase channels , w e ha v e considered tw o theoretical channels , and one pr actical frequency selectiv e f ading channel called BRAN C , dr iv en b y non gaussian signal. In the other hand, w e use the Minim um Mean Square Error (MMSE) equaliz er tech nique after the channel identification to co rrect the channel distor tion. Theoretical analysis and n umer ical sim ulation results , in noisy en vironment and f or diff erent signal to noise r atio (SNR), are presented to illustr ate the perf or mance of the proposed methods . K e yw or ds: HOC , Blind identificatio n and equalization, BRAN channel, MC-CDMA systems , Bit error r ate , MMSE equaliz er Cop yright c 2016 Institute of Ad v anced Engineering and Science . All rights reser ved. 1. Intr oduction The channel identification is of pr imar y impor tance in digital comm unication systems , appears as a major concer n. In f act se v er al met hods ha v e been e xplored. Ne v er theless , the most commonly used are adaptiv e methods that send occasionally a tr aining sequence kno wn to the tr ansmitter and receiv er . The presence the tr aining sequence in this approach reduces the spectr al efficiency and hence tr ansmission r ate . Looking f orw ard better tr adeoffs betw een the quality of inf or mation reco v er y and suitab le bit r ates , the use of b lind techniques is of g reat interest. In this paper , w e f ocus on the prob lem of b lind identification and equalization of the Broad- band Radio Access Netw o r ks channels , using Higher Order Cum ulants (HOC) in MC-CDMA sys- tems . Se v er al w or ks de v eloped in the liter ature sho w that the b lind identification channels using HOC ha v e attr acted consider ab le attention [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Thus , the first methods utilizing the output of the second order cum ulants (autocorrelation function) of the ob- ser v ed sequences f or identification of minim um phase channel dr iv en b y gaussian distr ib ution input [6, 9, 10]. Ho w e v er , in se v er al applications , the obser v ed signals are non gaussian and the system to be identified has non minim um phase and is contaminated b y a gaussian noise . Moreo v er , the non minim um phase channels cannot be ident ified correctly using the autocorre- lation function sequence [10], because the second order cum ulants f or a gaussian process are not identically z ero . Hence , when the processed signal is non gaussian and the additiv e noise is gaussian, the noise will v anish in the higher order cum ulants ( 3 r d and 4 r d cum ulants) domain. In this contr ib ution, w e propose tw o b lind algor ithms based on f our th order cum ulants , this approach allo ws the resolution of the insolub le prob lems using the second order statistics . In order Receiv ed A ugust 14, 2015; Re vised No v ember 25, 2015; Accepted December 12, 2015 Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS ISSN: 2502-4752 139 to test the efficiency of the proposed algor ithms w e ha v e considered tw o theoretical channels , and one pr actical f requency selectiv e f ading channel such as BRAN C [14, 15] nor ma liz ed f or MC-CDMA systems , e xited b y a non gaussian sequences , f or diff erent signal to noise r atio (SNR) and impor tant data input. In this w or k, w e address the application of proposed methods based on HOC in the conte xt of b lind equalization of MC-CDMA systems . Indeed the pr inciples o f MC-CDMA is that a single data symbol is tr ansmitted at m ultiple narro w band subcarr iers [17]. Ho w e v er , in MC-CDMA systems , spreading codes are applied in the frequency domain and tr ansmitted o v er independent sub-carr iers . The prob lem encountered in digital comm unication is the synchronization betw een the tr ansmitter and the receiv er . Ne v er theless in most wireless en vironments , there are man y dif- f erent propagation paths caused b y man y obstacles in the channels , such as b uildings , mountains and w alls betw een the tr ansmitter and receiv er . Synchronization errors cause loss of or thogonal- ity among sub-carr iers and consid er ab ly deg r ade the perf or mance especially when large n umber of subcarr iers presents [18, 19]. In this paper w e are concer ned with the prob lem of the b lind identification of the broadband r adio access netw or k channel such as BRAN C , after that w e use the Minim um Mean Square Err or (MMSE) equaliz er technique to correct the channel distor tion. The sim ulation results , in noisy en vironment, are presented to illustr ate the perf or mance of the proposed algor ithms . 2. Pr ob lem statement 2.1. Channel modeling W e consider the single-input single-output (SISO) model of the Finite Impulse Response (FIR) system descr ibed b y the f ollo wing figure (Fig. 1): W e assumed that the channel is time in v ar iant and it’ s impulse response is char acter iz ed b y P H (z )   ) ( k x ) ( k y ) ( k r ) ( k n Figure 1. SISO channel model paths of magnitudes p and phases p . The impulse response is giv en b y the f ollo wing equation: h ( ) = P 1 X p =0 p e p ( p ) (1) The relationship betw een the emitted signal x ( t ) and the receiv ed signal r ( t ) is giv en b y: r ( t ) = h ( t ) x ( t ) + n ( t ) (2) r ( t ) = + 1 Z 1 P 1 X p =0 p e p ( p ) x ( t ) d + n ( t ) = P 1 X p =0 p e p x ( t p ) + n ( t ) ; (3) where x ( t ) is the input sequence , h ( t ) is the impulse response coefficients , p is the order of FIR system, and n ( t ) is the additiv e noise sequence . In order to simplify the constr uction of the proposed algor ithms w e assume that: BER Analysis of MC-CDMA Systems with Channel Identification Using HOC (M. Zidane) Evaluation Warning : The document was created with Spire.PDF for Python.
140 ISSN: 2502-4752 The input sequence , x ( k ) , is ind ependent and identically distr ib uted (i.i.d) z ero mean, and non gaussian; The system is causal and tr uncated, i.e . h ( k ) = 0 f or k < 0 and k > q , where h (0) = 1 ; The system order q is kno wn; The measurement noise sequence n ( k ) is assumed z ero mean, i.i.d, gaussian and inde- pendent of x ( k ) with unkno wn v ar iance . The prob lem statement is to identify the par ameters of the system h ( k ) ( k =1 ;::;q ) using the HOC of the measured output process y ( k ) . 2.2. Basic Relationships In this section, w e descr ibe the main gener al relationships betw een cum ulants and im- pulse response coefficients . Br illinger and Rosenb latt sho w ed that the m th order cum ulants of y ( k ) can be e xpressed as a function of impulse response coefficients h ( i ) as f ollo ws [20]: C m;y ( t 1 ; t 2 ; :::; t m 1 ) = m;x q X i =0 h ( i ) h ( i + t 1 ) :::h ( i + t m 1 ) ; (4) where m;x represents the m th order cum ulants of the e xcitation signal x ( i ) at or igin. If m = 2 into Eq. (4) w e obtain the second order cum ulant (A utocorrelation function): C 2 ;y ( t 1 ) = 2 ;x q X i =0 h ( i ) h ( i + t 1 ) (5) The same , if m = 4 , Eq. (4) yield to: C 4 ;y ( t 1 ; t 2 ; t 3 ) = 4 ;x q X i =0 h ( i ) h ( i + t 1 ) h ( i + t 2 ) h ( i + t 3 ) (6) P e yre , et al :; presents the relationship betw een diff erent m and n cum ulants of the output signal, y ( k ) , and the coeff ecients h ( i ) , where n > m and ( n; m ) 2 N f 1 g , are link ed b y the f ollo wing relationship [13]: q X j =0 h ( j ) C n;y ( j + 1 ; j + 2 ; :::; j + m 1 ; m ; :::; n 1 ) = q X i =0 h ( i ) h n 1 Y k = m h ( i + k ) i C m;y ( i + 1 ; i + 2 ; :::; i + m 1 ) ; (7) where = n;x m;x Pr oof: Let: P mn = X ij h ( i ) h ( j ) h m 1 Y k =1 h ( i + j + k ) ih n 1 Y k = m h ( i + k ) i (8) IJEECS V ol. 1, No . 1, J an uar y 2016 : 138 152 Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS ISSN: 2502-4752 141 Firstly , if w e sum on i afterw ards on j in (8), w e will find: P mn = X j h ( j ) X i h ( i ) h m 1 Y k =1 h ( i + j + k ) ih n 1 Y k = m h ( i + k ) i (9) If w e m ultiply (9) b y n;x and tak e th e Br illinger and Rosenb latt f or m ula (4) into account, w e will obtain: n;x P mn = X j h ( j ) C n;y ( j + 1 ; j + 2 ; :::; j + m 1 ; :::; m ; :::; n 1 ) (10) Changing the order of summation in (8) yields: P mn = X i h ( i ) h n 1 Y k = m h ( i + k ) i X j h ( j ) h m 1 Y k =1 h ( i + j + k ) i (11) If w e m ultiply the r ight and left sides of (11) b y m;x and tak e t he relation (4) into account, w e will obtain: m;x P mn = X i h ( i ) h n 1 Y k = m h ( i + k ) i C m;y ( i + 1 ; i + 2 ; :::; i + m 1 ) (12) F rom (10) and (12), w e obtain the relation of the P e yre , et al : 3. Pr oposed algorithms 3.1. Fir st Algorithm: Algo1 If w e tak e n = 4 and m = 2 into Eq. (7) w e obtain the f ollo wing equation: q X j =0 h ( j ) C 4 ;y ( j + 1 ; 2 ; 3 ) = q X i =0 h ( i ) h 3 Y k =2 h ( i + k ) i C 2 ;y ( i + 1 ) (13) q X j =0 h ( j ) C 4 ;y ( j + 1 ; 2 ; 3 ) = q X i =0 h ( i ) h ( i + 2 ) h ( i + 3 ) C 2 ;y ( i + 1 ) ; (14) the autocorrelation function of the FIR systems v anishes f or all v alues of j t j > q , equiv alently: C 2 ;y ( t ) = 6 = 0 ; j t j q ; 0 otherwise . If w e suppose that 1 = q the Eq. (14) becomes: q X j =0 h ( j ) C 4 ;y ( j + q ; 2 ; 3 ) = h (0) h ( 2 ) h ( 3 ) C 2 ;y ( q ) ; (15) if w e fix e that 3 = 0 the Eq. (15) becomes: q X j =0 h ( j ) C 4 ;y ( j + q ; 2 ; 0) = h 2 (0) h ( 2 ) C 2 ;y ( q ) (16) The considered system is causal. Thus , the inter v al of the 2 is 2 = 0 ; :::; q . Else if w e suppose that 2 = 0 , and using the cum ulants proper ties C m;y ( 1 ; 2 ; :::; m 1 ) = 0 , if one of the v ar iab les k > q , where k = 1 ; :::; m 1 ; the Eq. (16) becomes: C 4 ;y ( q ; 0 ; 0) = h 3 (0) C 2 ;y ( q ) (17) Thus , w e based on Eq. (17) f or eliminating C 2 ;y ( q ) in Eq. (16), w e obtain the equation constituted of only the f our th order cum ulants: q X j =0 h ( j ) C 4 ;y ( j + q ; 2 ; 0) = h ( 2 ) C 4 ;y ( q ; 0 ; 0) (18) BER Analysis of MC-CDMA Systems with Channel Identification Using HOC (M. Zidane) Evaluation Warning : The document was created with Spire.PDF for Python.
142 ISSN: 2502-4752 The system of Eq. (18) can be wr itten in matr ix f or m as: 0 B B B B B B @ C 4 ;y ( q + 1 ; 0 ; 0) ::: C 4 ;y (2 q ; 0 ; 0) C 4 ;y ( q + 1 ; 1 ; ) ::: C 4 ;y (2 q ; 1 ; 0) : : : : : : : : : C 4 ;y ( q + 1 ; q ; 0) ::: C 4 ;y (2 q ; q ; 0) 1 C C C C C C A 0 B B B B B B B B @ h (1) : : h ( i ) : : h ( q ) 1 C C C C C C C C A = 0 B B B B B B @ 0 C 4 ;y ( q ; 1 ; 0) : : : C 4 ;y ( q ; q ; 0) 1 C C C C C C A ; (19) where = C 4 ;y ( q ; 0 ; 0) . Or in more compact f or m, the Eq. (19) can be wr itten as f ollo ws: M h e 1 = d; (20) where M is the matr ix of siz e ( q + 1) ( q ) elements , h e 1 is a column v ector constituted b y the unkno wn impulse response par ameters h ( i ) i =1 ;:::;q and d is a column v ector of siz e ( q + 1) as indicated in the Eq. (19). The least squares solution of the system of Eq. (20), per mits b lindly identification of the par ameters h ( i ) and without an y inf or mation of the input selectiv e channel. Thus , the solution will be wr itten under the f ollo wing f or m: b h e 1 = ( M T M ) 1 M T d (21) 3.2. Second algorithm: Algo2 The Z-tr ansf or m of the second order cum ulant is str aightf orw ard and giv es the f ollo wing equation: S 2 ;y ( z ) = 2 ;x H ( z ) H ( z 1 ) (22) The Z-tr ansf or m of equation (6) is equation (23): S 4 ;y ( z 1 ; z 2 ; z 3 ) = 4 ;x H ( z 1 ) H ( z 2 ) H ( z 3 ) H ( z 1 1 z 1 2 z 1 3 ) (23) If w e suppose that z = z 1 z 2 z 3 Eq. (22) becomes: S 2 ;y ( z 1 z 2 z 3 ) = 2 ;x H ( z 1 z 2 z 3 ) H ( z 1 1 z 1 2 z 1 3 ) (24) Then, from Eqs . (23) and (24) w e obtain the f ollo wing equation: H ( z 1 z 2 z 3 ) S 4 ;y ( z 1 ; z 2 ; z 3 ) = H ( z 1 ) H ( z 2 ) H ( z 3 ) S 2 ;y ( z 1 z 2 z 3 ) ; (25) with = 4 ;x 2 ;x The in v erse Z-tr ansf or m of Eq. (25) demonstr ates that the 4 th order cum ulants , the autocorrelation function and the impulse response channel par ameters are combined b y the f ollo wing equation: q X i =0 C 4 ;y ( t 1 i; t 2 i; t 3 i ) h ( i ) = q X i =0 h ( i ) h ( t 2 t 1 + i ) h ( t 3 t 1 + i ) C 2 ;y ( t 1 i ) (26) If w e use the autocorrelation function proper t y of the stationar y process such as C 2 ;y ( t ) 6 = 0 only f or q t q and v anishes else where . If w e suppose that t 1 = 2 q the Eq. (26) becomes: q X i =0 C 4 ;y (2 q i; t 2 i; t 3 i ) h ( i ) = h ( q ) h ( t 2 q ) h ( t 3 q ) C 2 ;y ( q ) ; (27) else if w e suppose that t 2 = q the Eq. (27) becomes: q X i =0 C 4 ;y (2 q i; q i; t 3 i ) h ( i ) = h ( q ) h (0) h ( t 3 q ) C 2 ;y ( q ) (28) IJEECS V ol. 1, No . 1, J an uar y 2016 : 138 152 Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS ISSN: 2502-4752 143 F or eliminating h ( q ) in (28), w e consider the relation of Br illinger and Rosenb latt descr ibe with f ollo wing equation f or m = 4 : C 4 ;y ( t 1 ; t 2 ; t 3 ) = 4 ;x q X i =0 h ( i ) h ( i + t 1 ) h ( i + t 2 ) h ( i + t 3 ) (29) If t 1 = t 2 = t 3 = q Eq. (29) becomes: C 4 ;y ( q ; q ; q ) = 4 ;x h 3 ( q ) ; (30) else if t 1 = t 2 = q and t 3 = 0 (29) reduces: C 4 ;y ( q ; q ; 0) = 4 ;x h 2 ( q ) (31) F rom (30), (31) w e obtain: h ( q ) = C 4 ;y ( q ; q ; q ) C 4 ;y ( q ; q ; 0) (32) Thus , w e based on (32) f or eliminating h ( q ) in (28), w e obtain the f ollo wing equation: q X i =0 C 4 ;y (2 q i; q i; t 3 i ) h ( i ) = C 4 ;y ( q ; q ; q ) C 4 ;y ( q ; q ; 0) h ( t 3 q ) C 2 ;y ( q ) (33) The considered system is causal. Thus , the inter v al of the t 3 is t 3 = q ; :::; 2 q The system of Eq. (33) can be wr itten in matr ix f or m as: 0 B B B B B B @ C 4 ;y (2 q 1 ; q 1 ; q 1) ::: C 4 ;y ( q ; 0 ; 0) C 4 ;y (2 q 1 ; q 1 ; q ) ::: C 4 ;y ( q ; 0 ; 1) : : : : : : : : : C 4 ;y (2 q 1 ; q 1 ; 2 q 1) ::: C 4 ;y ( q ; 0 ; q ) 1 C C C C C C A 0 B B B B B B B B @ h (1) : : h ( i ) : : h ( q ) 1 C C C C C C C C A = 0 B B B B B B @ C 4 ;y (2 q ; q ; q ) C 4 ;y (2 q ; q ; q + 1) : : : C 4 ;y (2 q ; q ; 2 q ) 1 C C C C C C A ; (34) where = C 4 ;y ( q ;q ;q ) C 4 ;y ( q ;q ; 0) C 2 ;y ( q ) . The least squares solution of the system of Eq. (34), per mits b lindly identification of the par am- eters h ( i ) and without an y inf or mation of the input selectiv e channel. Thus , the solution will be wr itten under the f ollo wing f or m: b h e 2 = ( M T M ) 1 M T d (35) 4. Application of MC-CDMA systems The m ulticarr ier code division m ultiple access (MC-CDMA) systems is based on the com- bination of code division m ultiple access (CDMA) and or thogonal frequency division m ultiple xing (OFDM) which is potentially rob ust to channel frequency selectivity . 4.1. MC-CDMA T ransmitter Fig. 2 e xplains the pr inciple of the tr ansmitter f or do wnlink MC-CDMA systems . The MC- CDMA signal is giv en b y x ( t ) = a i p N p N p 1 X k =0 c i;k e 2 j f k t ; (36) where f k = f 0 + k T c , N u is the user n umber and N p is the n umber of subcarr iers , and w e consider L c = N p . BER Analysis of MC-CDMA Systems with Channel Identification Using HOC (M. Zidane) Evaluation Warning : The document was created with Spire.PDF for Python.
144 ISSN: 2502-4752 S p r e a d i n g S / P I F F T D a t a   s y m b o l a n a 1 c 1 c n T r a n s m i t t e d s i g n a l Figure 2. The tr ansmitter f or do wnlink MC-CDMA systems 4.2. MC-CDMA Receiver The do wnlink receiv ed MC-CDMA signal at t he input receiv er is giv en b y the f ollo wing equation: r ( t ) = 1 p N p P 1 P p =0 N p 1 P k =0 N u 1 P i =0 <f p e j p a i c i;k e 2 j ( f 0 + k =T c )( t p ) g + n ( t ) (37) In Fig. 3 w e represent the receiv er f or do wnlink MC-CDMA systems . At the reception, w e demodulat e the signal according the N p subcarr iers , and then w e m ul tiply D e s pr e a di ng P / S F F T a n a 1 c 1 c n Re c e i v e d s i gn a l E q u a l i z a t i on Ch a n n e l   i d e nt i f i c a t i o a i ˆ Figure 3. The receiv er f or do wnlink MC-CDMA systems the receiv ed sequence b y the code of the user . After the equalization and the despreading oper a- tion, the estimation b a i of t he emitted user symbol a i , of the i th user can be wr itten b y the f ollo wing equation: b a i = N u 1 X q =0 N p 1 X k =0 c i;k g k h k c q ;k a q + g k n k = N p 1 X k =0 c 2 i;k g k h k a i | {z } I ( i = q ) + N u 1 X q =0 N p 1 X k =0 c i;k c q ;k g k h k a q | {z } I I ( i 6 = q ) + N p 1 X k =0 c i;k g k n k | {z } I I I ; (38) where the ter m I, II and III of Eq. (38) are , respectiv ely , the signal of the considered user , a signals of the others users (m ultiple access interf erences) and the noise pondered b y the equalization coefficient and b y spreading code of the chip . 4.3. Minim um Mean Square Err or (MMSE) equaliz er f or MC-CDMA The MMSE technique minimiz e the mean square error f or each subcarr ier k betw een the tr ansmitted signal x k and the output detection: E [ j " j 2 ] = E [ j x k g k r k j 2 ] (39) IJEECS V ol. 1, No . 1, J an uar y 2016 : 138 152 Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS ISSN: 2502-4752 145 The minimization of the fun ction E [ j " j 2 ] , giv es us the optimal equaliz er coefficient, under the min- imization of the mean square error cr iter ion, of each subcarr ier as: g k = h k j h k j 2 + 1 k ; (40) where k = E [ j x k h k j 2 ] E [ j n k j 2 ] . The estimated receiv ed symbol, b a i of symbol a i of the user i is descr ibed b y: b a i = N p 1 X k =0 c 2 i;k j h k j 2 j h k j 2 + 1 k a i | {z } I ( i = q ) + N u 1 X q =0 N p 1 X k =0 c i;k c q ;k j h k j 2 j h k j 2 + 1 k a q | {z } I I ( i 6 = q ) + N p 1 X k =0 c i;k h k j h k j 2 + 1 k n k | {z } I I I (41) If w e suppose that the spreading code are or thogonal, i.e ., N p 1 X k =0 c i;k c q ;k = 0 8 i 6 = q (42) Eq.(41) will become: b a i = N p 1 X k =0 c 2 i;k j h k j 2 j h k j 2 + 1 k a i + N p 1 X k =0 c i;k h k j h k j 2 + 1 k n k (43) 5. Sim ulation results 5.1. Algorithms test In this subsection w e test the perf or mance of the proposed algor ithms , f or that w e ha v e considered tw o theoretical channels . The channel output w as corr upted b y an additiv e gaussian noise f or diff erent signal to noise r atio and f or 50 Monte Car lo r uns . Where the signal to noise r atio (SNR) is defined b y: S N R = 10 l og h 2 y ( k ) 2 n ( k ) i (44) T o measure the accur acy of par ameter estimation with respect to th e real v alues , w e define the Mean Square Error (MSE) f or each r un as: M S E = 1 q q X i =0 h h ( i ) b h ( i ) h ( i ) i 2 ; (45) where b h ( i ) , i = 1 ; :::; q are the estimated par ameters in each r un, and h ( i ) are the real par ameters in the model. 5.1.1. Fir st c hannel In this e xample , w e consider a non minim um phase impulse response channel, giv en b y the f ollo wing equation: y ( k ) = x ( k ) + 0 : 327 x ( k 1) 0 : 815 x ( k 2) + 0 : 470 x ( k 3) z eros: z 1 = 1 : 2650 ; z 2 = 0 : 4690 + 0 : 3893 j ; z 3 = 0 : 4690 0 : 3893 j : (46) In the T ab le 1 w e represent the estimated impulse response par ameters using proposed algo- r ithms . BER Analysis of MC-CDMA Systems with Channel Identification Using HOC (M. Zidane) Evaluation Warning : The document was created with Spire.PDF for Python.
146 ISSN: 2502-4752 T ab le 1. Estimated par ameters of the first channel f or diff erent S N R and e xcited b y sample siz es N = 2048 . S N R b h ( i ) Al g o 1 Al g o 2 b h (1) 0 : 4867 0 : 2360 0 : 3144 0 : 1033 0 dB b h (2) 0 : 8575 0 : 1798 0 : 7385 0 : 1227 b h (3) 0 : 3081 0 : 1821 0 : 0980 0 : 0583 M S E 0 : 0900 0 : 1592 b h (1) 0 : 4735 0 : 1621 0 : 4344 0 : 1223 4 dB b h (2) 0 : 9292 0 : 1757 0 : 8076 0 : 0848 b h (3) 0 : 4937 0 : 2102 0 : 1731 0 : 0658 M S E 0 : 0557 0 : 1267 b h (1) 0 : 3648 0 : 0907 0 : 4681 0 : 1104 12 dB b h (2) 0 : 8036 0 : 0947 0 : 8522 0 : 1205 b h (3) 0 : 3357 0 : 1479 0 : 2839 0 : 0993 M S E 0 : 0238 0 : 0863 F rom the T ab le 1 w e can conclude that: The MSE v alues , obtained using the first algor ithm ( Al g o 1) are small f or all S N R than those giv en b y t he second algor ithm ( Al g o 2) , t his imply , that the estimated par ameters are v er y close to the or iginal ones if w e use the first algor ithm ( Al g o 1) . Using the tw o methods the v ar iances of the estimated par ameters are acceptab le . In the f ollo wing, Fig. 4, w e represent the estimation of the magnitude and phase of the channel impulse response f or a data input N = 2048 and f or S N R = 0 dB . The Fig. 4 proof that the proposed algor ithms giv es a v er y good estimation f or phase response , 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 −400 −200 0 200 Normalized Frequency  ( × π  rad/sample) Phase (degrees) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 −20 −10 0 10 Normalized Frequency  ( × π  rad/sample) Magnitude (dB)     Measured Channel Estimated using Algo1 Estimated using Algo2 (Measured; Estimated using Algo1) (Estimated using Algo2) (Estimated using Algo2) (Measured; Estimated using Algo1) Figure 4. Estimated magnitud e and phase of the first channel impulse response , using the pro- posed algor ithms , when the data input is N = 2048 and an S N R = 0 dB the estimated phase are closed to the tr ue ones , and an impor tant estimation on the magnitude using first algor ithm ( Al g o 1) , b ut using the second algor ithm ( Al g o 2) w e ha v e more diff erence betw een measured and estimated magnitude . IJEECS V ol. 1, No . 1, J an uar y 2016 : 138 152 Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS ISSN: 2502-4752 147 5.1.2. Second c hannel: Macc hi c hannel The Macchi channel is defined b y the f ollo wing equation: y ( k ) = 0 : 8264 x ( k ) 0 : 1653 x ( k 1) + 0 : 8512 x ( k 2) + 0 : 1636 x ( k 3) + 0 : 8100 x ( k 4) ; z eros: z 1 = 0 : 5500 + 0 : 9526 j ; z 2 = 0 : 5500 0 : 9526 j ; z 3 = 0 : 4500 + 0 : 7794 j ; z 4 = 0 : 4500 0 : 7794 j : (47) The Macchi channel is a non minim um phase because tw o of its z eros are outside of the unit circle . In the T ab le 2 w e ha v e summar iz ed the sim ulation results , using proposed algor ithms , when the length data input is N = 2048 . F rom the T a b le 2 w e obser v e that the par ameters estimation of the Macchi channel impulse T ab le 2. T r ue and estimated par ameters of macchi channel e xcited b y input sequence of N = 2048 samples and f or diff erent S N R S N R b h ( i ) Al g o 1 Al g o 2 b h (1) 0 : 8080 0 : 2683 0 : 6118 0 : 1812 b h (2) 0 : 1128 0 : 2446 0 : 0502 0 : 2504 0 dB b h (3) 0 : 6271 0 : 1363 0 : 5062 0 : 1376 b h (4) 0 : 2035 0 : 1468 0 : 2007 0 : 1320 b h (5) 0 : 5041 0 : 1776 0 : 0864 0 : 0397 M S E 0 : 0621 0 : 2610 b h (1) 0 : 9593 0 : 6516 0 : 7412 0 : 3183 b h (2) 0 : 2370 0 : 5398 0 : 0908 0 : 2261 4 dB b h (3) 0 : 8363 0 : 3581 0 : 7028 0 : 2154 b h (4) 0 : 1924 0 : 1009 0 : 1853 0 : 0860 b h (5) 0 : 8470 0 : 3873 0 : 3811 0 : 3359 M S E 0 : 0412 0 : 0904 b h (1) 0 : 8336 0 : 2350 0 : 7935 0 : 2648 b h (2) 0 : 1777 0 : 2687 0 : 2475 0 : 2782 12 dB b h (3) 0 : 8711 0 : 2001 0 : 8297 0 : 2536 b h (4) 0 : 1416 0 : 1433 0 : 1110 0 : 1329 b h (5) 0 : 8762 0 : 1695 0 : 6047 0 : 2900 M S E 0 : 0052 0 : 0695 response , using the first algor ithm ( Al g o 1) , are not diff erent to the tr ue ones compared with the results obtained with second algor ithm ( Al g o 2) . The MSE giv e us a good idea about the precision of these algor ithms . In t he Fig. 5 w e ha v e plotted the estimation of the magnitude and phase of Macchi chan nel, the case of the S N R = 4 dB and f or data length of N = 2048 . In the Fig. 5 w e remar k that the estimated magnitude and phase response using the first algor ithm ( Al g o 1) ha v e the same allure in compar ison with the tr ue ones . Concer ning the second algor ithm ( Al g o 2) w e ha v e more diff erence betw een the estimated, magnitude and phase , and the tr ue ones . T o conclude , the first algor ithm ( Al g o 1) is ab le to estimate the phase and magnitude of the non minim um phase channel impulse response in v er y noisy en vironments with v er y good precision. BER Analysis of MC-CDMA Systems with Channel Identification Using HOC (M. Zidane) Evaluation Warning : The document was created with Spire.PDF for Python.