TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 75
7
1
~ 757
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.60
55
7571
Re
cei
v
ed Ap
ril 4, 2014; Re
vised J
une 2
2
, 2014; Acce
pted Jul
y
20,
2014
High Limit Penetration in Wind Power Research and
Analysis of Static Voltage Stability Characteristics of
the Regional Grid
Luo Qing*
1,2
, Chao Qin
1
, Luo Jian-ch
u
n
1
, Luo Jun
3
, Xiao Liang
-
jian
4
1
School of Elec
trical Eng
i
ne
eri
ng, Xinj
ian
g
Un
iversit
y
, Ur
umq
i
830
04
7,
Xi
nji
a
n
g
U
y
g
u
r Autonom
ous R
egi
on, Chi
na;
2
Xin
jia
ng El
ectric Po
w
e
r C
o
mp
an
y Electric Po
w
e
r Res
earch I
n
stitute,
Urumqi 8
3
0
0
1
1
, Xi
nji
ang U
y
g
u
r Autonom
ous
Regi
on, Chi
n
a
;
3
Xin
jia
ng F
u
Yu
n po
w
e
r sup
p
l
y
compan
y;
4
State grid of QingS
ong T
u
lufa
n Ne
w
e
nerg
y
co., L
T
D
*Corres
p
o
ndi
n
g
author, e-ma
i
l
:
good
gob
@q
q
.
com, cqtdx@
1
63.com
A
b
st
r
a
ct
T
h
is pap
er establis
he
d the hi
gh li
mit p
e
n
e
tration
p
o
w
e
r of a certain ar
ea i
n
clu
d
in
g w
i
nd
pow
er gr
i
d
mo
de
l in
30.
0
84% v
a
l
ue, i
n
the hi
gh
li
mit
pen
etrati
o
n
p
o
w
er transmissi
on n
e
tw
ork by
small
distur
ba
nce
voltag
e influ
e
n
c
e. T
h
rough th
e pow
er flow
calcul
atio
n pow
er flow
distribu
tion of t
he vie
w
ing area, w
i
th th
e
reactive p
o
w
e
r compens
atio
n
voltage w
e
re
opti
m
i
z
e
d
.
The
imp
a
ct on the
system
vo
ltage
load
disturb
a
n
c
e
by PV-QV curve ana
lysis.
And its system reactiv
e
p
o
w
er marg
in a
nd oth
e
r issu
es. By the abov
e
calculation, the
grid
is analy
z
ed in access
high wind power
penetration lim
i
t unde
r the feas
ibility and
relia
bi
lity of op
eratio
n, and it
s imp
a
ct on th
e static voltag
e grid syste
m
ana
lysis. Make
w
i
nd pow
er grid
relia
bl
e access
high p
e
n
e
trati
on pow
er fronti
e
r researc
h
.
Ke
y
w
ord:
w
i
nd farms, hi
gh li
mit pe
netrati
on
pow
er, flow
ca
lculati
on, PV-QV curve
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Incre
a
si
ng de
pletion of the origin
al ene
rg
y,
with the new cle
an en
ergy developm
ent and
utilization, it is ha
s brin
g gradually a ne
w test on
the grid. Large
-scal
e
wind p
o
we
r in the grid, the
ultimate pe
n
e
trating
po
wer of th
e re
gi
onal p
o
wer
g
r
id i
s
in
crea
sing. In the o
r
iginal
con
c
e
p
t
s
,
taking into account the inst
ability of wind power hav
e
bring that the wind po
wer into the regional
grid shoul
d meet certai
n limit penetratio
n
powe
r
. Ho
wever, with the developme
n
t of new energ
y
,
more wi
nd po
wer in
co
rpo
r
a
t
ed or grid
will make
the grid at the high limit penetration power test
be acce
pted
grid form
ation
.
Studies at
no
w stage
for wind
p
o
we
r gri
d
lie
s
on
the
cal
c
ulatio
n of
the limit thro
ugh th
e
power of th
e
wind fa
rm,
su
ch a
s
lite
r
ature [1
-4], resp
ectively, to take
a different m
e
thod
to
cal
c
ulate the
ultimate pene
trating po
we
r value.
Acce
ss high
-limit penetratio
n
po
wer of the wi
nd
farm for the
regional grid
system is still i
n
its in
fancy. This arti
cle
focu
sed on the impact of the
high limit pen
etration p
o
we
r of the win
d
farm to
the region
al po
we
r grid. Vie
w
the tren
d of the
regio
nal po
wer gri
d
di
stri
bution flow
calcul
ation u
s
i
ng re
active
power
comp
ensation voltage
optimizatio
n; analysi
s
by P
V
-QV curve o
f
load on
th
e
system voltag
e and
rea
c
tive po
wer
margin
and
other issues. By the
above
cal
c
ul
ation, an
al
ysi
s
of th
e fea
s
ibility and
rel
i
ability of win
d
power g
r
id a
c
cess hig
h
li
mit penetrati
on po
we
r
ru
n
n
ing, and im
pact an
alysi
s
of static voltage
grid sy
st
em.
2. High Limit Penetration
Po
w
e
r o
f
a
Wind F
a
rm F
easibilit
y
an
d Voltag
e Stabilit
y
(PV /
QV)
D
e
f
i
ne
d
Due to th
e cl
ean e
nergy o
f
the origin
al
ener
gy (wind
and
sola
r), i
n
termittent a
nd no
n-
controllabl
e (can n
o
t cont
rol how mu
ch
energy
), wh
en co
nne
cted
to the grid, acce
ss
cap
a
c
ity
can n
o
t be too larg
e, tha
t
limit penetration po
wer
value ca
nnot
exceed a
ce
rtain value [5
-6].
Focu
s i
n
mo
st of the p
r
ev
ious
re
se
arch
on
clea
n
en
ergy into th
e
grid i
n
the
ca
lculatio
n of th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
71 – 757
7
7572
value of th
e li
mit of pe
netration p
o
wer,
but with
the expan
sion
of the
g
r
id and
i
n
telligent, cle
an
energy power foreca
sting t
e
ch
niqu
es an
d the corre
s
p
ondin
g
origi
n
al energy co
ntrol tech
nolo
g
y
(su
c
h a
s
pul
p moment an
gle cha
nge control of t
he fan, solar pa
nels, pi
tch co
ntrol),
improved
energy stora
ge stabili
ze control
of clea
n energy research, ca
n
be improved t
o
some exte
nt a
limit penetrati
on po
we
r of
clea
n ene
rgy
con
n
e
c
ted to
the gri
d
. At the sam
e
time alon
g wit
h
the
cou
n
try
fa
cin
g
the pro
b
le
m
of carbon
dioxide emission
s and
en
vironme
n
tal
p
o
llution pro
b
l
e
ms,
the origin
al e
nergy ha
s be
gun to deplet
ion, al
so con
t
ributed to the gro
w
ing n
u
m
ber of cle
a
n
energy inco
rp
orated int
o
the power g
r
id.
Resulti
ng co
ntaining relia
ble high p
ene
tration po
we
r of
clea
n ene
rgy
grid sta
b
ility analysi
s
an
d resea
r
ch, this pape
r focu
ses on a
regi
o
nal grid
acce
ss
static voltage
stability probl
ems
containi
ng
high p
enet
rating po
we
r
of the wind fa
rm.
PV and
QV
curve i
s
o
b
tain
ed throug
h a
seri
es
of A
C
power flo
w
. P
V
cu
rve
rep
r
e
s
ente
d
by: When
swi
t
ching
po
wer
increa
se of th
e two
sy
stem
s, whi
c
h
ca
uses a
ch
ang
e i
n
voltage; Q
V
curve rep
r
e
s
ents is: wh
e
n
the voltage level chan
ges, a bu
sb
ar or bu
sb
ar reactive po
wer
deman
d. Investigate
d
the
powe
r
syst
em in
norm
a
l and non
-norm
a
l stea
d
y
-state ope
ra
ting
con
d
ition
s
, all the buses
within the syst
em to ma
inta
in the ca
pa
city of the voltage stability. PV
and QV
cu
rv
e: (1) Gri
d
th
e bu
sba
r
volt
age
colla
pse
point; (2
) Pri
o
r to the volta
ge collap
s
e
p
o
in
t
to study the
maximum po
wer
exch
ang
e betwe
en th
e bus;
(3) E
s
timate the required rea
c
tive
power
comp
ensation devi
c
e can p
r
eve
n
t voltage
co
llapse on the
bus
size; re
sea
r
ch voltag
e
cha
nge of ge
nerato
r
s, load
, reactive po
wer
com
pen
sation device [7-9].
So this article analyze
s
the receiving
side load
gro
w
th mode
of generati
on side
gene
rato
r po
wer
sched
uli
ng way an
alysis the the
corre
s
p
ondin
g
wind farm busbar p
o
int, the
corre
s
p
ondin
g
probl
em of the stability of the wind farm
margin.
3. The Estab
lishment of
Wind Farm
Grid Model w
i
th a High
Limit Penetr
ating Po
w
e
r
This g
r
id mo
d
e
l have involv
e in 1 bu
sba
r
conn
ectio
n
wind fa
rm six
followed
by cap
a
city
with i
s
49.5,2
50,200,1
00.5,
49.5,170
M
W
; busba
r
con
necte
d
wind
f
a
rm th
re
e th
e turn
cap
a
ci
ty
49.5,49.5,10
0
.
5 (MW); the
busbar
co
nn
ection
wind
f
a
rm fou
r
wereca
pa
city 10
0,49.5,99,10
0
.
5
(MW), a loa
d
of 84 + j4
0 (MVA); 4 No.
busbar
co
nn
ection th
ree
were capa
cit
y
100.5,200,
49.5
MW
wind fa
rm, a load of
23.7 + j
324
(MVA); No. 8
busco
upled
to two the
r
ma
l power pl
ant
s in
turn capa
city of 400, 1400 MW; 9 b
u
sb
ar
con
n
e
c
tion a the
r
mal power p
l
ant cap
a
city
of
1200M
W;
10
bu
sba
r
co
n
nectio
n
cap
a
c
ity of 1
200
MW th
erm
a
l
po
we
r pl
an
ts; 11
bu
sb
ar
con
n
e
c
tion capa
city of 800MW the
r
mal
power pl
ant
s; No. 5 b
u
sbarlo
ad o
n
the 200
5 + j
4
57
(MVA); No. 6
,
bus load of 3124 + j1
18 (MVA); No. 7 bus loa
d
474
+ j175 (MVA
). Variou
s bu
s
voltage 220K
V imputed to the same volt
age level.
Wind Po
we
r Penetratio
n
refers to the
wind farm in
stalled
cap
a
city accou
n
ted
for the
prop
ortio
n
of
the total loa
d
of the sy
stem.
Wind P
o
we
r Pen
e
tration Limit is defined
as t
he
percenta
g
e
of
the
acce
ss
system, the l
a
rgest
wi
nd farm installed capacity and sy
stem m
a
ximum
load.
Wind Po
we
r Penetratio
n
L
i
mit the regio
nal po
wer g
r
i
d
can b
e
cal
c
ulated a
s
30.
084%.
Figure 1. A Region
with Hi
gh Penetratio
n
Powe
r Grid
unde
r Win
d
F
a
rm
s Dia
g
ra
m
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
High Lim
i
t Penetration in
Wind Po
we
r Re
sea
r
ch an
d Analysis of
Static Voltage… (Lu
o
Qin
g
)
7573
3 Model Exa
m
ple Simula
tion Analy
s
is
3.1. Reac
tiv
e
Po
w
e
r
Com
p
ensa
tion Dev
i
ce Voltage Compen
sa
tion
The
No. 1
0
bus is bal
an
ced n
ode
s. G
r
id
wi
nd
po
we
r the
high
lim
it penetration
po
wer
flow calculati
on, co
nverg
e
n
ce
gen
erally
low
voltage.
The key bu
s
node
co
nne
ct
ed wi
nd farm
is
adde
d to th
e
rea
c
tive po
wer
com
pen
sat
i
on d
e
vice,
so
the voltag
e t
o
meet
the
gri
d
re
qui
reme
n
t
s.
Rea
c
tive po
wer compe
n
sation devi
c
e
acce
ss: th
e
1st bu
s
acce
ss 50Mva
r B
-
SHUNT
re
a
c
tive
power
co
mpe
n
satio
n
, the o
u
tput-j54.8
M
var; a
c
ce
ss
on
the
No. 2
bu
s 5
0
(MW) G
-
SHUNT
+15
0
(Mvar) B-the
SHUNT con
t
ribute 50.9-j
152.7
(MVA); the 5 bus bar a
c
cess the 200Mva
r B-
SHUNT
rea
c
t
i
ve power co
mpen
sation,
output for-
j1
8
5
.0Mvar. Bot
h
cases th
e t
r
end
calculat
e
d
voltage re
sult
s su
ch a
s
sho
w
n in Tabl
e 1
.
Table 1. If Add the Rea
c
tive Powe
r Com
pen
sation
De
vice No
de Vo
ltage
NO. bus
S
y
stem voltage
()
pu.
Plus the voltage reactive power
compensation
()
pu.
1 0.8263
1.0167
2 0.8478
1.0089
3 0.9137
1.0066
4 0.9307
0.9716
5 0.933
0.9619
6 0.9634
0.9766
7 0.9973
0.9982
8 1
1
9 1
1
10 1
1
11 1
1
12 1.0117
1.0126
13 0.9315
0.972
14 1.0117
1.0126
The b
u
s volt
age
can
be
seen from the
table,
the re
active
po
we
r comp
en
satio
n
device
traditional
the
r
mal
power pl
ants
(8, 9,
10
, 11 bu
s)
b
u
s co
nne
ction i
s
very
stabl
e, run
n
ing
at th
e
rated
voltage
. Rea
c
tive p
o
w
er
comp
en
sation d
e
vice
for a
c
ce
ss b
u
lbar poi
nt of
the
wind
farm
rea
c
tive power co
mpe
n
sation, su
ch a
s
bus 1, 2, 3, 4.
In the situa
t
ion of high
penetration
wind farm
ultimate powe
r
, rea
c
ti
ve powe
r
comp
en
satio
n
voltage of t
he wi
nd fa
rm
acce
ss
point
to the no
rmal
level to imp
r
ove the
situat
ion
well.
3.2. The Grid P /
V-Q / V Curv
e Anal
y
s
i
s
3.2.1. P /
V Curv
e of the Regional Po
w
e
r Grid
The
ca
se of
(1)
Co
nsi
d
e
r
the receiving si
de lo
ad
gro
w
th mo
d
e
of gen
erati
on si
de
gene
rato
r p
o
w
er
schedul
e
r
, the
ele
c
tio
n
1,2
bu
sb
a
r
PV
analysi
s
. The system
doe
s
n
o
t
receive
the disturban
ce no
de PV curve in the ba
se case.
P / V cu
rve
unde
r the
1
s
t bu
s no
rmal
starting
volta
ge 1.0
47, vol
t
age fell 0.9
p
u
, active
power i
s
2
7
0
M
W; the a
c
ti
ve power
15
0MW
0.95p
u;
2 bu
sba
r
n
o
rmal P / V
curve, the volt
age
drop
pedth
e
0
.
9pu, the a
c
ti
ve 275M
W;
By dropp
ed
0.95pu
active
200M
W; b
e
see
n
on
the
1st
bus
circu
m
st
ances m
o
re
vulnera
b
le, in
the voltage
0.95pu l
a
rg
e
s
t po
wer
exchang
e is
150
MW,
less than the
2nd bu
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
71 – 757
7
7574
a) No. 1 bu
s
b
)
No. 2 bu
s
Figure 2. 1, 2 Bus No
rmall
y
P/V Curve
The
ca
se of
(2) l
o
st l
oad
300M
W, the l
oad
o
n
the
b
u
s 2
be
com
e
s 0, imp
o
rta
n
t
node
s
PV;
a) P / V curve of the 1st bus in the ca
se
of (2)
b) P / V curve of the 2nd bu
s in the ca
se
of (2)
Figure 3. 1, 2 Bus in (2
) Ca
se
s P/V Curv
e
The ca
se of (2) distu
r
ba
nce, the 1st bus
starting point
voltage 1.063pu, (2) di
stu
r
ban
ce,
starting the
voltage exce
eds 1.05
pu, more t
han th
e voltage limit; the
voltage 0.9pu, acti
ve
287.5M
W; th
e voltage 0.9
5pu, a
c
tive p
o
we
r for
250
MW; No. 2 b
u
s, sta
r
ting v
o
ltage 1.0
2
3
pu,
whe
n
whe
n
the voltage 0.9pu is a
c
tive 283MW
the
the voltage 0.95pu, the active power is
224M
W; mo
re vulne
r
abl
e
at this time
No. 2
bu
s, voltage m
a
ximum switching
time 0.95
pu
The
power is 2
2
4
M
W.
The
ca
se
of
(3)
2 b
u
s loa
d
increa
se
d to
500M
W, lo
ss
of load
ea
ch
bus the PV
curve
as
s
h
ow
n
be
lo
w
:
a
)
P / V curve
of the 1st bus in the ca
se
of (3)
b
)
P / V curve
of the 2st bus in the ca
se
of (3)
Figure 4. 1, 2 Bus in (2
) Ca
se
s P/V Curv
e
0
50
10
0
150
200
250
300
0.
85
0.
9
0.
95
1
1.
05
PW
/M
Ub
0
50
10
0
150
20
0
25
0
30
0
0.
85
0.
9
0.
95
1
1.
05
P/M
W
Ub
0
50
10
0
15
0
200
25
0
30
0
0.
8
5
0.
9
0.
9
5
1
1.
0
5
1.
1
Ub
0
50
10
0
150
20
0
25
0
30
0
0.
8
5
0.
9
0.
9
5
1
1.
0
5
P/
M
W
Ub
0
50
100
15
0
200
250
300
0.
85
0.
9
0.
95
1
1.
05
P/
M
W
Ub
0
50
100
15
0
20
0
250
30
0
0.
8
5
0.
9
0.
9
5
1
1.
0
5
P/M
W
Ub
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
High Lim
i
t Penetration in
Wind Po
we
r Re
sea
r
ch an
d Analysis of
Static Voltage… (Lu
o
Qin
g
)
7575
The case of (3) di
sturban
ce, the No. 1
bus
b
a
r
starti
ng point voltage for 1.0
4
7pu, the
voltage 0.9
p
u
,
active
powe
r
i
s
2
75M
W;
the volt
age
0
.
95pu,
a
c
tive 223M
W; No. 2
bu
s, startin
g
voltage 1.00
9pu When th
e voltage 0.9
puthe a
c
tive
power i
s
275
MW, the By voltage 0.95
pu
active 2
00M
W; mo
re vul
n
erabl
e at
this time
No. 2
b
u
s, the
voltag
e maximum
e
x
chan
ge
0.95
pu
power is 2
0
0
M
W.
3.2.2. Regio
n
al Grid Q /
V Analy
s
is
Rea
c
tive voltage p
u
rp
ose
of the analy
s
is i
s
to a
nal
yze the
situa
t
ion with the
voltage
level of
rea
c
t
i
ve po
wer b
a
l
ance a
nd fo
und th
e
wea
k
lin
k
of the
voltage a
nd
rea
c
tive p
o
wer,
develop
hierarchical pa
rti
t
ion of
voltage an
d re
act
i
ve power
control
strate
g
y
, reactive l
o
cal
balan
ce to e
n
su
re n
o
rm
al
maintena
nce and
spe
c
i
a
l way ea
cht
he voltage l
e
vel of the bus
voltage ca
n b
e
controlled a
t
a reasonabl
e level,
and flexible mean
s of voltage regulation.
The same
ca
se, the key n
ode
s QV an
a
l
ysis, sele
cte
d
bu
s 4, a la
rge n
u
mbe
r
of wind
turbine
s
an
d outlets.
(3) Ba
selin
e case
NO. 1,2 bus QV
curve
.
a) No. 1 bu
s
voltage coll
ap
se infle
c
tion p
o
int
(
0.9
,
-53
2
.62
)
b
)
No. 2 bu
s voltage coll
ap
se infle
c
tion p
o
int
(
0.9
,
-12
9
.08
)
Figure 5. 1, 2 Bus in (1
) the Next QV Curve
From th
e ab
o
v
e cha
r
t we
can see in
the
(1) case, the
2nd
bu
s voltage o
p
e
r
atin
g point;
smalle
r the
2
nd bu
s volta
ge an
d rea
c
tive power
m
a
rgin,
the 1st bus re
active power
m
a
rgin
is
more tha
n
twi
c
e that of the 2nd bu
s.
(2) T
he 7th b
u
s loa
d
into a
500M
W 1,2 No. bu
sba
r
Q
V
curve.
a) No.1 b
u
s v
o
ltage collap
s
e inflection p
o
int
(0.9
,
-
5
41
.5
1)
b) No. 2 bu
s
voltage coll
ap
se infle
c
tion p
o
int
(
0.9
,
-
1
46
.0
4)
Figure 6. 1, 2 Bus in (2
) Ne
xt QV Curve
In the
ca
se
(2
), (1
), the
re
a
c
tiv
e
po
we
r o
f
the 2n
d bu
s
margi
n
than
somewhat in
creased,
but at this time is sm
all co
mpared to the pow
er ma
rg
in of the 1st bus re
active p
o
we
r.
0.
9
0.
95
1
1.
05
1.
1
1.
1
5
-
1000
-
500
0
500
1000
1500
Ub
Q/
M
v
a
r
0.
9
0.
95
1
1.
05
1.
1
1.
15
-
200
-
100
0
100
200
Ub
Q/
Mv
a
r
0.
9
0.
95
1
1.
05
1.
1
1.
15
-
1
000
-
500
0
500
1
000
1
500
Ub
Q/
M
v
a
r
0.
9
0.
95
1
1.
05
1.
1
1.
15
-
200
-
100
0
100
200
Ub
Q/
M
v
a
r
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
71 – 757
7
7576
(2)
No. 2 bu
s load be
com
e
s 0 MW 1,2
No. busb
a
r QV
curve.
a) No.1 b
u
s v
o
ltage collap
s
e inflection p
o
int
(0.9
,
-
5
39
.8
4)
b) No.2 b
u
s v
o
ltage collap
s
e inflection p
o
int
(
0.9
,
-
1
29
.0
3)
Figure 7. 1, 2 Bus in the (3
) QV Cu
rve
In case (3), the rea
c
tive p
o
we
r of the 2nd bu
s margi
n
has be
en redu
ced comp
ared
with
the ca
se (2
), with the flat case (1), then
smalle
r than t
hat of the 1st bus rea
c
tive power ma
rgin
.
By more than
the results of
the simulatio
n
analysi
s
, th
e No. 1 bu
s
Voltage an
d Rea
c
tive
power m
a
rgi
n
in the case correspon
ding
to over
2
bu
sba
r
big. T
h
e
rea
s
on
is th
a
t
the wind fa
rm
on the 1
s
t bu
s acce
ss to the 2nd
bu
s, the 2nd
bu
s
o
n
the pre
s
e
n
ce of wind fa
rms an
d win
d
farm
on the
3rd b
u
s
con
n
e
c
tion,
the 2
nd
bu
s
1,3, bu
s o
r
de
rwi
r
e.
No. 2
o
n
the
bu
s the
total wi
nd fa
rm
cap
a
city is 13
68MW
wind f
a
rm capa
city on the
No. 1
bus i
s
819.5
M
W. The
r
eby
No. 2 on the bus
voltage and reactive po
we
r power ma
rg
in is low,
the bus no
de re
a
c
tive powe
r
margi
n
, with the
point of acce
ss to the wi
nd
farm cap
a
cit
y
.
4. Conclusio
n
Based
o
n
PS
S / E on
the
region
al p
o
we
r g
r
id
to its hi
gh the
ultimat
e
pe
netration
po
we
r
unde
r the
wi
nd farm volta
ge stati
c
cha
r
acte
ri
st
ics comprehe
nsiv
e analy
s
is
a
nd re
se
arch,
the
above an
alysi
s
re
sult
s can
be obtain
ed:
(1)
Hig
h
limit penetration
power g
r
id
conne
cti
on of
wind fa
rm
s in
the cal
c
ulati
on of the
trend,
spe
c
ifi
c
b
u
s no
de a
c
cess
rea
c
tive po
we
r
com
pen
sation
de
vice. The
out
put of the
wi
nd
farm is
rand
o
m
fluctuation
s
in wi
nd turb
ine co
ntro
l
system today is in the
cont
rol
of the output
of
the wind turbine, wind turbine
wind
energy
sour
ce i
s
the
change in vo
latility, uncontroll
abl
e.
Thus the
regi
onal gri
d
win
d
farm ca
pa
ci
ty and stab
ility is difficult to achieve hig
h
limit penetrat
i
on
power o
u
tput
of the win
d
turbine i
s
n
o
t with the
mobili
zation
of load
fluctuation
s
.
Grid p
r
e
s
crib
ed
area
wind fa
rm grid a
c
cess ca
pa
city limit penetration
power in le
ss
than 20%.
(2) T
h
is
pape
r analy
z
e
s
the regi
onal g
r
i
d
Wind P
o
we
r Penetration
Limit can
rea
c
h up t
o
30.084%, flo
w
calculation
rea
c
tive po
wer co
mp
e
n
s
ation
device
improve
d
th
e voltage. After
improvin
g th
e voltage
rea
c
he
s n
o
rm
al
levels, then
the ab
ove lim
it access to
high p
enet
rat
i
on
power of the
wind fa
rm a
r
e
a
to the next grid PV,
QV
pertu
rbatio
n
analysi
s
, pe
rturbatio
n an
al
ysis
in ea
ch
case
the m
a
ximu
m tran
smi
s
si
on g
r
id
sta
b
il
ization
a
c
tive value, a
n
d
voltage
stabil
i
ty
rea
c
tive power margin. In orde
r to analy
z
e the pe
netration limit access to high-p
o
we
r win
d
farms
regional power grid,
the st
atic
vo
ltage stability
of
the grid. (2)
In
the case under the 2nd largest
bus tra
n
spo
r
t active value 2
24MW.
(3) PV, QV curve a
nalysi
s
functio
n
ca
n
be ea
sily derived
syste
m
access hi
gh limit
penetration
p
o
we
r, the
ab
ility to maintain volt
age
stability and v
o
ltage
stabilit
y critical p
o
i
n
t
distan
ce.
Ackn
o
w
l
e
dg
ements
Proje
c
t Supp
orted by Na
tional Natu
ra
l
Science F
ound
ation of
China (512
6702
0);
Suppo
rted
by Internati
onal S
c
ien
c
e & Te
ch
n
o
logy Coop
eration
Pro
g
ram
of China
(201
3DFG6
1
520); Supp
orted by 2012
Highe
r Spe
c
iali
zed Research Fun
d
for the Doct
oral
0.
9
0.
95
1
1.
05
1.
1
1.
15
-
1000
-
500
0
500
1000
1500
Ub
Q/
M
va
r
0.
9
0.
9
5
1
1.
05
1.
1
1.
15
-200
-100
0
100
200
Ub
Q/
M
v
a
r
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
High Lim
i
t Penetration in
Wind Po
we
r Re
sea
r
ch an
d Analysis of
Static Voltage… (Lu
o
Qin
g
)
7577
Program join
tly funded do
ctoral
cla
ss
proje
c
t
"Win
d
Chu comple
mentary imp
r
ove sho
r
t-term
wind p
o
wer p
r
edi
ction p
r
e
c
ision
key tech
nology re
se
arch" (2
012
650
1110
003
).
Referen
ces
[1]
Lia
o
Pin
g
, li xi
ng
yu
an. W
i
nd
farms penetr
a
tion p
o
w
e
r l
i
m
it calcul
ation
methods in.
Power system
techno
lo
gy
. 20
08; (10): 50- 5
3
.
[2]
Z
hengB
in, Z
h
a
n
g
X
i
n
Ya
n. Bas
ed o
n
the stati
c
secu
rit
y
co
n
s
traints of
w
i
n
d
farms pe
netr
a
tion
po
w
e
r
limit calcu
l
ati
o
n
.
Journal of re
n
e
w
able e
ner
gy.
2009; 2
7
(1): 1
9
– 22.
[3]
W
angQia
n, zh
ang
p
a
rticles,
Xi
eG
uo
Hui.
Co
ntain
more
w
i
n
d
farms
pen
etr
a
tion
po
w
e
r
li
mit pro
bab
ilit
y
valu
e calcu
l
ati
on an
d confi
d
e
n
ce interv
al est
i
matio
n
.
Journ
a
l of solar e
ner
gy.
2011; (4): 5
53-5
58.
[4]
Z
hengGu
o
Ji
an
g, BaoHa
i
, Ch
enSh
u
Yo
ng. Based o
n
the a
ppro
x
imate li
n
ear pro
g
rammi
ng
w
i
nd farm
s
pen
etratio
n
po
w
e
r limit optim
i
z
ation a
l
g
o
rith
m.
Journal of e
l
ectrical
eng
in
e
e
rin
g
. 200
4; (10): 68-71.
[5]
YuanT
ieJia
ng, Z
hangJ
un, Ch
aoQin, Du
an
Xi
aoT
i
an, W
a
n
g
H
ouJ
un, W
a
ng
Xi
ao
Hua.
Lar
g
e
sca
le
w
i
n
d
po
w
e
r access
po
w
e
r s
y
ste
m
static
voltage stabi
lit
y
c
h
aracteristic stu
d
y
.
J low
pre
ssure el
ectric
app
lia
nce
. 20
1
1
; 33–3
7.
[6]
YuanT
ieJia
ng,
Ch
aoQin,
Li
YiYan,
yu
e
n
part
y
,
T
u
ErXu
n.
YiBu
LaY
in.
Base
d on
w
i
nd po
w
e
r limit
pen
etratio
n
po
w
e
r econ
omic
disp
atch optimi
z
ation mo
del.
Pow
e
r system protectio
n
and
control
. 20
11
;
(1): 15- 21.
[7]
Z
hang j
un, Ch
aoQin, Du
an
Xi
ao T
i
an, Yu
an T
i
e Jiang.
D
y
namic und
e
r
the
rest
rictio
n of the larg
es
t
w
i
nd farms ca
n
access capac
i
t
y
stud
y.
Electric power system
prot
ection and control
. 201
1; (3); 62-66.
[8]
YANG zhic
hu
n
.Anal
ytic
al m
e
thod
of the
im
pact of
di
stri
bu
ted g
e
n
e
ratio
n
on st
atic
vo
ltag
e stab
ilit
y
of
distrib
u
tion
net
w
o
rk an
d its d
e
vel
opme
n
t.
TELKOMNIKA Indo
nesi
an Jo
u
r
nal
of Electric
al Eng
i
n
eeri
n
g
.
201
3; 11(9): 50
18-5
029.
[9]
Omer Elfaki El
bash
i
r, W
ang
Z
e
zhon
g, Li
u
Qihui.
An
al
ysis
of DF
IG W
i
nd T
u
rbine D
u
rin
g
Stea
d
y
-St
a
t
e
and T
r
ansient
Operatio
n.
T
E
LKOMNIKA Indon
esia
n Jour
nal
of Electric
al Eng
i
ne
erin
g
. 2014; 12(6):
414
8-41
56.
Evaluation Warning : The document was created with Spire.PDF for Python.