TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 16, No. 3, Dece
mbe
r
2
015, pp. 480
~ 487
DOI: 10.115
9
1
/telkomni
ka.
v
16i3.830
7
480
Re
cei
v
ed
Jun
e
9, 2015; Re
vised O
c
tobe
r 12, 2015; A
c
cepted
No
ve
m
ber 7, 2015
Material Modeling Approach for Graphene Antenna
Design
Rajni Bala*
1
,
Anupma Ma
r
w
a
h
a
2
, Sanj
a
y
Mar
w
aha
3
Sant Lon
go
w
a
l
Institute of
Engin
eeri
ng & T
e
chno
log
y
,
Lon
go
w
a
l (D
ee
med Un
iversit
y
) Dist. Sangrur,
Punja
b
, India
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: rajnisl
i
et@
g
mail.com
1
, marw
a
h
a_a
nu
pma
@
yah
oo.co.in
2
,
mar
w
a
h
a_sa
n
j
a
y@
ya
hoo.co.i
n
3
A
b
st
r
a
ct
F
o
r the last few
decad
es, i
n
the fie
l
d of
patch
a
n
ten
n
a
desi
gn for w
i
reless a
p
p
licat
ions th
e
researc
hers ha
ve gon
e throu
g
h
exper
i
m
enti
n
g w
i
th almost
all types of varia
t
ions in sh
ap
e and d
i
mens
io
n
s
of patch
el
e
m
ent, substrate
mater
i
al,
exp
l
o
i
ting w
i
th
patc
h
a
nd
grou
nd
structure w
i
th
slots. Very
lit
tle
attention
has b
een g
i
ve
n to ex
plor
e the pi
on
e
e
rin
g
ap
pr
oac
h
of using d
i
fferent patch
mate
rial i
m
pr
ovi
ng th
e
perfor
m
a
n
ce of
anten
nas i
n
te
rahert
z
re
gi
me.
T
he grap
he
ne
mater
i
al
is late
ly bei
ng
used
a
s
patch
materi
a
l
as
it poss
e
sse
s
a nu
mber of desir
abl
e
electr
omag
netic
an
d
mech
anic
a
l
pr
operti
es th
at a
ssists in
prov
id
in
g
flexibl
e
a
nd re
config
urab
le
a
n
tenn
a
structur
e. T
he materia
l
tuna
ble c
ond
uctivity acco
un
ts for the supe
rio
r
electro
m
agn
eti
c
prop
erties.
Henc
e the a
u
t
hors hav
e
pr
esente
d
the s
i
mplifi
ed
ana
ly
tical sol
u
tio
n
for
grap
hen
e surfa
c
e cond
uctivity
to be utili
z
e
d
to
character
i
z
e
the grap
he
ne a
n
tenn
a par
a
m
e
t
ers.
Ke
y
w
ords
:
grap
hen
e, tun
a
b
le c
o
n
ductivit
y
, nan
o p
a
tch
anten
na, ter
a
h
e
rt
z
r
egi
me, fin
i
te el
e
m
e
n
t me
thod
(FEM)
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Grap
hen
e'
s h
i
gh ele
c
tri
c
al
con
d
u
c
tivity
and hig
h
opti
c
al p
r
e
c
isio
n
make it a
ca
ndidate
for tra
n
spa
r
e
n
t co
ndu
ctin
g ele
c
tro
d
e
s
, re
quired fo
r variou
s
hig
h
-
sp
eed
ele
c
tronics
and
hi
gh
freque
ncy ap
plicatio
ns du
e to its very
high mob
ility
and gra
phe
ne's
satu
ratio
n
velocity [1]. In
particula
r, graphe
ne'
s me
cha
n
ical stre
ngth and flex
ibility are ben
eficial co
mpa
r
ed to
indium
tin
oxide, whi
c
h i
s
brittle [2]. Single
sheet of
grap
hen
e are
hard to
ma
ke on a
suitabl
e su
bstrate. So
according to
the radio
wa
ve abso
r
ption
,
stac
ked g
r
a
phen
e layer
on a sili
con
d
i
oxide su
bst
r
ate
increa
se
s th
e absorption
of radio
waves by 1.
6
8
% fraction
al
band
width,
extensibl
e
fro
m
microwave to terahertz fr
equencies, whi
l
e rem
a
ining
translucent
t
o
visible li
ght.In present days
the thrust i
s
to math
ema
t
ically mod
e
l
gra
phe
ne
-b
ase
d
pl
asm
o
nic
nan
o-a
n
tenna
which
can
operate effici
ently at micromet
er ra
dio
wavele
ngth
s
. Plasm
oni
c p
r
opa
gation
can b
e
supp
orted
by gra
phe
ne
at THz, le
ading to
extremely
inte
resting
prope
rties fo
r p
r
a
c
tical
anten
n
a
s
appli
c
ation
s
.
T
he wavel
e
n
g
th of surfa
c
e
plasm
on
po
lariton
s
for a
given frequ
ency is
seve
ral
hund
red tim
e
s smalle
r tha
n
the wavele
ngth of fr
e
e
ly pro
pagatin
g
electroma
gne
tic wave
s of t
he
same frequ
e
n
cy. The di
mensi
o
n
s
an
d spe
ed differen
c
e
s
allo
w efficient g
r
aph
ene
-ba
s
ed
antenn
as to
be far
small
e
r tha
n
conv
entional
alternatives [3].
For u
s
in
g g
r
aphe
ne a
s
p
a
tch
material m
a
jo
r ch
alleng
e i
s
to mathem
atically mode
l the new
co
mplex gra
p
h
ene mate
rial
that
woul
d exhibit
improve
d
hi
gh freq
uen
cy
prop
ertie
s
. The spe
c
ific material pro
p
e
rties
t
hat
ne
ed
improvem
ent
are lowe
r losse
s
, better impedan
ce
matching, high ra
diatio
n efficiency
and
modified
el
ectromag
netic a
b
so
rption ch
a
r
acte
ri
st
ics
co
mpatible with nano de
sign on
the
b
a
si
s o
f
electroma
gne
tic pro
p
e
r
ties. There
ha
s
however b
e
en relatively li
ttle effort in improving the
material
s technolo
g
y in an
tenna
s and
si
mplifyi
ng mathematically the
tunabl
e graphe
ne surfa
c
e
c
o
nduc
tivity [
4
].
2. Modeling Appro
ach fo
r Graphe
ne
Antenna
Des
i
gn
In this pap
er
an attem
p
t h
a
s
bee
n m
a
d
e
to a
c
cu
rate
ly model
gra
phen
e b
a
sed
materi
al
with tuna
ble
con
d
u
c
tivity
and h
e
n
c
e th
e gra
phe
ne b
a
se
d re
ctan
g
u
lar n
ano
pat
ch a
n
tenn
a h
a
s
been de
sig
n
e
d
operating in
the terahert
z
(T
Hz) re
gime
and good a
g
r
eem
ent has
been ob
se
rve
d
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Material Mo
d
e
ling App
r
oa
ch for Gra
phe
ne Antenna
Desig
n
(Rajni
Bala)
481
as
we
com
p
a
r
e the
metalli
c ante
nna
an
d mu
ch
simpl
e
r g
r
ap
hen
e
based n
ano
patch
anten
n
a
.
From th
e pre
v
ious literature it
is
kno
w
n
that the ele
c
troma
gneti
c
fields fo
r meta
llic ante
nna
a
r
e
govern
ed by
classi
cal M
a
xwell'
s eq
u
a
tions, the
grap
hen
e is howeve
r
re
pre
s
ente
d
b
y
a
con
d
u
c
tivity
surfa
c
e
ari
s
i
ng from
a semicla
s
sical
intraba
nd m
ode a
nd qu
antum-dynam
ical
interba
nd mo
de [4]. The
Kubo formul
a has the
r
ef
ore be
en used to calcula
t
e the graph
ene
surfa
c
e
cond
uctivity as a
functio
n
of fre
quen
cy.
The
surfa
c
e
cond
uctivity of an
infinite graph
ene
film con
s
i
s
ts
of two p
a
rt
s: first term is intr
ab
and
a
nd second
te
rm inte
rba
n
d
cont
ributio
ns in
Equation
(1
), co
rrespon
d
to the int
r
ab
and
ele
c
tron
-phon
on
scattering
p
r
o
c
e
s
s a
nd i
n
terb
and
electron tran
sition
re
spe
c
tively. In the infrar
ed
an
d visible
ra
n
ge (sh
o
rt
wavelength
)
, the
grap
hen
e o
p
t
ical
cond
ucti
vity is determined
by int
e
rba
nd t
r
an
si
tions
wh
ere
a
s
, for te
ra
he
rtz
rang
e (lon
g wavele
ngth
s
)
is domin
ated
by
intraba
n
d
tran
sition
s. T
h
is
simpl
e
co
ndu
ctivity model
has b
een u
s
e
d
here whi
c
h
ignores the
magneti
c
field hall co
ndu
ctivity as gra
p
hene i
s
assu
med
to be only ele
c
tri
c
ally biase
d
[5-6].
2
2
(2
)
(
)
()
()
(
)
(,
,
,
)
(
)
2
24
22
σ
(2
)
00
(2
)
(
)
qj
q
ff
f
f
e
ed
d
d
d
ij
d
d
c
E
j
j
h
(1)
Her
e
ω
is an
gular fre
que
n
c
y of the photon,
is elect
r
o
n
scatte
ring rate expre
s
se
d in terms o
f
relaxation tim
e
as
1
2
,
ħ
is the
redu
ce
d Planck con
s
tan
t
or
Dira
c con
s
tant i.e.
2
h
, wh
ere h
is Plan
ck
co
n
s
tant, T is
ro
om tempe
r
at
ure, the F
e
rmi-dirac
distri
bution fun
c
tio
n
1
()
1
d
B
c
f
e
T
k
and k
B
i
s
the
Boltzman
n co
nstant. It is not
ed that for
highly dop
ed
or gate
d
grap
hene
1
B
c
T
k
,s
o
the ca
rri
er
d
ensity an
d
chemical p
o
te
ntial ca
n b
e
expre
s
sed
as
2
2
2
s
f
c
n
V
an
d
2
2
c
s
f
vn
respe
c
tively. For p
r
e
s
ent a
nalysi
s
when
1
c
T
k
B
, therefo
r
e th
e ch
emical p
o
tential of graphe
ne i
s
determi
ned in
terms of ca
rri
er den
sity fro
m
the expre
s
sion give
n by:
2
2
2
()
(
)
0
s
dd
f
n
ff
cc
V
(
2
)
For
,0
,0
cc
c
cc
No
w for the pre
s
e
n
t ca
se we consi
der
0;
cc
is
positive. For solving
Equation (2), usin
g su
bstitu
tion,
()
0
A
f
c
d
and
()
0
B
f
c
d
.
The first Fe
rmi-dirac di
stri
but
ion term
can be expressed a
s
:
1
()
2
1
f
c
d
c
e
T
k
B
(
3
)
Therefore,
1
0
2
1
A
c
e
T
k
B
(
4
)
Usi
ng the ap
proximatio
n
22
1
cc
ee
TT
kk
BB
Equation (4) redu
ce
s to:
2
2
0
0
c
c
T
k
TT
B
kk
BB
e
A
ee
(
4
a
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 480 – 487
482
For further s
i
mplific
ation, subs
titute
1
,
y
T
k
B
then
α∂ε
=
∂
y in Eq
uation (4
a),
22
2
1
00
0
2
cc
c
yy
yy
ee
e
A
yy
ee
e
TT
T
kk
k
BB
B
(
4
b
)
Solving this e
quation by u
s
ing appli
c
atio
n
of integrati
on metho
d
s
based on ILA
T
E rule
the simplified
expre
ssi
on is
obtaine
d as:
2
2
c
T
B
k
B
T
ek
A
(
4
c
)
S
i
milarly
,
t
he se
con
d
t
e
r
m
of
ca
rrie
r
den
sity expression give
n
by
()
0
B
f
c
d
is
solved
corre
s
pondi
ngly to obtain the sol
u
tion as:
2
T
k
B
B
(
5
)
Hen
c
e u
s
in
g the value
s
of A and B in Eq. (2), the ca
rri
er den
sity is obtaine
d as:
2
2
2
2
2
1
s
B
f
c
T
nk
B
e
T
k
V
(
6
)
Whe
r
e V
f
is
th
e
F
e
r
m
i
ve
lo
c
i
ty (
∼
3×
10
6
m/s i
n
g
r
a
phen
e),
ε
i
s
t
he e
nergy an
d µ
c
is graph
ene
chemi
c
al
pot
ential. The
p
a
ram
e
ter
of
great i
n
terest
for eval
uati
ng the
pe
rfo
r
man
c
e
of t
h
e
grap
hen
e ba
sed n
ano de
vices a
r
e the
chemi
c
al po
tential of gra
phen
e, i.e., the level in the
distrib
u
tion of
ele
c
tron
s en
ergie
s
at
whi
c
h a
q
uantu
m
state i
s
eq
ually likely to
be
occu
pied
or
empty. The chemical pote
n
tial µ
c
can
b
e
accu
rately
extracted
by
nume
r
ically solving Equati
on
(6).
The
graphene SPP can therfore be tuned by
ma
terial doping whic
h
is
further
controlled
by the external bia
s
,V
DC
. Hen
c
e the
graph
ene
condu
ctivity
σ
or co
rrespo
ndingly surfa
c
e
impeda
nce Z
s
=1/
σ
can b
e
dynamically controlled
by V
DC
. This property
can b
e
used to
cre
a
te
tunable n
ano
device
s
with
dynamic
cont
rol. At t
he THz frequ
en
cy regio
n
, the application of an
external DC
bias all
o
ws to
incre
a
se ch
e
m
ical
pote
n
tial, thus red
u
cing losse
s
an
d increa
se
s the
indu
ctive beh
aviour of the grap
hen
e sh
e
e
t.
The first term of cond
uctivity repre
s
e
n
t
ed by Eq
u
a
tion (1)
co
rresp
ond
s to i
n
traba
nd
transitio
n in
whi
c
h the
re
al part
cont
ri
butes to
ene
rgy ab
so
rptio
n
or di
ssipati
on du
e to th
e
intraba
nd ele
c
tron
s and after
utilizi
ng
th
e
sol
u
tion
explaine
d ab
ove, can
no
w b
e
expresse
d
as:
2
1
2l
n
int
1
2
T
q
k
Bc
e
c
j
ra
ban
d
e
T
k
TB
j
k
B
(
7
)
In the
re
cent
years
many
re
se
arche
r
s ar
e u
s
in
g t
he Ku
bo'
s
e
x
pressio
n
to
find
out
tunability of
grap
hen
e ma
terial b
u
t to the be
st
of
o
u
r
kno
w
le
dge
very little co
nce
n
tration
h
a
s
been given to
provide the accurate sol
u
tion of the
expre
ssi
on to a
nalyze the effect of chemi
c
al
potential on
condu
ctivity in
simplified fo
rm [7-9
]. Therefore the a
u
thors
have su
gge
sted he
re
an
accurate mat
hematical mo
deling
of gra
phen
e surf
a
c
e co
ndu
ctivity in a
simple
manne
r. Th
e
first
attempt was
perfo
rmed
u
s
ing the
Math
ematica
so
ftware, whi
c
h however
co
ul
d not
provide
the
conve
r
ge
d so
lution. There
a
fter MATLAB code wa
s
gene
rated for the expressi
on co
nsid
eri
n
g µ
c
≠
0, an
d u
s
in
g the val
u
e
s
of different
p
a
ram
e
ters a
s
q
e
=1.
6
×1
0
-19
C
with Coul
omb cha
r
g
e
(C)=
6.25×10
19
ele
c
tron
s, k
B
T= 0.0256
eV
wh
ere k
B
i
s
Bol
t
zmann
con
s
tant,
= 6.582
×10
-16
eVs,
=0.
1
1
e
V
,
ω
=2
π
f where f is frequen
cy.
int
10
3.0
0
9
10
1
2l
n
6.
28
0.
22
c
r
a
b
and
T
k
B
c
e
fj
T
k
B
(
7
a
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Material Mo
d
e
ling App
r
oa
ch for Gra
phe
ne Antenna
Desig
n
(Rajni
Bala)
483
nt
0
.
02
56
10
10
0.6
619
8
0
.6
619
8
10
10
1
2l
n
22
0
.
02
56
39
.
4
4
0
.
0
48
4
3
9
.
4
4
0.
04
8
4
c
ir
a
r
e
a
l
p
a
r
t
c
e
ff
(
7
b
)
in
t
i.
0.0
256
10
10
1
8
.896
18.
896
10
10
1
2l
n
22
0.0256
39.44
0.
0484
39.
44
0.0484
c
ra
mg
par
t
ff
c
j
e
ff
(
7
c
)
Figure 1 an
d
Figure 2 respectively sho
w
the real
an
d imagin
a
ry p
a
rt of intrab
a
nd condu
ctivity at
terahe
rtz freq
uen
cie
s
regi
me obtaine
d from their
co
rresp
ondi
ng eq
uation
s
.
Figure 1. Rea
l
part of the intraban
d co
nd
uctivity
at room temperatu
r
e (T = 30
0 K) for different
values of che
m
ical pote
n
tial
Figure 2. Imaginary pa
rt of the intraba
nd
con
d
u
c
tivity a
t
room temperature (T =
300K) for
different valu
es of ch
emical potential
Furthe
r Equat
uion (7
) be fu
rther
simplifie
d for
= 0,
2
10
2
62.
06
10
2l
n
2
in
t
22
1
39.
44
0
.
04
84
T
q
k
f
B
j
e
j
ra
ban
d
f
j
(
8
)
So, for this ca
se, it can be
observed that
we obt
ain th
e simplified in
traban
d term
of the graph
e
ne
c
o
nduc
tivity
whic
h is
s
i
milar to the
available Drud
e-li
ke form [7], i.e.
2
in
t
1
2
q
c
e
j
ra
simpli
fi
e
d
j
(
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 480 – 487
484
3. Potential
Applica
t
ion for Graph
e
ne
Ante
nna De
sign
For vali
datio
n graph
ene
based
re
ctan
gular
pat
ch
antenn
a h
a
s bee
n d
e
sig
ned
and
nume
r
ically analyze
d
. HF
SS model is create
d
as
sho
w
n in Fig
u
re 3 with keepin
g
the other
dimen
s
ion
s
o
f
antenn
a mo
del a
s
given i
n
Ta
ble 1.
Fu
ndame
n
tally, the thickn
ess of the
diele
c
t
r
ic
sub
s
trate
(t)
sho
u
ld be l
e
ss th
an the f
r
ee
spa
c
e
wavelength
(0.
003
λ
0
≤
h
≤
0.05
λ
0
) [3]. The
analysi
s
is pe
rforme
d with
grap
hen
e pat
ch on
silic
o
n
dioxide subst
r
ate materi
al having thickn
ess
of 3µm and
diele
c
tric pe
rmittivity,
r
=4. The wave propag
ation velocity for grap
hene materi
a
l
depe
nd
s on the patch dim
ensi
o
n
s
, its reso
nant freq
u
ency an
d the Fermi en
ergy
of the structu
r
e.
Followi
ng the
con
c
e
p
t, the re
sona
nt fre
quen
cy of a
grap
hen
e ba
sed
anten
na
can
be eval
u
a
ted
as
,
whe
r
e
is th
e wave
pro
p
a
gation velo
cit
y
for gra
phe
n
e
materi
al [8] and
stand
s
for the n
ano
patch l
ength.
Usi
ng the
given pat
ch
di
m
ensi
o
n
s
the a
n
tenna
re
son
ant freq
uen
cy
is
cal
c
ulate
d
as
3THz [10-12].
4. Results a
nd Analy
s
is
The p
r
op
ose
d
simplifie
d formul
ation p
r
ese
n
t
ed a
s
a
bove is
used
for analyticall
y
solving
the con
d
u
c
tivity expressio
n
. The graph
ene ante
nna i
s
sim
u
lated a
nd analy
z
ed
here
co
nsi
dering
zero
che
m
ica
l
potential
for gra
phe
ne
m
a
terial fo
r
si
mplicity of im
plementatio
n. The
anten
na
is
analyzed for return lo
ss, ga
in, directivity, absor
ptio
n cross-se
ction a
nd radi
ation e
fficiency.
Table 1.
Dim
ensi
o
n
s
of graphe
ne ba
se
d terahe
rtz
sq
uare p
a
tch a
n
t
enna
Para
m
e
ter Value
Oper
ating frequ
e
n
cy band
(f
o
)
2.63-2.74
THz
Substrate
length and w
i
dth
106
μ
m × 65
μ
m
Substrate thickness (h)
3
μ
m
Substrate dielectr
ic constant (SiO
2
,
є
r
)
4.0
Side length and
w
i
dth of
square p
a
tch
(Lp × Wp)
5
μ
m × 5
μ
m
Patch height (
∆
)
10
nm
Length of fee
d
6.2
μ
m
Width of feed
23.8
μ
m
Length of
λ
/4 tra
n
sformer
15
μ
m
Width of
λ
/4 tran
sformer
1.6
μ
m
Figure
3. HF
SS model of grap
hen
e ba
sed patch ante
nna
Figure 4
depi
cts, the
retu
rn loss fo
r the
ant
enn
a with
pea
k maximu
m value of
-2
1.09 dB
at re
so
nant freque
ncy
2.70
THz. Fig
u
re
5 sho
w
s,
th
e
2D
plot of
gai
n havin
g max
i
mum valu
e o
f
6.6 dB at resonant freq
ue
ncy 2.70 THz. The gai
n ap
pare
n
tly rem
a
ins ab
ove 5 dB for the wh
ole
operating ba
n
d
of frequen
ci
es from 2.6
3
-2.74 THz.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Material Mo
d
e
ling App
r
oa
ch for Gra
phe
ne Antenna
Desig
n
(Rajni
Bala)
485
Figure 4. Ret
u
rn Lo
ss (in d
B
) for gra
phe
ne
patch a
n
tenn
a
Figure 5. 2D
gain plot (in d
B
)
The 3
D
ra
dia
t
ion pattern
s
for gain a
nd
dire
ctivit
y are as given in
Figure 6. Fig
u
re 7
(
a)
demon
strates the 3D p
o
la
r plot for
dB gain in the
a
z
imuth pl
ane
ϕ
=
0
o
(red
) and
ϕ
=
90
o
(gr
een
).
(a)
(b)
Figur
e 6. (a)
Gain (in dB
); (b)
Dire
ctiv
ity
(in dB)
(a)
(b)
Figure 7. (a)
3D pol
ar plot
of dB gain in azimuth pl
an
e
ϕ
= 0
o
(red
) and
ϕ
=
90
o
(
g
ree
n
); (b
)
A
b
so
rpt
i
on
cr
os
s se
ct
ion r
a
t
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 16, No. 3, Dece
mb
er 201
5 : 480 – 487
486
The ab
sop
r
tio
n
coefficie
n
t is plotted as f
unc
i
on of freq
uen
cy in Figure 7(b
)
. The pre
s
ent
analysi
s
ha
s been perfo
rmed assumi
n
g
grap
hen
e model with zero chemi
c
al
potential he
nce
resonatin
g at a lower fre
q
uen
cy with a small abs
orption cross section, whi
c
h
will limit the
i
r
achi
evable
ra
diation effici
e
n
cy. On th
e
other
hand,
grap
hen
e wit
h
a hig
h
e
r
chemical pote
n
tial
posse
s great
er ab
sorption
capabilitie
s, but the re
son
ant freque
ncy
also increa
ses in that ca
se,
whi
c
h may re
duce their p
o
tential tran
smi
ssi
on
rang
e. The propo
se
d gra
phe
ne a
n
tenna the
r
ef
ore
perfo
rms
with the radiati
on efficien
cy of 88%
at r
e
so
nant freq
uen
cy of 2.70 THz a
s
ca
n be
clea
rly see
n
from Figu
re 8
.
Figure 8. Radiation Efficie
n
cy
4. Conclusio
n
In this re
se
arch
pap
er
simplified
m
a
themat
ical f
o
rmul
ation f
o
r
gra
phe
ne
material
con
d
u
c
tivity
has b
een p
r
ese
n
ted. The
graph
ene b
a
se
d re
ctang
ular pat
ch a
n
tenna on
sil
i
con
dioxide sub
s
trate mate
rial
has b
een
d
e
sig
ned the
r
eafter to aut
henticate the
validity of the
prop
osed ma
thematical m
odel. The si
mulation is n
u
meri
cally sol
v
ed con
s
ide
r
i
ng ze
ro che
m
ical
potential fo
r
grap
hen
e m
a
terial fo
r
sim
p
ler implem
e
n
tation o
n
HFSS software. The
ante
n
n
a
sho
w
s go
od i
m
peda
nce m
a
tchin
g
with
-21.09 dB
retu
rn lo
ss at re
sonant fre
que
ncy of 2.70
T
H
z.
The with re
a
s
on
ably goo
d gain of 6.627 dB and
dire
ctivity of
6.6813 dB
is achieved. T
h
e
antenn
a radi
a
t
es with maxi
mum radi
atio
n effi
cien
cy over 88% at re
son
a
ting freq
uen
cy.
Ackn
o
w
l
e
dg
ements
This
work is
sup
porte
d by Depa
rtment
of Electroni
cs and Co
mmu
nicatio
n
Engi
neeri
ng
of Sant Long
owal In
stitute of
Engineeri
ng and Te
ch
nology, Lon
g
o
wal, Punja
b
,
by providing
excelle
nt lab
facilities such
as
High
Fre
quen
cy
stru
ct
ural
Simulato
r Softwa
r
e
13
, Mathemati
c
a
,
MATLAB and
other comput
ational faciliti
e
s.
Referen
ces
[1]
W
ang H, Nez
i
ch D, Kong J
,
Palacios T
.
Graphe
ne freq
uenc
y mu
ltipl
i
e
rs.
IEEE Electron Devic
e
Letters.
200
9; 30(5).
[2]
Mey
e
r JC,
Geim AK, Novoselov KS. T
he
str
u
cture
of sus
p
end
ed
gra
p
h
e
n
e
sh
eets.
N
a
tu
re Pu
blis
hin
g
Group.
200
7; 4
4
: 60-63.
[3]
Ming L
i
n Y, Jenki
n
s KA, F
a
rmer DB, Avouris P.
Operation of gra
p
h
e
ne tr
ansistors at
giga
hertz
freque
ncies.
N
ano L
e
tters.
20
09; 9(1): 42
2-4
26.
[4]
Llatser I, Krem
ers C, Miqu
el
J. Scattering o
f
terahertz radi
ation
on a
gra
phe
ne-b
a
se
d n
ano-
ante
nna
.
Amer
ica
n
Institute of Physics
Confer
ence Pr
ocee
din
g
s.
201
1; 1398: 1
44-1
46.
[5]
T
i
tz D, Bisogni
n A, F
e
rrero F
,
Laporte C, E
zzedd
ine H. 60
GHz patch ant
enn
a usin
g IPD techno
log
y
.
Lou
gh
boro
u
g
h
Antenn
as an
d Propa
gati
on C
onfere
n
ce (LA
P
C).
Loug
hb
or
oug
h, UK. 201
1.
[6]
Atanassov
Bat
o
vski D. Graphene
and comm
unic
a
tions
technology
.
Assumption Universit
y
Jo
u
r
na
l
of
T
e
chno
logy
. 2
012; 16(
2): 105
-114.
[7]
Gomez-Diaz JS, Pe
rruiss
e
au Carrier
J.
Microw
ave to
T
H
z
pro
pertie
s
of gr
ap
hen
e
an
d
pote
n
tial
anten
na a
ppl
ic
ations
. Intern
ation
a
l S
y
mpos
iu
m on Anten
nas
and Prop
ag
ati
o
n
.
Nag
o
y
a, Ja
pan. 20
12.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Material Mo
d
e
ling App
r
oa
ch for Gra
phe
ne Antenna
Desig
n
(Rajni
Bala)
487
[8]
Skulas
on HS, Ngu
y
e
n
HV,
Guermo
une
A,
S
zk
opek T
.
110
GHz measur
e
m
ent of l
a
rg
e-a
r
ea gr
ap
hen
e
integr
ated i
n
lo
w
-
l
o
ss micro
w
ave structures.
Appli
ed Physi
cs Letter.
2011
; 99(153
50
4).
[9]
Anan
d S, Sriram Kumar D, Jang W
u
R, Cha
v
ali M. Graphe
ne na
nori
b
b
on
base
d
terah
e
rtz antenn
a o
n
pol
yim
i
d
e
subs
trate.
Optik Science D
i
rect.
20
14; 125: 5
546
–
554
9.
[10]
Gomez-Diaz J
S
, Perruisseau-C
arri
er J, Sharma P, Ion
e
scu AM. No
n-contact ch
ar
acterizati
on
o
f
grap
hen
e s
u
rface
impe
da
nc
e at
mi
cro a
nd mi
l
l
i
m
e
t
e
r
w
a
ve
s.
Jour
na
l of
Appl
ied
Phys
ic
s.
201
2; 1
11:
114
90
8-7.
[11]
Hua
ng Y, W
u
L, T
ang M,
Mao J. Desi
gn
of a be
am reco
nfi
gur
a
b
le t
h
z ant
enn
a
w
i
th
gra
p
hen
e-bas
e
d
s
w
itc
h
a
b
le h
i
g
h
- impe
danc
e surface.
IEEE Transactions on Nanotechnology.
201
2; 11(
4): 836-8
42.
[12]
Morote ME, Sebastia
n
J, Dia
z
G, Perruissea
u
Carrier J. Sin
u
soi
dal
l
y
-mod
u
l
ated gr
aph
en
e
leak
y-
w
a
v
e
anten
na
for e
l
ectronic
be
am
scann
ing
at th
z.
T
e
rahert
z
S
c
ienc
e a
n
d
T
e
chno
logy
IEEE
T
r
ansacti
ons.
201
4; 4(1): 116
-122.
Evaluation Warning : The document was created with Spire.PDF for Python.