TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 3, March 2
015,
pp. 425 ~ 43
0
DOI: 10.115
9
1
/telkomni
ka.
v
13i3.706
9
425
Re
cei
v
ed
No
vem
ber 2
1
, 2014; Re
vi
sed
Jan
uar
y 8, 20
15; Accepted
Jan
uary 26, 2
015
Post Disaster Illumination for Underground Mines
S Vamsi Krishna*, Nitai P
a
l, Pradip Kumar Sadhu
Dep
a
rtment of Electrical E
ngi
neer
ing, Ind
i
an
School of Min
e
s (und
er MHR
D
, Govt.of India)
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: vamsijrf@gm
ail.com
A
b
st
r
a
ct
Lig
h
ting syste
m
s prov
id
e mi
ne w
o
rkers improve
d
vi
sib
ilit
y and contri
bu
te to impr
oved
safety
,
prod
uctivity, an
d mor
a
l
e
. Light
ing is critica
l
to min
e
rs,
since they de
pe
nd he
avily o
n
visua
l
cues to spot fa
l
l
of gro
und,
pin
n
in
g & striki
ng
an
d sli
p
p
i
ng
& trippi
ng
ha
z
a
rds. Most co
nventi
o
n
a
l syst
ems
of l
i
ghti
n
g
a
r
e
used i
n
mi
nes
are extracti
ng
a lots of pow
er
and
dea
l
w
i
th ma
jor
ma
inte
n
ance
prob
le
ms
. Apart from th
e
conve
n
tio
nal g
r
id-pow
er lig
hti
ng
syste
m
s,
a
dditi
ona
l e
m
er
gency
lig
htin
g
system
usin
g
gree
n e
nergy
is
ma
nd
atory in c
a
se of gri
d
-p
o
w
er failure
or i
n
dis
a
ster situ
ation
of the un
der
gr
oun
d
min
e
s. T
he lu
mi
no
u
s
efficacy incr
ea
ses w
i
th sw
itching fre
q
u
ency
w
h
ile pr
ovi
d
in
g
eye c
o
mfort to
user. Eve
n
tho
ugh
CF
L h
a
s l
o
w
pow
er consu
m
ption for sol
a
r photov
olta
ic (SPV) pow
er
system, but CFL
’
s
electrical re
qu
ire
m
ents ar
e n
o
t
easily
met by
hard-sw
itche
d
inverters
due
to their h
i
g
h
e
r
sw
itching l
o
s
s
es at hi
gh
er
freque
ncies
an
d
preh
eat an
d igniti
on volta
g
e
of CF
L results low
e
r efficiency. T
h
is pa
per de
mands
w
e
ll suited hi
g
h
freque
ncy inv
e
rter and a seri
e
s
interrupti
ng type char
ge co
ntroll
er for illu
mi
nati
on at re
mote
areas.
Ke
y
w
ords
: BJT, CFL,
fly-back Inverter, MCT, MOS
F
ET,
S
M
PS, SPV
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Sub su
rface mining op
era
t
ions
are ca
rried out in dynamic
e
n
viro
nment co
nditi
ons that
inclu
de d
u
st,
confin
ed
sp
ace
s
, lo
w reflective su
rfa
c
es a
nd l
o
w
visual
cont
ra
sts. Th
ese a
r
e
depe
ndent o
n
the moist
u
re conditio
n
of
underg
r
oun
d atmosphere. Und
e
r
groun
d mini
ng
operation
s
are carried o
u
t in very dangerou
s envir
o
n
ments a
nd it is not comp
arabl
e with a
n
y
other
su
rface
oriente
d
ind
u
strie
s
. In g
eneral,
illumi
nation in mi
n
e
s influe
nced
by three m
a
in
lighting
desi
gn parameters: illuminance l
e
vel on
the surface,
uniformity and gl
are [1]. To
recogni
ze u
n
derg
r
o
und mi
ning ha
za
rd
s miners are
ve
ry much d
e
p
ende
nt on visual cu
es. So
me
major type
s of haza
r
d
s
a
r
e ro
of falls, fire ex
plo
s
ion
s
& exposure of toxic ga
se
s, floods
a
nd
vehicle accidents
in undergroun
d mines. Mining is
a hazar
dous calling requi
ri
ng a
continual
state of
awarene
ss an
d a
n
ability
to
re
cogni
ze
dan
ge
r fro
m
ma
ny
sou
r
ces,
whi
c
h is imp
o
ssibl
e
without ad
eq
uate illumin
a
tion. Und
e
r n
a
tural
con
d
it
ions it is
alwa
ys dark b
e
lo
w groun
d an
d all
light must be
prod
uced a
r
tificially [2, 3].
So, em
erge
n
c
y lighting sy
stem is mo
re
predo
mina
nt at
the time of power failu
re
in unde
rgro
und mine
s.
A miner can
work efficie
n
tly and give
satisfa
c
to
ry result
s only if the miner
can
see
wh
at he is doi
ng and i
s
n
o
t hampe
red
by
inade
quate ill
umination o
r
annoyin
g sh
a
dows. Thi
s
si
tuation is mo
re complex in
case of und
er
coal mi
ne
s. Coal h
a
s a
reflectio
n
coeffici
ent of
approximately 5%
which woul
d pro
v
ide
insuffici
ent re
flected lig
ht for
suitably
a
dapted
ey
es
to se
e to
suf
f
icient
stand
a
r
d in
area
s
o
f
illumination o
f
less tha
n
a
pproxim
ately 5 lux. Th
is would en
su
re t
hat equip
m
e
n
t could b
e
seen
and
slip
an
d t
r
ip
ha
zards would
be
quiet
visible to
any
miner op
erati
ng in
an
d a
r
o
und th
e mi
nin
g
equipm
ent. In disaste
r
condition
s, th
e role
of
lig
hting sy
stem
is very
cru
c
ial a
nd
criti
c
al.
Normally, the environme
n
t of underg
r
ou
nd mine
s is
very hazard
o
u
s
and lo
w ventilated. Duri
ng
accide
nts it b
e
com
e
s worse and
in the
s
e
con
d
ition
s
nothing
will
happ
en
s with
out lighting
[5].
The de
sig
n
o
f
good lightin
g system
s fo
r und
erg
r
o
u
n
d
co
al mine
s is not ea
sy task be
cau
s
e
of
uniqu
e enviro
n
ment and
work
pro
c
e
dures en
co
unt
ered in und
erg
r
ound
coal mi
nes. So, in orde
r
to overco
me
this and to improve min
e
safety
duri
ng disa
ste
r
condition
s an
d prod
uctivity at
norm
a
l condi
tion, the emp
hasi
s
i
s
give
n to eme
r
g
e
n
cy lightin
g
system in u
n
d
e
rg
rou
nd mi
n
e
s
using green energy like
sol
a
r photovoltai
c
(SPV)
power system [4, 6].
Use
of
Com
pact Fluo
re
scent Lam
p (CFL
)
in
crea
ses
fo
r photov
oltaic lighting
systems
due to
thei
r
high l
u
mino
u
s
effici
acy
an
d ability to
provide a
deq
u
a
te lume
n o
u
t
put for
a giv
e
n
lighting appli
c
ation. The l
u
minou
s efficacy increa
se
s with switching frequ
en
cy while providi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 425 – 4
3
0
426
eye comfort t
o
u
s
er.
The l
o
w
elect
r
ical
con
s
um
ption
make
s th
e
CFL an
ide
a
l choice for sol
a
r
photovoltai
c
(SPV) power system
for emergen
cy
lighting
systems of
underground mi
nes.
Ho
wever, the
CFL’
s ele
c
tri
c
al requi
reme
nts are not
e
a
sily met by hard
-
swit
che
d
inverters du
e to
their high
er
swit
chin
g losse
s
at highe
r frequ
en
cie
s
. The difficulty in meeting thye comp
lex
electri
c
al
re
q
u
irem
ents
su
ch a
s
p
r
e
hea
t and ignitio
n
voltage of CF
L re
sulting
in
lowe
r efficie
n
cy
[4, 7].
Ren
e
wable e
nergy
sou
r
ce
such as
sol
a
r and
wind
are
seem
s to be more costly as
alternative fo
r gen
eratin
g e
l
ectri
c
ity, but, it is
cle
an
en
ergy. Th
e e
n
e
rgy
plants of
this
re
ne
wab
l
e
sou
r
ces mu
ch de
pen
dent
on
enviro
n
m
ental
con
s
t
r
aints.
The
s
e are lot
s
o
f
chall
eng
es in
utilization of rene
wable e
n
e
rgy so
urce
s for
indu
strial appli
c
ation
s
[8].
2. Fly
-
back Inv
e
rter
Fly-ba
ck inve
rter i
s
the
m
o
st g
ene
rally
used
switch
ing m
ode
po
wer
sup
p
ly (SMPS)
circuit fo
r l
o
w po
we
r o
u
tpu
t
appli
c
ation
s
. The
output
voltage of
fly-ba
ck
conve
r
ter
nee
ds to
be
isolate
d
from
the input m
a
in supply. T
he ci
rcui
t ca
n offer si
ngl
e or multipl
e
isolate
d
out
put
voltages
and
can
ope
rate
over
wide
ra
nge of in
put
voltage variat
ion [9]. Even though th
e f
l
y-
back inve
rter
is inferi
or in
e
fficiency b
u
t simple to
polo
g
y and lo
w cost ma
ke
s it much
pop
ular in
low outp
u
t po
wer a
ppli
c
atio
ns [10, 11].
The gen
eral
ly used fly-back converter re
q
u
ire
s
single con
t
rollable
swit
ch like
MCT/MOSFE
T
/BJT an
d th
e switchi
ng freque
ncy i
s
in
the ra
nge
of
100 K
H
z. In
o
r
de
r to in
crea
se
the efficien
cy
, two-swit
ch
topology i
s
much
u
s
eful
and offe
rs l
e
ss volta
ge
st
ress
acro
ss the
swit
che
s
.
A
f
a
st
swit
ching
dev
ice
is
us
ed wit
h
f
a
st
dynamic cont
rol ove
r
swit
ch
duty ratio
to
maintaion
the
de
sire
d o
u
tp
ut voltage [1
2
]. The tra
n
sfo
r
mer in
the to
pology i
s
fo
r
voltage i
s
olati
on
and fo
r better matchi
ng bet
wee
n
inp
u
t a
nd outp
u
t voltage a
nd
current re
quirem
ents. Th
ere i
s
no
need of u
s
ing
Snubbe
r circuit for this top
o
logi
cal mod
e
l [13, 14].
3. Selection of Semicond
uctor S
w
i
t
ch
Solid state
p
o
we
r
semi
co
ndu
ctor
devi
c
e
s
h
a
ve be
en d
e
velope
d to
control
of output
para
m
eters
su
ch a
s
voltage, cu
rrent, freque
ncy,
waveform an
d power. In
a static po
we
r
conve
r
ter t
h
e
power se
micondu
ctor
devi
c
e
s
fun
c
tion as switche
s
. The
time du
rations as
well
as
the turn o
n
and tu
rn
off
operation
of
these
swit
ch
es are cont
rolled
i
n
su
ch
a way
th
at an
electri
c
al
p
o
wer
so
urce
at t
he in
put te
rm
inals of
th
e
converte
r a
p
p
ears i
n
a
diff
erent
form
at
its
output termi
n
als. In mo
st
type of con
v
erters,
the i
ndividual
switche
s
in the
conve
r
ter
a
r
e
operated in
a parti
cula
r seque
nce in o
ne time peri
od and thi
s
seq
uen
ce i
s
repe
ated at the
swit
chin
g freq
uen
cy of the conve
r
ter [15,
16].
Schottky dio
de doe
sn’t h
a
ve a P-N ju
nction.
Inste
ad, they employ a metal-to-sili
co
n
barrier.
In thi
s
, the
cu
rren
t flow i
s
due
to the
flow of
majo
rity
carri
er
s. Th
erefore, th
ey a
r
e
suitabl
e for u
s
e at very hi
gh freq
uen
ci
es. They a
r
e
very widely use
d
in switch mode p
o
wer
sup
p
lie
s (SM
PS) which wo
rk at high
swit
chin
g frequ
en
cie
s
[17].
MCT is
a thyris
tor with two
M
O
SFET
s b
u
ilt into t
he g
a
te
stru
cture.
The
s
e
intern
al
MOSFETs a
r
e kno
w
n a
s
ON-FET and
OFF-FET. It is a high freq
u
ency and lo
w condu
ction d
r
op
swit
chin
g device. ON-FET i
s
re
spo
n
si
ble
for turn
ing o
n
the MCT an
d OFF-FET i
s
resp
on
sible f
o
r
turning
off the MCT [18].
The O
N
stat
e losse
s
of
MCT a
r
e very low and it
has l
a
rg
e current
carrying
cap
a
b
ility along with fast swit
ching spee
ds.
Although the
MCT is a vo
ltage co
ntroll
ed
comp
one
nt, the
sho
r
t gate
cu
rrent pul
ses
occu
r a
s
a re
sult
of ch
argin
g
a
nd di
scharging
of
the
FET trans
i
s
t
or capac
i
ties
. It is
s
i
milar to
Thyris
to
r fo
rward volta
ge
d
r
op
du
ring
co
ndu
ction. But, it
can b
e
turne
d
off by positive voltage pulse unlike the Thyristo
r,
which make
s ab
sen
c
e o
f
comm
utation
circuit. Since, it is a voltage driv
e
n
swit
ch, it co
nsum
es ve
ry
less po
we
r for
swit
chin
g- O
N
[19, 20].
The g
a
te to
sou
r
ce volt
age
controls the co
ndu
ct
ion state
of
the po
wer M
O
SFET
.
Applicatio
n of
a gate to so
urce voltage
greate
r
than t
he device thresh
old voltag
e will cau
s
e the
power M
O
SF
ET to turn o
n
by modulatin
g gro
m
etry
of
the ele
c
tro
s
t
a
tic cond
ucti
on chan
nel. It is
a voltage
con
t
rolled
device
and e
a
sy to
control. Thi
s
i
s
be
st o
p
tima
l for lo
w-volta
ge op
eratio
n
at
high switchin
g frequ
en
cie
s
. These d
o
n
o
t have se
co
ndary b
r
ea
kd
own a
r
e
a
; their drai
n to so
u
r
ce
resi
stan
ce
ha
s a p
o
sitive t
e
mpe
r
ature coefficient,
so
they tend to b
e
a self-p
rote
ctive. The
s
e
are
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Post Di
saste
r
Illum
i
nation for Un
de
rgrou
nd Mine
s (S Vam
s
i Krishn
a)
427
gene
rally u
s
e
d
as a
switch
and have
su
rge
cu
rre
nt pr
otection
built into their d
e
si
gn, but for hi
gh
curre
n
t appli
c
ations the bi
p
o
lar jun
c
tion t
r
an
sisto
r
is a
better choice [21].
Bipolar j
u
n
c
tion tra
n
si
stor
(BJT
) i
s
a
cu
rrent
controlle
d
switch
that can be co
nsi
dere
d
a
s
two dio
d
e
s
with a sh
ared
anod
e. The
BJT cond
ucti
on state
is
co
ntrolled
by th
e level of
current
injectio
n into the ba
se termi
nal. It has su
bstantia
l
storage charge which limits
its
ability to turn off
quickly
[22]. The
typical storag
e
time a
nd colle
ctor
fall time is
in t
he range of 1-5 µs
. this turn-off
time limits th
e maximum
pra
c
tical
switchin
g freq
ue
ncy of po
we
r sup
p
lie
s u
s
i
ng BJT’
s a
s
the
power semi
condu
ctor
swit
ch [23].
4. Proposed
Topolog
y
A fly-back i
n
verter is in
corpo
r
ated
whi
c
h
provid
es ba
sic
ele
c
tri
c
al cha
r
a
c
teri
stics
requi
rem
ents of CFL and
a fairly con
s
tant lu
men ou
tput through
o
u
t the operati
ng DC voltage
range by
a
unique control.
A
series interrupting type
c
h
arge
c
ontroller mak
e
s
t
he SPV
s
y
s
t
em
self
sufficient for producing light
at remote area
s
while maintai
n
reli
ability. It is
clear that the
prote
c
tion
sh
ould be
empl
oyed, not onl
y for the la
m
p
but also for battery ch
arging, whi
c
h
a
r
e
major
com
p
o
nents of the
system. It sh
ould be
effici
ent, reliable
and robu
st e
noug
h agai
n
s
t
possibl
e mal-operation [24]
. Typica
l eme
r
gen
cy lightin
g system
s a
r
e sh
own i
n
Fi
gure
1, Figu
re 2
and Figu
re 3
usin
g MCT,
MOSFET and
BJT re
spe
c
ti
vely.
Figure 1. Fly-back inverte
r
for ope
rating
CFL u
s
ing M
C
T
Figure 2. Fly-back inverte
r
for ope
rating
CFL u
s
ing M
O
SFET
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 425 – 4
3
0
428
Figure 3. Fly-ba
ck inve
rter operatin
g usi
ng BJT
These sre m
any de
sign
s
exist for drivi
ng CF
L.
Ho
wever it is not
easy to en
su
re smo
o
th
start
up
and
long
life
while mai
n
tain
ing a
deq
uate
lume
n o
u
tp
ut. Some
rel
e
vant ele
c
tri
c
al
para
m
eters
of the lamp
are liste
d in Table
1. It is obse
r
ve
d from lamp
manufa
c
turer’s
instru
ction
s
that du
e to
their co
mpa
c
t
co
nst
r
u
c
tion
CF
Ls pe
rform better wit
h
a
wa
rm
st
art
(ce
r
tain p
r
e
h
eat voltage is applied b
e
fo
re ignition vol
t
age is a
pplie
d to lamp). T
he lamp n
e
e
d
s
con
s
tant volt
age a
nd
hen
ce
cu
rre
nt to
maintain th
e
lumen
outpu
t durin
g it’s
entire
ope
rati
ng
rang
e of va
rying inp
u
t voltage [4], [25
-
2
6
]. Due to
da
ily variation
o
f
sola
r in
sol
a
tion the
ene
rg
y
available f
r
o
m
a PV mo
d
u
le follo
ws ro
ugh
sine
wave which
ne
e
d
s to
pu
sh th
is e
nergy to t
h
e
battery with minimal loss,
while p
r
eventi
ng a po
ssibl
e
reverse po
wer flow of ene
rgy from battery
to PV modules. Tran
si
stor
(Tr) is u
s
ed a
s
se
rie
s
interrupting devi
c
e
of charg
e
co
ntrolle
r [4], [2
6-
27]. Whe
r
ea
s, the semicon
ducto
r switch (MCT/MOS
F
E
T/BJT) is
ch
ose
n
as p
o
wer devi
c
e for t
he
fly-back inve
rter. For the
system und
er
con
s
id
erat
io
n
has th
e losses in th
e se
ri
es inte
rruptin
g
device
are i
2
R
≤
0.25
W
at pea
k
po
we
r point
and
t
he
se
ri
es el
e
m
ent d
r
op
is 0.12V
at pe
ak
curre
n
t. This ensure
s
maxi
mum ene
rgy transfe
r to
ba
ttery from the PV array, while preve
n
tin
g
an overch
arg
e
co
ndition.
Whe
n
suffici
ent
PV mod
u
le voltage i
s
devel
oped
and ex
cee
d
s the
available p
r
e
determi
ned b
a
ttery voltage
, transi
s
tor
(T
r) sta
r
ts
con
d
u
cting. As the
battery voltage
rise
s to set level, the drive sign
al to tran
sisto
r
(T
r) i
s
cutoff and cha
r
ging is
stopp
ed [26], [28-2
9
].
After the turn
-on of tran
si
stor (Tr) the st
orage b
a
ttery starts charging a
s
well
as the
unde
rg
roun
d prop
osed sy
stem takes the
powe
r
for
e
m
erg
e
n
c
y lighting. The cu
rre
nt path will
be
throug
h
R2,
R3,
CFL
terminals,
Fe
rrit
e
core tra
n
sf
orme
r te
rmin
als
1 &
7, R1 an
d
C2. T
h
is
curre
n
t pre
h
e
a
ts the termi
nal coil of CF
L whi
c
h i
s
re
quire
d for ig
n
i
tion. Once th
e ca
pa
citor
C2
c
h
ar
g
e
d
,
th
e s
e
mic
o
nd
ucto
r
sw
itch
(MC
T
/MO
S
FE
T/BJT) tu
rn
s on which al
lows the
cu
rrent
flowing th
rou
gh C3 and fe
rrite
core tran
sform
e
r te
rmi
nals
3&4. Th
e ca
pa
citor
C3 ch
arg
e
s
wh
ile
C2 di
scha
rg
es. After fully charging o
f
capa
cito
r
C3, it discha
rge
s
through
the ferrite
core
transfo
rme
r
termin
als 3&4
and the voltage app
ears
i
n
se
con
dary
windi
ng a
c
ro
ss te
rminal
s
2&5.
This hi
gh a
m
ount of volta
ge ma
ke
s th
e ignition
of CFL. Th
e se
quential tu
rn
ON a
nd tu
rn
OFF
operation of
semi
con
d
u
c
tor
swit
ch p
r
o
v
ides t
he
ge
neratio
n of A
C
voltage. T
h
is A
C
volta
ge
maintain
s the
ignition
voltage
of CFL
and th
e
cap
a
citors C1 &
C4
a
r
e
use
d
to
stabili
ze
the
voltage acro
ss tran
sformer terminal
s.
Table 1. Co
m
pari
s
on of Switchi
ng
Devices for Econo
mic Op
eratio
n
CFL Para
met
e
rs
18W
26W
32W
Lamp curren
t
(A)
0.22
0.39
0.39
Lamp voltage (V)
120
120
120
Equivalent w
a
tta
ge (W)
65
100
100
Initial lumens (lu
m
en)
1200
1700
2400
Minimum O.C.V
Ignition voltage (V
rm
s
)
550
550
560
Max
.
O.C.V.
(V
rm
s
) Non-ignition voltage
250
265
265
Dimming range (
I
dm
in
- I
dm
ax
)
0.02-0.16
0.03-0.25
0.03-0.25
Lamp test curren
t
(A)
0.2
0.3
0.3
Rated resistance (from cathod
e
r
e
sistance test)
26 13
13
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Post Di
saste
r
Illum
i
nation for Un
de
rgrou
nd Mine
s (S Vam
s
i Krishn
a)
429
5.Experimen
t
al Res
u
lts
A prototype
board was
constructe
d a
nd it sh
o
w
e
d
fairly con
s
ta
nt lumen out
put over
varying input
voltage for the sam
e
ope
rating switch
of the inverter. The expe
rimental resu
lts
con
s
id
erin
g for 18
W CFL
lamp are ref
e
rred in Tabl
e 2, average
overall efficiency and me
an
lumen outp
u
t for 18
W, 26W and 32
W CF
L sre give
n in
Table 3.
Table 2. Battery Termi
nal
Voltage VS Efficiency for 1
8
W CFL
SI No
V
I
f
V
MC
T
V
MO
S
V
BJT
η
1
24.00
0.81
32.2 101.82
96.45
104.72
92.59
2 23.60
0.82
32.2
101.75
96.10
104.55
93.01
3
23.20
0.83
32.2 100.52
95.80
103.82
93.47
4
22.70
0.85
32.2 99.57
94.75
102.89
93.28
5
22.50
0.86
32.2 99.31
94.15
101.70
93.02
Average overall efficiency
of the i
n
verter fo
r 18W
CFL = 93.07
%
Table 3. Co
m
pari
s
on a
m
on
g Overall Efficien
cy usi
ng
Different Swit
che
s
with
CF
L Powe
r Rati
ng
SI No
CFL
Ou
tp
ut
Po
w
e
r rating
Mean L
u
me
ns
O
v
erall
%
E
ffi
cie
n
c
y
o
f
the I
n
v
e
rter
1 18W
1010
93.07
2 26W
1365
91.94
3 32W
2040
89.11
6. Conclusio
n
A fly-back inv
e
rter i
s
well suited for mee
t
ing comp
act
fluore
s
cent la
mps (l
ow po
wer
CFL
i.e. 18W/26
W
/32
W)
com
p
lex ch
ara
c
t
e
risti
cs.
T
o
ensure
unifo
rm light outp
u
t throu
ghou
t the
operating di
scha
rge
ran
g
e
.
DC sto
r
ag
e
battery will
b
e
cha
r
g
ed su
fficiently. The time duratio
n of
uniform li
ght
output de
pen
ds o
n
the a
m
pere
-
h
our
(A
H)
cap
a
city o
f
stora
ge b
a
ttery. On the
o
t
her
hand, the life of the DC st
orag
e battery
incre
a
se
s
wi
th prope
r cha
r
ging
rate an
d preventio
n of
deep
di
scharges.
Wh
en
a
stand
ard
batt
e
ry of
24.0V i
s
a
pplie
d the
effi
cien
cy of i
n
verter is
sta
nds
at 92.59%. When the batte
ry is und
er lo
wer limit volt
a
ge, efficien
cy of inverter i
s
almost 9
3
.02
%
.
Efficiency of i
n
verter i
s
slig
htly decrea
s
e
s
with
th
e in
crea
se of
CFL
output po
we
r ratin
g
. Since,
the re
sult sh
ows that voltage a
c
ross the termin
al
of CFL V
BJT
>V
MCT
>V
MO
S
, the bri
ghtne
ss of
lamp i
s
slightl
y
more
in
ca
se of B
J
T a
n
d
then it
de
cre
a
se
s fo
r M
C
T
and
MOSFE
T
re
sp
ectivel
y
.
Lighting pl
ays a
s
sig
n
ifica
n
t role in u
n
der
g
r
o
und mi
ning op
erations. Un
de
rgro
und min
e
s a
r
e
entirely relia
n
t
on artificial
source
s of illuminati
on.
Without ap
propriate a
nd
effective lighting,
there i
s
mu
ch proba
bility of accid
ents
and l
e
ss
p
r
o
ductio
n
. Apa
r
t from the
co
nventional
gri
d
-
power lightin
g sy
stem
s, a
dditional
eme
r
gen
cy li
ghtin
g sy
stem
usi
ng g
r
e
en
ene
rgy i
s
o
b
ligat
ory
in ca
se of gri
d
-po
w
e
r
or in
disa
ster
con
d
i
tion of the underg
r
o
und.
Referen
ces
[1]
M Arun
a, SM J
a
rlikar.
Desi
gn
of Li
ghtin
g S
y
s
t
em for Surfac
e Min
e
Pr
oject
s
.
Te
lkom
n
i
ka
.
201
2
;
10(2):
235-
244.
[2]
CDJ
Statham.
Und
e
rgro
un
d Lig
h
ting in Co
al
Min
e
s
. IET JOURNALS &
Maga
z
i
nes.
1
956;
1
03(
10):
396-
409.
[3]
W
H
Le
w
i
s. Und
e
rgro
un
d Coal Mi
ne L
i
ghtin
g Han
d
b
ook.
Informati
on Circu
lar
Unite
d
States
Dep
a
rtment of the Interior, Bu
reau of Min
e
s
, 907
4.
[4]
HV Joshi. Sola
r PV Charge C
ontrol
l
er an
d a
n
Efficient SPRL MOSF
ET
b
a
sed si
ne
w
a
v
e
s
y
mmetric
a
l
inverter for C
o
mpact F
l
uor
es
cent Lam
p
. In Proc. Pow
e
r El
ectronics
and
Drive Syste
m
s,
IEEE .
1997;
1: 150-1
52.
[5]
N Pal, SV Krishna, RP G
upta
,
A Kumar, U
Prasad.
Ha
ul
Roa
d
s Lig
h
tin
g
System for Open C
a
st Mine
usin
g Green E
nergy.
In Proc. IMECS. 2012; 987-
990.
[6]
L L
a
skai
a
n
d
M Ilie. A
n
A
p
proac
h for
sel
e
cting
S
w
itch
i
ng
Devic
e
s for
CF
L B
a
ll
asts
. IEEE Trans.
Industria
l Appl
i
c
ation.
20
01; 3
7
(1): 268-
27
5.
[7]
N Pal, PK Sadhu, A Kumar,
U Prasad.
Ene
r
gy Efficient S
o
lar CF
L
Li
ghti
ng Syste
m
us
i
ng MOSF
ET
Based H
i
gh F
r
equ
ency Invert
er for Remote
Areas.
Proc. In ICCAE. 2010; 5: 646-6
49.
[8]
JO Petinrin,
M Shaa
ban.
Overcomin
g
C
hall
e
n
ges of
Ren
e
w
a
ble E
n
erg
y
o
n
F
u
tur
e
Smart Grid.
T
E
LKOMNIKA Indon
esi
an Jou
r
nal of Electric
al Eng
i
ne
eri
ng.
2012; 1
0
(2): 2
29-2
34.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 425 – 4
3
0
430
[9]
DB Murth
y
,
MK Kazimi
erc
z
uk. T
w
o T
r
ansistor Z
e
ta-F
l
y
back
DC-D
C
Co
nverter
w
i
th Re
duc
e
d
T
r
ansistor Voltage Stress
. Electronics Letters
. 2010; 46(
10).
[10]
HE T
a
cca. Si
ngl
e S
w
itc
h
T
w
o Outp
ut
F
l
yback F
o
r
w
ard
Conv
erter Ope
r
ation
. IEEE Trans. Power
Electron
ics
. 19
98; 13(5): 9
03-
911.
[11]
B Han, G
Led
w
i
ch, G Kar
a
d
y
. Stud
y
on
R
e
son
ant Fl
y-b
a
ck Conv
erter f
o
r DC
Distrib
u
t
ion
Sy
s
t
e
m
.
IEEE Trans. On Power Deliv
ery
. 1999; 14(
3): 1069-
10
74.
[12]
Y Jang, DL Dil
l
m
an, MM Jovanovic. A Ne
w
S
o
ft-S
w
itch
ed P
F
C Boost Rectifier
w
i
t
h
Integr
ated F
l
ybac
k
Conv
erter for Standb
y Po
w
e
r.
IEEE Trans. On Power Electronics
. 20
06; 21
(1): 66-72.
[13]
HS Ch
un
g, WL Ch
eu
ng, KS
T
ang. A ZCS Bidi
r
e
ctio
nal
Fl
y
b
ack D
C
/D
C Co
nverter. I
EEE T
r
ans. On
Po
w
e
r El
ectron
ics. 2004; 1
9
(6
): 1426-1
4
3
4
.
[14]
M Ferdo
w
si, A
Emadi, M T
e
lefus,
C D
a
vis. P
u
lse
Re
gul
atio
n C
ontrol
T
e
chniq
ue for
F
l
yb
a
ck Co
nverter
.
IEEE Trans. on Power Electronics
. 200
5; 20(
4): 798-8
05.
[15]
RW
Johns
on,
JR Bromstea
d,
GB W
e
ir. 20
00C O
perati
o
n
of Semic
o
n
d
u
c
tor Po
w
e
r
De
vices.
IE
EE
T
r
ans. on Co
mpon
ents, Hybri
d
s and Ma
nufa
c
turing T
e
ch
no
logy
. 19
93; 16(
7).
[16]
R Krisshma
n. High T
e
mperat
ure Electro
n
ics
.
Wile
y
-
IEEE Press, Ed
ition. 1.
1999:
336-
34
1.
[17]
DA Grant. Po
wer Semi-
C
on
du
ctors Innov
atio
n a
nd Impr
ove
m
ent Co
ntin
ue
to Ch
all
e
n
ge t
he D
e
si
gner
.
IET, New Deve
lop
m
ents in Po
w
e
r Semic
ond
uctor Devic
e
s
. 199
1:1-6.
[18]
H Ye, P Hal
d
ar. A MOS Gated Po
w
e
r S
e
mico
nductor
S
w
itc
h
Usi
ng
Band-to-B
an
d T
unnelin
g an
d
Avala
n
che In
je
ction Mech
anis
m
.
IEEE
Trans. on Electron Devices
. 20
08; 5
5
(6).
[19]
M T
r
ivedi, S
Pend
hark
a
r, K
She
n
a
i
. S
w
it
chin
g C
har
acteristics
of MC
T
’
s and IGBT
’
s in
Po
w
e
r
Conv
erters. 19
96; 43(1
1
): 199
4-20
03.
[20]
F
Bauer, H Holle
nb
eck, T
Sto
ckmeir, F
Wolfga
ng. Curre
nt Hand
lin
g an
d S
w
itc
h
i
ng P
e
rformanc
e of
MOS Controlled T
h
y
r
istor (M
CT
) S
t
ructures.
IEEE Journals
& Maga
z
i
nes
. 199
1; 12(6): 29
7-29
9.
[21]
D Kzum, JH P
a
rk, T
Krishnamoha
n, HSP
W
ong, KC
S
a
ras
w
at. T
he Effect of Do
nor/A
cceptor N
a
ture
of Interface T
r
aps o
n
Ge MO
SF
ET
Charact
e
ristics.
IEEE Journals & M
a
ga
z
i
nes
. 2
0
1
1
; 58(4):
101
5-
102
2.
[22]
RG Roozb
aha
ni. BJT
-
BJT
,
FET
-
BJT
and F
E
T
-
F
E
T
.
IEEE
Journals & Maga
z
i
nes
. 20
04; 20(6): 17-
22
[23]
BK Bose. Eval
uatio
n of Mod
e
rn Po
w
e
r Se
micon
ductor D
e
vices a
nd F
u
ture T
r
ends of Converters.
IEEE Trans. on Industry Appli
c
ations
. 19
91;
28(2).
[24]
SB Kjaer, JK
Peders
en, F
Blee
bjer
g. A Revie
w
of Si
n
g
le
–ph
ase G
r
id Co
nn
ected
Inverters fo
r
Photovo
l
taic M
odu
les.
IEEE Trans. on Industry Applic
ations
.
2005; 4
1
(5): 1
292-
130
6.
[25]
F
Blaabj
erg,
Z
Chen, SB Kjaer. Po
w
e
r
Electron
ics as
Efficient Interface in D
i
sp
ersed P
o
w
e
r
Generati
on S
ystems.
IEEE
Tr
ans. on Power
Electronics
. 20
04; 19(5).
[26]
T
Shimizu, O Hash
imoto,
G Kimura. A
Novel
Hi
gh-p
e
r
formance
Utili
t
y
- Interactiv
e
Photovo
l
taic
Inverter Sy
stem.
IEEE
Trans. on Power Elec
tronics
. 200
3; 18(2): 70
4-7
1
1
.
[27]
N Pal, SV
Kri
s
hna, PK
Sad
hu.
D
e
sig
n
in
g
Hau
l
R
o
a
d
L
i
ghtin
g S
y
stem
.
Australas
i
an Mine Safet
y
Journal (AMSJ
)
. 2013; 18: 42-
45.
[28]
SB Kja
e
r. D
e
si
gn
an
d C
ontro
l
of
an I
n
verter
for Ph
otovo
l
ta
ic Ap
plic
atio
ns. T
hesis. Alb
o
r
g
U
n
ivers
i
t
y
,
Denm
ark; 200
5.
[29]
T
Shimizu, M Hirakata, T
Ka
meza
w
a
, H
W
a
tanab
e. Gener
ation
C
o
n
t
rol Circu
it for Photovo
l
taic
Modu
les.
IEEE Trans. on Power Electronics
. 200
1; 16: 293-
300.
Evaluation Warning : The document was created with Spire.PDF for Python.