TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 8, August 201
4, pp. 5743 ~ 5750
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.626
7
5743
Re
cei
v
ed Fe
brua
ry 27, 20
14; Re
vised
Ap
ril 25, 201
4; Acce
pted
May 17, 20
14
The Intelligent Control System of the Freezing Station
in Coal Mine Freezing Shaft Sinking
Xiaoliang Zheng
1,2
, Yelin
Hu
2
, Zhaoqu
an Che
n
2
1
School of Min
i
ng an
d Safet
y
Engi
neer
in
g Anhu
i Univ
er
sit
y
of Science a
n
d
T
e
chnolo
g
y
,
Huai
na
n, Anhu
i
232
00
1, Chin
a
2
School of Ele
c
tric and Infor
m
ation En
gi
ne
erin
g Anh
u
i Un
iversit
y
of Scie
nce an
d T
e
chnolo
g
y
, H
uai
na
n
,
Anhu
i 23
200
1, Chin
a
T
e
l: 0554-66
68
584
Corresp
on
idn
g
author, e-mai
l
: zheng
xl@a
ust.edu.
cn, yel
h
u
@
aust.ed
u
.cn,
zqche
n
@a
ust.edu.cn
A
b
st
r
a
ct
In order to
add
ress the issu
e
of low
degr
ee
of aut
o
m
ati
on and hug
e
w
a
ste
of
electric en
ergy
o
f
the equ
ip
me
nt in dril
lin
g en
gi
neer
ing
free
z
i
n
g
station w
h
ich
adopts the fr
e
e
z
i
n
g
method
of coal mine,
w
e
need to design an
intelligent
cont
rol system
to control
both the br
ine pump and doubl
e stage ammonia
screw com
p
ressor. According to the
actual cooling ne
ed
in free
z
i
ng project, this new
system
is able t
o
adj
ust the w
o
rking c
ond
itio
n
of the e
q
u
i
p
m
e
n
t so
as to opti
m
i
z
e
th
e sup
p
ly
as
nee
de
d. Also,
the
temp
eratur
e a
nd fl
ow
of the
brin
e
are c
o
n
t
rolle
d by
fu
zzy dec
oup
lin
g c
ontrol
l
er, a
nd
varia
b
le
frequ
e
n
c
y
control
l
er is ad
opted i
n
the br
ine
p
u
m
p to ch
ang
e the moto
r drive spe
ed
and fin
a
lly a
d
j
u
st the flow
of
the
brin
e appr
opri
a
tely, besi
des,
the reas
on
ab
le start-stop u
n
it is used i
n
the compr
e
ss
or to control the
temp
eratur
e of
the
brin
e. It has tur
ned
o
u
t that this
inte
ll
ige
n
t contro
l s
ystem fe
atures
a b
e
tter co
ntr
o
l
perfor
m
a
n
ce,
and
thus
has
incre
a
sed
the
auto
m
ati
o
n
lev
e
l
and
pr
olo
n
g
ed th
e
usin
g
l
i
fe of th
e w
h
o
l
e
system
as well as
saved
a large am
ount of electric ener
gy
and decreased the electricity cost
of
constructio
n
en
terprises.
Ke
y
w
ords
:
fre
e
z
i
n
g
shaft sin
k
ing, free
z
i
n
g
s
t
ation,
control s
ystem, fu
zz
y
c
ontrol, en
ergy
savin
g
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The coal resource accounts for over 70% of
the total primary energy in China and will
still play a
do
minant role in
our
ene
rgy
consumption
structu
r
e fo
r q
u
ite a lon
g
ti
me in the fut
u
re.
Con
s
id
erin
g t
he trend
s
of d
eep
mine
exp
l
oration
in
ou
r co
al mi
ne
co
nstru
c
tion
a
n
d
shaft o
r
oth
e
r
unde
rg
roun
d
proje
c
ts i
n
de
ep alluvium
o
r
incomp
eten
t bed, the fre
e
zin
g
metho
d
is an
efficien
t
way to cro
s
s the unsta
bl
e stratu
m [1]. There a
r
e
many difficult
ies an
d ri
sks in deep mi
ne
freezi
ng engi
neeri
ng, su
ch
as bro
k
e
n
tu
be,
lea
k
ing
brine, insufficie
n
t stre
ngth of
the fro
z
en
wall
and large fro
z
en
-he
a
ve force, so the e
ngine
er
in
g techni
cia
n
s ha
ve done a lo
t of successf
ul
resea
r
ch in o
r
de
r to better control the free
zi
ng
con
s
t
r
uctio
n
and a
c
compli
sh th
e shaft proje
c
t
safely
with a
high
quality, whi
c
h in
clu
d
e
s
two a
s
p
e
ct
s: one i
s
the
real-time
supe
rvision
of all
the
para
m
eters
d
u
ring
free
zin
g
,
for example,
the temp
e
r
at
ure
and flo
w
of the bri
ne, the temp
eratu
r
e
field of the froze
n
wall a
n
d
the frozen-heave force
of the tjaele etc. [2-7
], therefore, they can
help the the
m
to know the con
d
ition
of the froz
en
wall prom
ptly; the other is the cont
rol
of
freezi
ng
stati
on, incl
udin
g
the monito
ri
ng an
d
c
ontrol
of
the eq
uipment wo
rking co
nditio
n
at
freezi
ng stati
on, however, it’s st
ill limited to the automation contro
l design of the brine pump [8-
10], at p
r
e
s
e
n
t, the eq
uip
m
ent
control
in free
zi
ng
station i
s
stil
l reali
z
e
d
m
anually
by the
t
e
chni
cia
n
s.
Given the l
o
w auto
m
atio
n level a
nd
huge
wa
ste
of elect
r
ic
e
nergy
of the
artificial
controlled
fre
e
zin
g
station,
setting
up
an
autom
at
ic
co
ntrol
system
for th
e u
s
a
ge
of dou
ble
sta
g
e
ammoni
a screw comp
re
ssor an
d bri
ne
pump to cont
rol both the
comp
re
ssor
and b
r
ine p
u
m
p
prom
ptly accordin
g to the
actu
al cooli
ng ne
ed,
whi
c
h
can
in
cre
a
se
the a
u
to
mation level
of
freezi
ng stati
on, prolo
ng its using life and save
lot
s
of electri
c
it
y, as well as decre
ase the
con
s
tru
c
tion
co
st, therefo
r
e, it has pe
rfec
tly
an
swe
r
ed
the call of
ene
rgy co
nse
r
vation a
n
d
emission
red
u
ction p
o
licy i
n
our count
ry.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 574
3 –
5750
5744
2. The Struc
t
ure of th
e Sy
stem
The free
zing
proj
ect a
ppli
e
s a
mmoni
a
cycle
re
f
r
ige
r
ation sy
stem
to co
ol the
brine, i
n
whi
c
h p
r
o
c
e
s
s the lo
w-te
mperature
brine takes
th
e
heat of the
formation
away throug
h t
h
e
freezer in th
e
pum
p
so th
a
t
it ca
n form
a fro
z
e
n
wall.
The
large
scale e
quipm
en
t in the
free
zi
ng
station mainl
y
include
s th
e scre
w com
p
re
ssor a
nd
brine p
u
mp,
both with larg
e power. Ta
ke th
e
Fengjin
g fre
e
z
ing
station i
n
Yang village
of SDIC
XINJI ENERGY
Co., Ltd for an
example, whi
c
h
is eq
uippe
d with 24 do
uble
stage
ammo
n
i
a scre
w
com
p
re
ssors a
nd
3 brin
e pu
mp
s (with an
oth
e
r
6 for stan
dby
use
)
, and th
e power of th
e motor d
r
ive
includ
es 2
8
0
W
, 250
kW
an
d 200K
w and
so
on. The earli
er co
mpressor and pu
m
p
were man
ually adjuste
d, and the forme
r
co
ntro
lled
cap
a
city-a
dju
s
ting valve; t
he late
r controlled the
imp
o
rt an
d expo
rt valve ope
n
i
ng. In orde
r
to
reali
z
e the
cl
ose
d
-lo
op
co
ntrol of the
re
frigerat
ing
ca
pacity in the
free
zing
statio
n ba
sed
on t
h
e
real coolin
g need
s of the
froze
n
wall,
we hav
e d
e
sig
ned the
intelligent co
ntrol sy
stem
to
automatically co
ntrol th
e
doubl
e
stage
ammo
nia
screw comp
re
ssor an
d the
brine
pu
mp,
the
stru
cture of which i
s
sh
own
in Figure 1.
Figure 1. The
Struct
ure of the System
The Profibu
s
-DP bu
s
network is for tran
sferri
ng
the i
n
formatio
n, a
nd the
contro
l ce
nte
r
con
s
i
s
ts of an IPC (Indust
r
ial Person
al Comp
uter
) a
nd a Profibu
s
-DP interfa
c
e
card, by whi
c
h
the techni
cia
n
s are able t
o
observe th
e workin
g sta
t
us of all the comp
re
ssors
and pum
ps a
n
d
manipul
ate th
em, a
s
for th
e configu
r
atio
n softwa
r
e, it
is
used fo
r
storing
and
m
anagi
ng
all t
h
e
data.
The b
r
ine
pu
mp u
s
es the
variable f
r
e
quen
cy
control for
chan
gi
ng the flo
w
of brine
throug
h adj
usting the sp
ee
d of motor d
r
i
v
e in time
instead of the fo
rmer i
m
po
rt a
nd expo
rt valve,
as a
re
sult, the en
ergy h
a
s
be
en
save
d obvio
u
s
ly. PLC (P
rog
r
a
mmable
Logi
c Controll
er)
and
the freq
uen
cy conve
r
ter
a
s
well a
s
so
me rel
a
tive a
c
cesso
r
ie
s fo
rm the frequ
ency
conve
r
sion
control
cabi
n
e
t to
start, ad
just a
nd
stop
the
c
ont
rol o
f
the
moto
r d
r
ive
by
th
e water pump. T
h
e
electroma
gne
tic flow meter and the pre
s
sure se
nsor
are re
sp
on
sib
l
e for obse
r
vi
ng the real time
pre
s
sure and
flow of the brine in
side th
e
pump, and
then the two signal
s are both co
nne
ct
ed
into PLC
con
t
roller.
Usin
g
the flow valu
e as t
he fe
ed
back to adj
ust the clo
s
e-l
o
op PID with t
he
pre
s
sure valu
e a
s
the
reference to
avoid
the too
lo
w
or to
o hi
gh
pressure in
sid
e
the p
u
mp, it
is
quite differe
n
t
from the n
o
rmal va
riabl
e-fre
que
ncy con
s
tant-pressure
water supply
sy
ste
m
without
the p
r
essu
re as a controlled pa
ramete
r.
The
free
zing
brin
e ci
rcul
ation system reali
z
es
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The Intelligen
t Control Syst
em
of the Freezin
g Station in Coal Min
e
…
(Xiaolia
ng
Zheng
)
5745
the brin
e ci
rculation b
e
twe
en the fre
e
ze
r and th
e
b
r
in
e tank th
rou
g
h
the free
ze
r,
and the
heig
h
ts
of outlet pip
e
and
retu
rn pi
pe a
r
e the
sa
me, that is, t
he stati
c
lift o
f
the wate
r p
u
mp i
s
zero, so
the sp
eed of
it just cha
nge
s the
water fl
ow, nothi
ng
to do with th
e
lift itself, also, becau
se of
its
kineti
c
ene
rg
y and potential energy and
the continuit
y
of
the brine
in the closed
pump, the brine
can
still flo
w
unde
r a
low
spe
ed of th
e
water pum
p.
As a
co
nseq
uen
ce, the
pressure valu
e
will
not affect th
e
wh
ole
brin
e
circulatio
n to
o mu
ch, in
ste
ad, the flo
w
plays
an im
p
o
rtant
role
in
the
cooli
ng suppl
y, and therefo
r
e, it is use
d
to reali
z
e the
clo
s
ed
-loo
p control.
The do
uble
stage
ammo
nia screw
co
mpre
ssor i
s
equip
ped
with an PL
C controlle
r,
whi
c
h will ca
use two pro
b
l
e
ms if we ch
ange it
to frequen
cy conv
erting control: one is the high
transfo
rmatio
n co
st o
w
ing
to many com
p
re
ssors;
the
other i
s
the l
a
rge
difficulty becau
se of t
h
e
doubl
e sta
ge
comp
re
ssor,
so it’s
ha
rd to
achi
eve
the
goal, so we ju
st tran
sforme
d the net
wo
rk of
the comp
re
ssor
set to start or ope
n it acco
rd
i
ng to the real coo
ling need. Althoug
h we di
dn’t
adju
s
t the wo
rkin
g statu
s
o
f
every comp
ressor
se
t, tho
ugh the rea
s
o
nable
start an
d stop, we stil
l
decrea
s
e
d
the energy con
s
umptio
n
and
incre
a
sed th
e efficien
cy.
3. The Desig
n
of Con
t
rol
Algorithm
3.1. Contr
o
l Logic
In the freezin
g operation, the co
oling capa
ci
ty quantity from the free
zing b
r
ine
to the
formation he
at
excha
nge can be
calcul
ated
thro
ugh
the brin
e flow an
d the bri
ne tempe
r
atu
r
e
differen
c
e
of the outlet
a
nd return
ci
rcuit, be
side
s,
we
mu
st first kno
w
the
scale of
co
ol
ing
cap
a
city nee
ded du
rin
g
the form
ation
of the froz
e
n
wall
so a
s
to compl
e
te
the automati
c
ally
control of b
o
th the comp
re
ssor
set a
nd
the wa
te
r p
u
m
p, and th
en
we n
eed to
confirm the fl
ow
and temp
erature of the
brine in
the freezi
ng
circul
ation to fu
rth
e
r control th
e dou
ble
sta
ge
ammoni
a screw
comp
re
ssor an
d bri
ne
pump a
nd fi
n
a
lly to rea
c
h
the real
need
of the cooli
n
g
cap
a
city in t
he he
at exch
ange. T
he
whole
cont
ro
l l
ogic i
s
sho
w
n as Figu
re
2, obviou
s
ly, the
given coolin
g
cap
a
city ne
eded i
n
the
heat exc
han
ge is
cal
c
ul
ated by some
related
ob
se
rved
data an
d the
developm
ent
con
d
ition of t
he fro
z
e
n
wal
l
, moreove
r
, the coolin
g ca
pacity supply
is
reali
z
ed th
ro
ugh controlli
ng the com
p
resso
r
an
d brine pu
mp, and then we
can g
e
t the real
cooli
ng
cap
a
city need in th
e formatio
n h
eat exch
ang
e
,
finally, com
pare
d
with
th
e given d
a
ta, the
closed-loop control will be achi
eved.
Figure 2. Logi
c Co
ntrol
3.2. The Rela
tion bet
w
e
e
n
the Flo
w
an
d Tempera
t
u
r
e
Based
on
the follo
wing
relate
d formulas in th
e
Con
c
ise
Coalm
i
ne Constructio
n
Enginee
ring Manual
[11]:
0
dn
q
QK
H
0
00
20
1
q=
1
ln
ln
c
tt
rr
R
r
(1)
0
ct
Q
Q
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 574
3 –
5750
5746
The mathem
atical rel
a
tion
ship b
e
twe
e
n
the fl
ow and
temperature
of the brine i
s
thus to
be:
0
00
20
1
dn
(
)
Q=
1
ct
(
l
n
l
n
)
c
KH
t
t
rr
R
r
(2)
0
Q
is
the real cooling capability
to
freeze
a
shaft, and it
s unit is
kW;
k means the l
o
ss
coeffici
ent in
the pip
e
cooli
ng of th
e fre
e
zin
g
pi
pe
(1
.1~1.25
)
; d
is the di
amete
r
of the f
r
ee
zi
ng
pipe
with the
unit of meter;
n re
pre
s
e
n
ts for the
n
u
mb
er of the free
zing
pipe;
H i
s
the d
epth o
f
the freezi
ng and the unit also is mete
r;
q equals to
the absorptivity (0.26~
0.2
9
) of the freezing
pipe, the unit
of which is
w/m
2
;
0
t
is the ini
t
ial temperatu
r
e of the stratum;
c
t
means t
he outlet
temperature
of
the brin
e
;
is the
co
efficient of
the h
eat ex
chang
e in
the
free
zin
g
pi
p
e
(70
~
12
8w/m
2
k);
0
r
is the ra
dius
of the freezi
ng pi
pe
with mete
r a
s
the u
n
it; R
is the effe
cte
d
freezi
ng radiu
s
, meter a
s
it
s unit;
1
,
2
are th
e extensive radiu
s
e
s
of
the free
zing
col
u
mns, a
n
d
the unit i
s
stil
l meter;
me
ans the
heat
con
d
u
c
tivity coeffici
ent
of the melte
d
so
il and
fro
z
en
soil.
Q
is th
e b
r
ine flo
w
and
is the
den
si
ty of the ci
rcular bri
ne (12
50~127
0kg/m
3
)
;
C
is
the
spe
c
ific he
at
of the
circul
a
r
b
r
ine
with
a
value
of 2.7
3
;
t
i
s
the
tem
peratu
r
e
diffe
ren
c
e
of the
outlet and loo
p
of the circul
ar bri
ne.
3.3. The Fuzz
y
Decoupling Con
t
rolle
r
The brin
e flow and temp
e
r
ature togeth
e
r det
e
r
mine
the scale of
the heat excha
nge
betwe
en all
the fre
e
zers a
nd the
stratu
m, and th
er
e
is tight
co
up
ling bet
wee
n
the two, so
i
t
’s
hystereti
c
i
n
controlling and diffi
cult to get the
real
time
chan
ge of the freezing process by
building
dynamic
mathematic
al model. The
fuzzy dec
oupling c
ontroller
f
eatur
es
a better
adaptivity an
d robu
stne
ss to
satisfy th
e control of
b
r
ine
flow an
d
tempe
r
atu
r
e,
suita
b
le
for the
control with
t
he
un
ce
rtain model and p
a
ram
e
ter,
b
e
c
au
se it
doe
sn’t de
pen
d
on the
accu
rate
mathemati
c
al
model of th
e co
ntrolle
d
obje
c
t, thus
t
o
avoid the
difficulty in di
stingui
shi
ng t
h
e
system. The
structu
r
e i
s
sho
w
n in F
i
gure 3,
mai
n
ly includin
g
the fuzzy controlle
r and
the
decouplin
g controlle
r; as f
o
r the fuzz
y controlle
r, it is comp
ri
sed by
a brine flo
w
fuzzy controll
er
and a bri
ne temperature
fuzzy c
ontroll
er, and the
output quanti
t
y C
Q
and C
T
of the fuzzy
controlle
r re
spectively rep
r
ese
n
t
for
the
input
q
uantity of the
b
r
ine
flow a
nd te
m
peratu
r
e
of the
decouplin
g controlle
r. Fin
a
lly, add the more a
c
curate cont
rolled v
a
lue U
Q
an
d U
T
to the
actu
ator
brine p
u
mp a
nd com
p
ressor
[12
-
14].
Figure 3. The Sys
t
em Str
u
c
t
ur
e of Fuzzy D
e
c
o
upling
C
ontroller
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The Intelligen
t Control Syst
em
of the Freezin
g Station in Coal Min
e
…
(Xiaolia
ng
Zheng
)
5747
3.4. The Desi
gn of Fu
zzy
Con
t
roller
The b
r
ine
flo
w
an
d tem
perature fu
zzy controlle
rs a
r
e
both P
D
mo
del an
d they
apply the
two-in
put an
d one
-outp
u
t fuzzy
stru
ct
ure; in
a
dditi
on, the de
gree of mem
b
ership b
e
twe
en
deviation E a
nd outp
u
t co
ntrol value
C
is 7, with th
e
co
rre
sp
ondi
n
g
wo
rd
set a
s
{
NB, NM,
NS,
ZO, PS, PM, PB
}
, whi
c
h
mean
neg
ative big,
neg
ative m
edi
um, negative sm
a
ll,
ze
ro,
p
o
siti
ve
small, po
sitive medium a
n
d
positive big
;
the me
mbership d
egree o
f
the deviation rate of ch
a
nge
EC is 5, an
d
the corre
s
p
ondin
g
word
set i
s
{
N
B,
NS, ZO, PS, PB}, kno
w
n
as
neg
ative big,
negative sm
a
ll, zero, po
sitive small, and
posit
ive big;. The dom
ain
s
of discourse
are:
{E}= {
-
10
-8 -6 -4 -2 0 2 4
6 8 10};
{EC}
= {-1 -0.
5
0 0.5 1};
{C}
=
{
-
1 -0.8
-0.6 -0.4 -0.2
0 0.2 0.4 0.6 0.8 1}.
Table 1. Fu
zzy Control Rul
e
Table
EC
E
NB NM
NS
ZO
PS
PM
PB
NB PB
PB
PB
PM
PS
ZO
NS
NS PB
PB
PM
PS
ZO
NS
NM
ZO PB
PM
PS
ZO
NS
NM
NB
PS PM
PS
ZO
NS
NM
NB
NB
PB PS
ZO
NS
NM
NB
NB
NB
3.5. The Desi
gn of De
cou
p
ling Contr
o
ller
There exi
s
ts
tight de
cou
p
ling in
the b
r
in
e fl
ow an
d te
mperature,
so we n
eed to
impo
rt
decouplin
g to
de
cou
p
le th
e outp
u
t q
u
a
n
tity of the
fu
zzy co
ntroll
er.
Du
ring
this pro
c
e
ss,
we use
the de
cou
p
lin
g co
efficient,
that is, to a
dd two
de
co
upling
co
efficients
1
and
2
between t
h
e
brine flo
w
a
nd tempe
r
at
ure to m
a
ke
the value o
f
brine flo
w
and temp
era
t
ure a
s
follo
wing
formula
s
(3
)
and (4
):
11
1
[(
1
)
]
[
0
1
]
QQ
Q
T
UK
C
C
,,
(3)
22
2
[(
1
)
]
[
0
1
]
TT
T
Q
UK
C
C
,,
(4)
Whe
n
1
and
2
are ze
ro,
U
Q
=
K
Q
*
C
Q
,
U
T
=
K
T
*
C
T
,
and there is
no de
coupli
n
g control
betwe
en the brine flo
w
an
d temperature; when
1
a
nd
2
are b
o
th 1,
U
Q
=
C
T
,
U
T
=
C
Q
, and the
brine flo
w
an
d temperature are in
extre
m
e de
coupli
n
g con
d
ition. If
1
and
2
ar
e b
e
t
w
e
en
0
an
d
1, we nee
d to test the bri
ne ci
rculation
system to e
n
su
re the
rea
s
on
able d
e
co
upling
coeffici
ent
and thu
s
to
d
e
co
upling
co
ntrol the
brin
e
flow an
d
tem
peratu
r
e, at l
a
st, addi
ng th
e output q
uan
tity
U
Q
and U
T
int
o
the actuato
r
brine pu
mp a
nd com
p
ressor.
3.6. Simulation Analy
s
is
Figure 4. Simulation Mod
e
l
of the System
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 574
3 –
5750
5748
Figure 4
sho
w
s th
e
simula
ted mod
e
l of t
he sy
stem aft
e
r MATLAB
simulation. Fig
u
re
5 is
the ch
ang
e
curve of the
b
r
ine flo
w
b
e
fore
and
after the fuzzy de
cou
p
ling
co
ntrol, in
whi
c
h
we
can
co
me to
a co
ncl
u
si
on
that there
exists a l
a
rger fl
uctuatio
n bet
wee
n
the b
r
i
ne flow
and t
he
set value wh
en adoptin
g the tradition
al
way to c
ontrol, howeve
r
, the fuzzy de
cou
p
ling cont
rol
can
stabili
ze the brin
e flow
and thu
s
rea
c
h a better con
t
rol effect.
Figure 5. The
Chan
ge Curve of the Brine Flow
Before and After the Fuzzy De
co
upling
Contro
l
4. Energ
y
Sav
i
ng Effect
Once the intelligent co
ntrol system of
coal
min
e
shaft freezin
g
station is p
u
t into
operation an
d
repla
c
e
s
m
anually adju
s
t
ed cont
rol
in
t
he p
a
st, all
th
at the te
chni
cians ne
ed to
do
is just cal
c
ul
ate the flow value and te
mperature
va
lue of the circula
r
brin
e a
c
cordi
ng to the
developm
ent
con
d
ition of
the fro
z
en
wall, an
d
the
n
the sy
stem
adju
s
ts the
equipm
ent when
need
ed,
so th
e ele
c
tri
c
e
n
e
r
gy can
be
sa
ved to a
la
rge
scale. T
he
brine
circulatio
n
is
also mu
ch
more
stabl
e b
e
ca
use of the
freque
ncy
co
ntrol an
d
op
e
n
ing of the i
n
-and-out water valves, whi
c
h
cha
nge
s the
brine flo
w
through the m
o
tor speed
driv
en by the wa
ter pump, he
nce, the wast
ed
energy in
sid
e
the
pip
e
will al
so
be
save
d.
Th
rough
the
re
al coolin
g
capa
city nee
d
and
rea
s
on
able
st
art an
d
stop
of the e
quip
m
ent, t
he d
o
uble
stage
a
mmonia
scre
w
comp
re
sso
r
can
not only save
the electri
c
e
nergy, but also prolo
ng the
usin
g life of the equi
pment
.
Table 2. Energy saving tabl
e of frequen
cy control b
r
in
e pump
The
Pr
essur
e
of Pipeline
The Output
Freque
nc
y
of th
e
Transducer
Hz
The
Estimated
Motor
Speed
rpm
The Leading
-out
Terminal
of the Tr
ansform
er
The
Brine
Fl
ow
m
3
/h
The rat
e
of
pow
e
r
saving
Voltage
V
Curre
nt
A
Without the
Transducer
0.5
1490
380
460
860
With the
Transducer
0.55 41 1220
380
300
918
34.8%
0.49 37 1100
380
240
822
47.8%
0.41 32
950
380
152
794
67%
The bri
ne p
u
m
p motor m
odel is Y2
-3
55L1
-4 in th
e Fengji
ng freezi
ng statio
n in Yang
village of S
D
IC XINJI ENE
R
GY
Co., Ltd
with th
e
rate
d po
we
r of
2
80kW,
rated
curre
n
t of 5
0
0
A,
and n
o
min
a
l
voltage of 3
8
0
V, and th
e
doubl
e sta
g
e
ammoni
a
screw comp
re
ssor lo
w-volta
g
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The Intelligen
t Control Syst
em
of the Freezin
g Station in Coal Min
e
…
(Xiaolia
ng
Zheng
)
5749
motor d
r
ive
model i
s
Y35
5
M2-2, with t
he rate
d po
wer of 25
0kW,
rated
cu
rre
n
t
of 433A an
d
nominal
volta
ge of 3
80V,
besi
d
e
s
, the
high-volt
a
ge
motor d
r
ive
model i
s
Y3
1
5L2-2, with t
h
e
rated p
o
wer
of 200kW, ra
ted cu
rre
nt o
f
365A
and
nominal volta
ge of 380V.
If we stop o
n
e
doubl
e stag
e ammonia
scre
w com
p
ressor d
u
rin
g
the running
, we can save (
250
+
200
)
kW
*
24h
=
10
80
0
k
W
/
h
. the
detailed
ene
rgy saving
sta
t
us through f
r
eque
ncy
con
v
erting contro
lled
brine p
u
mp i
s
sho
w
n a
s
Ta
ble 2.
Suppo
sing
we stop one d
ouble
stage
ammoni
a screw comp
re
ssor pe
r day, and the
power
saving
rate of
3 brine pu
mp
s is 50%,
more
over, the el
e
c
tri
c
charge
is 0.7yua
n p
e
r
kilo
watt hour,
and co
nstruction perio
d is
300 day
s, the electri
c
ch
arge save
d will
be:
3*280
kW*5
0
%
*24h*3
00d*
0.7yuan/kil
o
watt hour=2.11
68million
RM
B
(250
+2
00
)kW*24h*
300d
*0.
7
yuan/kil
o
wat
t
hour =2.268
million RMB
Total amou
nt: 226.8+211.6
8
=4.3
848milli
on RMB
5. Conclusio
n
The intelligent control sy
stem of the freezing
station
has i
n
crease
d the automation level
of the equip
m
ent and
ch
ange
d the u
ndevelo
ped
manually
co
ntrolled m
e
th
od in the p
a
st.
Acco
rdi
ng to
the actu
al he
at excha
nge
scale in f
r
ee
zing p
r
oje
c
t, it cal
c
ulate
s
b
o
th the bri
ne fl
ow
and tem
pera
t
ure
so
as to control
th
e whole
equ
ipment. In t
e
rm
s of the
wo
rki
ng
of the
equipm
ent, the syste
m
h
a
s optimi
z
e
d
the workin
g
status a
nd
decrea
s
e
d
th
e rep
a
ir rated
,
therefo
r
e p
r
o
l
ong its u
s
in
g life; from the per
sp
ecti
ve of energ
y
saving, be
cau
s
e of th
e
rea
s
on
able e
quipme
n
t adj
ustment an
d
on-dem
and
sup
p
ly, the electri
c
ene
rg
y is saved to
a
large
de
gre
e
, as
a result, the ope
ratio
n
co
st of
the
enterp
r
i
s
e
s
h
a
s b
een
saved an
d the
p
r
ofit
rate b
een i
n
crea
sed. T
he
next step
sh
o
u
ld be
focu
se
d on th
e real-time dete
c
tio
n
of the free
zing
temperature
field an
d e
s
timation of the
develop
m
ent
statu
s
of the
frozen
wall,
and the
n
u
n
d
e
r
the help of the expert syst
em, we
ca
n control the working
status of
the equipme
n
t in time so that
the automatio
n level of the
freezi
ng p
r
oj
e
c
t ca
n be
fu
rt
her im
prove
d
. Whe
r
ea
s,
giv
en there is sti
l
l
no re
co
gni
ze
d accu
rate
way to analyze the free
zi
n
g
tempe
r
ature field, it still remai
n
s to
be
deeply stu
d
ie
d by the rese
arche
r
s.
Ackn
o
w
l
e
dg
ments
This
work wa
s su
ppo
rted i
n
part by Nat
u
ral
Sci
e
n
c
e
Found
ation f
o
r University in Anhui
Province of Chin
a und
er
Grant KJ201
3A03, and
E
ducation Proj
ect of Creati
on and Inn
o
vation
for Colle
ge Student
s in Chi
na und
er G
r
a
n
t 20121
036
1
067.
Referen
ces
[1]
YANG Geng-S
he, XI Ji
a-mi. Revie
w
an
d Pr
ospect
of Res
earch o
n
F
r
ee
zing D
e
sig
n
T
heor
y of C
o
a
l
Mine Shaft.
Chines
e Journ
a
l o
f
Undergr
ou
nd
Space a
nd En
gin
eeri
n
g
. 20
1
0
; 6: 627-6
35.
[2]
LI Pan,
XIE Xi
ong-
ya
o.
Res
e
arch o
n
Optim
i
zatio
n
of F
r
ee
zing-tem
peratu
r
e Monit
o
rin
g
Desig
n
a
n
d
Method
of
Dat
a
An
al
ysis
i
n
S
han
gh
ai Y
a
n
g
tze R
i
ver T
unn
el.
C
h
in
ese
Jo
urna
l of
Un
der
grou
nd
Spac
e
and En
gi
neer
in
g
. 2012; 8: 12
2
-
128.
[3]
Z
H
AI Yan-zho
ng, XU Shu-r
o
ng.
Desi
gn a
n
d
Applic
atio
n of Re
mote Mo
nito
ring a
nd Me
as
urin
g Syste
m
for Ground F
r
e
e
z
i
n
g
. Coal Sci
ence a
nd T
e
chnol
og
y. 20
08; 36: 68-7
1
.
[4]
Z
H
ENG Xiao-
li
ang, GUO Z
h
ao-ku
n,
XIE H
ong-z
h
i, et
al.
Monitor
i
n
g
a
n
d
Meas
ure
m
e
n
t System of
F
r
ee
z
i
n
g
T
e
mp
erature
F
i
el
d B
a
sed
on
Distr
i
b
uted Optic
a
l F
i
ber S
ensor
T
e
chno
logy.
Co
al
Scie
nce
an
d
T
e
chnolog
y. 2
009; 37: 1
8
-21.
[5]
HU
Xi
ang-
do
n
g
, LIU R
u
i-fen
g
.
T
e
mperature
Monitori
ng
S
y
s
t
em for F
r
eezi
n
g Metho
d
Bas
e
d on
“1-
w
ir
e
Bus.
Chin
ese J
ourn
a
l of Un
de
rgrou
nd Sp
ace
and Eng
i
n
eeri
n
g
. 200
7; 3: 93
7-94
0.
[6]
SONG Lei, YANG W
e
i-hao, L
I
Hai-pe
ng. Mo
nitori
ng
of F
r
eezin
g Shaft Sinkin
g in Ultra-
D
ee
p Alluv
i
u
m
of Guotun Co
al
Mine.
Journ
a
l
of Minin
g
& Safety Engin
eer
in
g.
2010; 7: 19-
23.
[7]
Z
H
ENG Xia
o
-li
ang, HU Ye-l
i
n
, SHEN Hua-
jun, et al.
App
licatio
n of Distribut
e
d
F
i
ber T
e
mp
eratur
e
Detectio
n T
e
ch
nol
ogy i
n
the S
haft F
r
ee
z
i
n
g
Restorati
on Pr
oject.
T
E
LKOMNIKA Indon
esi
an Jo
urna
l o
f
Electrical E
ngi
neer
ing. 2
014;
12(5): 39
36-
39
42.
[8] ZHENG
Xiao-l
ian
g
, MA
Lie,
HU
Ye-l
in.
T
he
Desi
gn
of
F
r
ee
z
i
n
g
Sta
t
ion Br
ine
Pu
mp
Var
i
ab
le
F
r
eque
ncy Ene
r
gy-savin
g Sys
t
em
. Mine C
o
n
s
truction T
e
chnol
og
y. 20
08; 29: 19-2
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 8, August 2014: 574
3 –
5750
5750
[9]
SU Jing-ming,
GONG Yan, TANG Chao-li,
Study o
n
Inte
lli
gent
Contr
o
l S
ystem
of Bri
ne
W
a
ter in
Min
e
Ground F
r
ee
z
i
ng Refrig
erati
o
n Station fo
r the Mine F
r
ee
z
i
n
g
Shaft
Sink
in
g
. Co
al
Eng
i
n
e
e
rin
g
. 2
012;
36: 104-
10
6.
[10] HONG Yan, SU Jing-mi
ng, T
A
NG Chao-l
i
, et al.
Researc
h
on the Intell
i
gent F
l
ow
Con
t
rol of F
r
ee
z
i
ng
Sinki
ng B
a
se
d
on th
e Exp
e
rt-F
u
z
z
y
PID
Al
g
o
rith
m
. Com
p
u
t
er Eng
i
ne
eri
n
g & Sci
enc
e. 2
012;
34:
166-
171.
[11]
CUI Yun-l
ong.
Concis
e Min
e
Constructi
on E
ngi
neer
in
g Ha
ndb
ook. Bei
jin
g:
T
he Chin
a Coal In
dust
r
y
Publ
ishi
ng H
o
u
s
e, 2003.
[12]
Li F
e
i, MA
Xi
u
,
CAO W
e
i-hu
a, et al. F
u
zz
y comp
e
n
sati
on
deco
u
p
lin
g co
ntrol of ca
lorifi
c valu
e a
n
d
pressur
e
in ga
s mixi
ng proc
e
ss.
Journal of Centra
l South
Univ
ers
i
ty (Science a
nd T
e
ch
nol
ogy).
201
1;
42: 94-9
8
.
[13]
W
en Bia
o
W
ang, Yon
g
Su
n, Si Yua
n
W
a
n
g
, et
al. App
lic
ation
of Intelli
g
ent T
h
ree-state Pan
g
-Pan
g
Contro
l to
Hea
t
Exch
an
ge St
ation.
T
E
LKO
M
NIKA Indo
ne
sian J
our
nal
of
Electrica
l
E
ngi
neer
ing
. 20
14
;
12(5): 35
29-
35
36.
[14]
Xi
e P
e
izh
a
n
g
,
Z
hou
Xin
gpe
n
g
. T
i
me Del
a
y MI
MO Deco
u
p
lin
g
Co
ntrol
b
a
sed
o
n
DOB
SVM Inverse
Sy
s
t
e
m
.
T
E
LK
OMNIKA Indon
esia
n Journ
a
l o
f
Electrical Eng
i
ne
erin
g
. 201
3; 11(12): 75
25-
753
2.
Evaluation Warning : The document was created with Spire.PDF for Python.