Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 2, No. 3,
Jun
e
201
6, pp. 607 ~ 61
6
DOI: 10.115
9
1
/ijeecs.v2.i3.pp60
7-6
1
6
607
Re
cei
v
ed Fe
brua
ry 28, 20
16; Re
vised
April 20, 201
6; Acce
pted
May 6, 201
6
Harmonic Analysis of a Single Phase Modulated
Inverter
Md Imran Azim, SM Mohiuddin
Rajsh
a
h
i
Univ
e
r
sit
y
of Eng
i
ne
erin
g and T
e
ch
nol
og
y (RUET
)
Rajsh
a
h
i
-62
04,
Bangl
ad
esh
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: imran.azim
89
@gmai
l
.com
A
b
st
r
a
ct
T
h
is pap
er port
r
ays an a
ppro
a
c
h of an an
aly
s
is t
hat provi
d
e
s
informatio
n
regar
din
g
the pr
esenc
e
o
f
h
a
r
m
o
ni
cs a
t
th
e
i
n
ve
rte
r
o
u
t
p
u
t
te
rmi
na
l
.
It i
s
ce
rta
i
n
l
y tru
e
th
a
t
ha
rmo
n
i
cs ca
u
s
e
u
n
b
a
l
a
n
c
e
and
excessiv
e
n
e
u
t
ral curr
ents, i
n
terferenc
e i
n
ne
arby
c
o
mmu
n
ic
ation
n
e
tw
orks and
dis
t
urbanc
e to
ot
he
r
consu
m
ers. M
o
re i
m
porta
ntly
, torque
p
u
lsat
ions
in
el
ectric
motor
drives
are c
ause
d
by
the
m
. T
hus, t
he
mi
ni
mi
z
a
t
i
o
n
o
f
the h
a
r
m
on
i
cs conta
i
ne
d
i
n
the
out
put
of a s
i
ng
le
p
hase
curre
nt
control
l
ed
inv
e
rter
und
ergo
in
g hy
steresis mod
u
l
a
tion tech
ni
qu
e is important
so as to get ri
d of these detr
i
m
enta
l
effects. A
mo
de
l of an L
C
low
pass filt
er has b
een
p
r
ovid
ed in
th
is
paper for h
a
r
m
o
n
ics re
ducti
on pur
pos
e, a
s
it
blocks th
e h
a
r
m
o
n
ics
and
p
a
sses a
ppr
oxi
m
ate
l
y a s
i
nus
oid
a
l o
u
tput.
Moreov
er, the
pap
er co
ntains
the
m
e
tho
d
o
f
Fa
st Fo
u
r
ie
r Tran
sfo
r
m
(FFT) fo
r fu
lfilling
th
e
d
e
s
ire
o
f
un
de
rstan
d
i
n
g
no
t o
n
ly
th
e
fu
nd
am
en
tal
compo
nent
but
also
the
har
monics c
o
mp
on
ent flaw
less
ly
. It has b
een
fo
und
from the
s
i
mulati
on
that t
h
e
Total Har
m
oni
c Distortio
n (T
HD) i
n
i
dea
l c
a
se is
0%
. O
n
the
other c
ontrary, d
u
rin
g
the pr
ese
n
ce
of
har
mo
nics, it steeps to 41.4
1
5
%
that
can be miti
gate
d
to 0.009
2% by i
m
p
l
ementi
ng an L
C
low
pass filter i
n
a precis
e man
ner.
Ke
y
w
ords
: Single Phase Inveter, IGB
T, Har
m
o
nics
Analysis, FFT,
THD,
LC low
pass F
ilter
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
An inverter
can be d
e
fine
d as d
c
to a
c
c
onverte
r
whi
c
h sym
bol
ize
s
the cha
nge of d
c
voltage into
a symm
etric
ac o
u
tput vol
t
age of d
e
si
red ma
gnitud
e
and
freq
ue
ncy a
s
sho
w
n in
Figure 1. Th
e output voltage could b
e
fixed or
variable at a fi
xed or varia
b
le freq
uen
cy. A
variable
outp
u
t can
be o
b
tained
by varying the in
put
dc voltag
e an
d maintaini
n
g
the gain
of the
inverter
con
s
t
ant. The outp
u
t waveform
s of an ideal in
verter shoul
d be sin
u
soidal
. Howeve
r, the
waveforms of
pra
c
tical inv
e
rters a
r
e no
n-si
nu
so
id
al and contain
certain h
a
rmo
n
ics whi
c
h
ca
n be
see
n
with e
a
s
e i
n
frequ
en
cy do
main.
Due to th
e avai
lability of hig
h
sp
eed
po
we
r se
micondu
ct
or
device
s
, the harm
oni
c co
n
t
ents of outp
u
t voltage ca
n be minimi
zed or redu
ce
d signifi
cantly
b
y
swit
chin
g techniqu
e. IGBTs ca
n be used as ide
a
l swit
che
s
to explain the p
o
we
r co
nversion
techni
que
s [1
].
Figure 1. General Blo
c
k Diagra
m
of Inverter
Some typical
appli
c
ation
s
are va
riabl
e
spe
ed a
c
d
r
ives, ind
u
cti
on he
ating,
stand
by
power suppli
e
s, uninte
r
rup
t
ible power
supplie
s (UPS), traction a
n
d
HVDC [2].
Curre
n
t Co
ntrolled Inve
rter is a
spe
c
ial
kind
of inve
rter in
which th
e outp
u
t cu
rrent can
be co
ntrolle
d
though hyst
ere
s
is m
odul
ation techni
q
ues. Hy
stere
s
is
curre
n
t control is a ki
nd of
instanta
neo
u
s
feedb
ack control mod
e
l. The basi
c
id
ea is to com
pare the give
n curre
n
t sig
nal
whi
c
h is d
e
te
cted by the converte
r with
actual inve
rte
r
cu
rre
nt sign
al [3].
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 3, Jun
e
2016 : 607
– 616
608
FFT is a line
a
r algo
rithm that can ta
ke a time domai
n sign
al into the frequ
en
cy domain
and
ba
ck. F
ourie
r
analysis all
o
ws a
more
intuitive loo
k
at
an
un
kno
w
n
si
gnal in
fre
q
u
ency
domain h
e
lpi
ng to unde
rstand the fu
ndame
n
tal compon
ent an
d the harm
o
nic compo
n
e
n
ts
without any di
fficulties [4].
Total Ha
rmo
n
ic di
stortio
n
(THD) i
s
a
measure
of closene
ss i
n
sha
pe b
e
twee
n a
waveform an
d its fundame
n
tal comp
one
nt.
It is given by the expre
s
sio
n
1
2
2
1
2
Im
Im
Im
THD
(1)
Whe
r
e,
Im
1
is the RMS value of funda
mental cu
rre
n
t compo
nen
t and
Im
is the RMS valu
e of
Curre
n
t comp
onent
s.
Therefore, it is nee
dle
ss to
say that THD
ca
n be defi
ned a
s
the ra
tio of the RMS value
of all odd nu
mber of no
n-f
undam
ental freque
ncy
term
s to the RMS value of the fundam
ental.
For imp
r
ove
m
ent of THD,
a LC L
o
w
p
a
ss filt
er is
a
ppen
ded at t
he output te
rminal tha
t
provide
s
lo
w
harm
oni
c imp
edan
ce to g
r
ound [5]. In this p
ape
r, filering a
r
rang
e
m
ent is m
ade
in a
way that both
the output voltage and
curr
ent respon
se
s be
come
sin
u
soi
dal.
2. H
y
steresis Modulatio
n Techniqu
e
In this mod
u
l
a
tion, the out
put cu
rrent can
be
co
ntrol
l
ed by Co
mp
elling the inv
e
rter li
ne
c
u
rr
en
t to
trac
k a s
i
nu
so
ida
l
re
fe
re
nce
curre
n
t withi
n
a
spe
c
ified
error ma
rgin
i
n
o
r
de
r to
attain
an a
dequ
ate
swit
chin
g opti
m
ization,
excellent dy
na
mi
c
respon
se
s and high accura
cy
in stea
dy-
state ope
ratio
n
rega
rd
ed a
s
a hyste
r
e
s
is modulation [
6
].
Hysteresi
s
Current
co
ntrol
l
ed
inverte
r
s
are u
s
e
d
in many low a
n
d
medium vol
t
age utility
appli
c
ation
s
whe
n
the inv
e
rter lin
e current is
req
u
ired to track a
sinu
soid
al referen
c
e
with
in a
spe
c
ified e
r
ro
r margi
n
. Line
harmo
nic g
e
neratio
n from
those inverte
r
s de
pen
ds p
r
incip
a
lly on the
particula
r
swit
chin
g p
a
ttern
applie
d to
the
valves. T
h
e
swit
chin
g p
a
ttern
of hy
stere
s
is inve
rters i
s
prod
uced th
rough
line
cu
rre
nt feed
ba
ck an
d it
i
s
not p
r
e
-
det
ermin
ed
unli
k
e th
e
ca
se,
for
instan
ce, of S
i
nusoidal Pul
s
e-Width
Mo
dulation
(
SPWM)
wh
ere the inverte
r
switchi
ng fun
c
t
i
on is
indep
ende
nt
of the i
n
sta
n
taneo
us
line
current a
nd th
e inve
rter ha
rmonics can
b
e
obtai
ned
from
the swit
chin
g function h
a
rm
onics [7].
The hy
stere
s
is mod
u
lati
on for po
wer el
ect
r
oni
c co
nverte
rs are
p
r
eferred fo
r
appli
c
ation
s
, whe
r
e pe
rformance re
quirements a
r
e
more d
e
man
d
ing such a
s
to achieve g
ood
dynamic
re
sp
onse, uncond
itional stabilit
y,
and wide comman
d
-tracking b
and
widt
h [8].
For
simpli
city, it is a
s
sum
ed that th
e d
c
vo
ltag
e sup
p
lied by
the DG so
urce
i
s
divide
d
into two
con
s
tant and
bal
a
n
ce
d d
c
so
urce
s, a
s
in
the
Figu
re
2, e
a
c
h
of value
V
c
,
equal to
23
V.
The
RL el
em
ent on the
AC si
de
rep
r
e
s
ents the
com
b
ined li
ne a
n
d
tran
sformer indu
ctan
ce a
nd
losses.
The inverte
r
line cu
rrent
i
, in Figure 2, tracks a
sinu
so
idal refe
ren
c
e
current
and the inve
rter line volta
ge tra
c
ks,
v
also tracks a
sinu
soid
al re
feren
c
e volta
ge thro
ugh relay
band
a
c
tion
and fu
ndam
e
n
tal freq
uen
cy voltage at
the inverte
r
ac te
rmin
als wh
en th
e li
ne
curre
n
t equ
al
s the
refe
ren
c
e
cu
rre
nt is
the refe
ren
c
e
voltage [9].
Referrin
g to
Figure 2,
wh
en
valve
Q
1
is turned o
n
, the inverter voltag
e is
ref
c
v
v
v
; this force
s
the line current
i
to slope
upward
until
the lo
we
r limit
of the
relay
band
)
(
t
e
a
is
rea
c
hed .
At that
moment, the
relay
swit
che
s
on
Q
2
and the in
verter voltag
e become
s
v
ref
v
c
v
; this forces th
e line cu
rre
nt
i
to
slop
e do
wnward until the l
o
we
r limit of the relay ba
nd
is rea
c
he
d
)
(
t
e
a
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Harm
oni
c An
alysis of a Single Pha
s
e M
odulate
d
Inve
rter
(Md Im
ra
n Azim
)
609
Figure 2. Single Phase Ha
lf Bridge Inverter
The operation of
the circui
t illustrated in Fi
g
u
re 2, ha
s be
en visuali
z
ed
in Figure 3.
Figure 3. Inverter Voltage
s
unde
r Vario
u
s
Switching Condition
s
Inverter o
u
tp
ut voltage can be
re
gula
t
ed in
a p
r
ef
erabl
e ma
nn
er by
control
ling the
swit
chin
g stat
e of two valves
Q
1
and
Q
2
. As is obse
r
ved in Figure 4,
Q
1
is made turned o
n
for a
particular time. After that
Q
2
is allo
wed
to operate wit
h
in a sp
ecifie
d time perio
d
and this p
r
o
c
ess
contin
ue
s. It
has b
een
see
n
that
the inverter voltag
e
become
s
V
c
a
nd -
V
c
alterna
t
ively during the
con
d
u
c
tion in
terval of the two valves
Q
1
and Q
2
.
Fo
r more co
nvincing
pe
rform
a
nce, care
mu
st
be taken not
to have two
swit
che
s
on
together
m
e
aning that a
dead time m
u
st be p
r
ovid
ed
betwe
en the
m
, otherwi
se,
there is a hig
h
cha
n
ce of shorting o
u
t of the DG sou
r
ce [10].
0.1
0
.
115
0.
1
3
22
23
24
Q1 on b
u
t
Q2
of
f
0.1
0
.
115
0.
1
3
-2
4
-2
3
-2
2
Q2 on b
u
t
Q1
of
f
0.1
0
.
115
0.
1
3
-1
0
1
Q
1
and
Q2 bot
h
on
I
n
v
e
rt
er Vo
lt
a
g
e(
V)
0.1
0
.
115
0.
1
3
-1
0
1
Q
1
a
nd Q
2
bo
th
o
f
f
Tim
e
(S)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 3, Jun
e
2016 : 607
– 616
610
Figure 4. Inverter Voltage
Control by Ch
angi
n
g
the Switchi
ng State of the Valves
Instantan
eou
s inverte
r
out
put voltage,
)
sin(
1
2
2
nwt
n
n
v
c
v
(2)
Instantan
eou
s inverte
r
out
put curre
n
t,
)
sin(
1
2
)
(
2
2
2
n
nwt
n
nwL
R
n
v
c
i
(3)
whe
r
e,
n
is the
laggin
g
or lea
d
ing an
gle de
pendi
ng upo
n
the conn
ecte
d load.
If the actual
sign
al is m
o
re than the gi
ven
value, then it is de
cre
a
se
d by ch
an
ging the
swit
chin
g sta
t
e and vice
versa. So, th
e actu
al resp
onse,
S
act
ch
ange
s a
r
ou
n
d
the refere
n
c
e
wav
e
for
m
,
S
ref
and hystere
s
is
cont
rol m
a
ke
s the dev
i
a
tion within a
certai
n ra
nge
[11].
The mathem
atical expression for mod
u
l
a
ted output is
S
S
act
ref
t
e
a
)
(
(4)
It
goes
with
out
sa
ying
that
the
basi
c
hyste
r
e
s
is te
chni
que
is affected b
y
the drawb
a
c
ks
of a variabl
e
swit
chin
g freque
ncy, large rip
p
le
current in
stead
y state, gen
eration
of su
b
harm
oni
c co
mpone
nts a
n
d
so o
n
[13] that urge
s
th
e necessity o
f
filter
ing the output re
sp
o
n
se
[14]. An LC
low
pa
ss filt
er i
s
con
n
e
c
ted a
c
ro
ss t
he
RL lo
ad
rep
r
e
s
ente
d
i
n
Figu
re
2.
The
impleme
n
tation of an LC fi
lter having L
=
0.0002
H an
d C=100
0F at the inverte
r
ac terminal
s co
uld
trigge
r a pa
rallel re
son
a
n
c
e which ten
d
s to am
plify
the harm
oni
c voltage
s a
nd cu
rrents i
n
ac
network leadi
ng, in
some
cases, to potential harmoni
c instabilities
owing to t
he f
a
ct that the filter
cap
a
cita
nce has a p
r
ofo
und impa
ct on the harm
onic p
e
rfo
r
m
ance. This filter brin
gs t
he
harm
oni
cs int
o
a lowe
r stat
e [15].
0.
1
0.
11
5
0.
1
3
-1
0
0
10
I
n
v
e
r
t
e
r
Ou
t
p
u
t
Re
s
p
o
n
s
e
Co
n
t
r
o
l
0.
1
0.
11
5
0.
1
3
0
5
10
o
n
-S
ta
te
o
f
Q
1
I
n
ve
r
t
e
r
Out
put
Vol
t
age
Re
s
p
ons
e
(
V
)
0.
1
0.
11
5
0.
1
3
0
5
10
o
n
-S
ta
te
o
f
Q
2
Ti
m
e
(
s
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Harm
oni
c An
alysis of a Single Pha
s
e M
odulate
d
Inve
rter
(Md Im
ra
n Azim
)
611
Figure 5. Single Phase Ha
lf Bridge Inverter with Filte
r
No
w, output is take
n acro
ss the
cap
a
citor wi
th 100
0F ca
pa
citan
c
e. In this case th
e
inverter o
u
tpu
t
current be
co
mes,
)
sin(
1
)
1
(
2
2
2
c
nwt
n
nwc
n
v
c
i
c
(5)
whe
r
e,
c
is the
curre
n
t leadin
g
angle of the
capa
citor.
dt
C
v
c
i
c
1
(6)
3. Results a
nd Analy
s
is
For ma
king t
he simul
a
tion
possible, ne
ce
ss
ary pa
ra
meters like
supply voltage
= 23 V,
freque
ncy
= 50
Hz, l
o
a
d
re
si
stor
= 12
Ω
and
load in
du
ctor = 0.0
032
H a
r
e
con
s
i
dere
d
delibe
r
ately
with a
s
sumi
n
g
that th
ere
is n
o
harm
o
nics p
r
evale
n
t
at the
outp
u
t whi
c
h
me
ans
output re
spo
n
s
e is fo
re
cast
ed to be sin
u
s
oid
a
l.
Acco
rdi
ng to
the de
pictio
n, Figu
re 6
and Fi
gure
7 deal
with t
he time d
o
m
a
in an
d
freque
ncy do
main re
sp
onses of the inve
rter out
p
u
t voltage and
current re
sp
ectiv
e
ly while there
is no existen
c
e of harm
o
nics (re
si
stive load).
Whe
r
ea
s, Figure 8 and Figu
re
9, indicate the
modulate
d
voltage and cu
rre
nt implying
the diffe
rence betwee
n
re
feren
c
e an
d inverter
curre
n
t
both in time domain an
d fre
quen
cy doma
i
n unde
r the same co
nditio
n
. Here, the o
b
tained T
HD i
s
0%. But in practical situati
ons it
is
cumbersome to get
0% THD.
Later
on
harmonic an
alysis i
s
taken i
n
to a
c
count. G
enerally spea
king,
a ha
rm
onic is
a
sign
al or
wa
ve who
s
e fre
quen
cy is a
n
integral
m
u
ltiple of the freque
ncy of some refere
nce
sign
al or wave. The te
rm
can al
so
refer
to the ratio
of the freq
uen
cy of su
ch a
si
gnal o
r
wave
to
the freque
ncy
of the refere
nce
sign
al or
wave [12].
Harmoni
cs a
r
e consi
d
e
r
e
d
so that the perfo
rman
ce of hyste
r
esi
s
cu
rrent controlled
inverter u
nde
r harm
oni
cs
state ca
n be
r
ealized an
d it is predi
cted that up to 7
th
orde
r odd
harm
oni
cs ex
ist at the output indicatin
g
the value of n = 1, 3, 5 and 7.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 3, Jun
e
2016 : 607
– 616
612
Figure 6. Ideal Re
spo
n
se of Inverter Ou
tput Voltage (R-lo
a
d
)
Figure 7. Ideal Re
spo
n
se of Inverter Ou
tput Current (R-lo
a
d
)
Figure 10,
Fi
gure
11, Fi
gu
re 1
2
an
d Fig
u
re
13,
revea
l
the respon
ses
of hyste
r
e
s
current
controlled
i
n
verter with RL
-load wh
en
h
a
rmo
n
ics
a
r
e
pre
s
ent at t
he outp
u
t terminal; in whi
c
h
output voltag
e and
cu
rren
t are d
e
mon
s
trated in th
e
first two fig
u
res. On
the ot
her
hand, l
a
ter
two, reprent t
he m
odul
ate
d
outp
u
t. Accordin
g to
the
expe
ctation,
non
e
of the
s
e fig
u
res sh
ow
sinu
soi
dal time domain
respon
se
s d
ue to
the existence of unw
anted freque
nci
e
s called
harm
oni
cs.
Usi
ng Eq
uati
on 1, u
nde
r t
hese ci
rcum
stance
s
T
H
D i
s
evalu
a
ted
a
nd is foun
d 4
1
.415
%
whi
c
h is
not satisfa
c
to
ry at all. There is no deni
al
that for better
perfo
rman
ce
it is importa
nt to
evade ha
rmo
n
ics.
0.
1
0.
115
0.
13
-3
5
0
35
Ti
m
e
(
S
)
Vol
t
age
(
V
)
T
i
m
e
D
o
m
a
in
I
n
v
e
r
t
e
r
V
o
lt
a
g
e
N
e
g
l
e
c
t
i
n
g
H
a
r
m
o
n
i
c
s
R
e
f
e
r
e
n
c
e V
o
l
t
age
I
n
v
e
r
t
er
V
o
l
t
age
0
50
100
150
0
0.
5
1
F
r
e
que
nc
y
(
H
z
)
Vo
l
t
ag
e
(
P
U
)
F
r
e
que
nc
y
D
o
m
a
i
n
I
n
ve
r
t
e
r
V
o
l
t
a
g
e
N
e
g
l
e
c
t
i
ng
H
a
r
m
o
n
i
c
s
0.
1
0.
115
0.
13
-
400
0
400
Ti
m
e
(
S
)
C
u
rre
n
t(A
)
T
i
m
e
D
o
m
a
in
In
ve
rt
e
r
C
u
rre
n
t
N
e
g
l
e
c
t
i
n
g
H
a
rm
o
n
i
c
s
R
e
f
e
re
n
c
e
C
u
rre
n
t
In
ve
rt
e
r
C
u
rre
n
t
0
50
100
150
0
0.
5
1
F
r
e
que
nc
y
(
H
z
)
C
u
rr
en
t(P
U
)
F
r
e
que
nc
y
D
o
m
a
i
n
I
n
v
e
r
t
e
r
C
u
r
r
e
nt
N
e
g
l
e
c
t
i
ng
H
a
r
m
o
n
i
c
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Harm
oni
c An
alysis of a Single Pha
s
e M
odulate
d
Inve
rter
(Md Im
ra
n Azim
)
613
Figure 8. Modulated Volta
ge witho
u
t Ha
rmoni
cs (R-lo
ad)
Figure 9. Modulated
Curre
n
t wit
hout Adding Harm
oni
cs
(R-loa
d)
Figure 10. Inverter O
uput V
o
ltage with
Harmo
n
ics (RL
-
load
)
0.
1
0.
1
1
5
0.
1
3
-3
5
0
35
Ti
m
e
(
S
)
Vo
l
t
age
(
V
)
T
i
m
e
D
o
m
a
i
n
M
o
d
u
la
te
d
V
o
lta
g
e
N
e
g
l
e
c
ti
n
g
H
a
r
m
o
n
ic
s
0
50
10
0
15
0
0
0.
5
1
F
r
e
q
ue
nc
y
(
H
z
)
Vo
l
t
a
g
e
(
PU)
F
r
e
q
ue
nc
y
D
o
ma
i
n
M
o
d
u
l
a
t
e
d Vo
l
t
a
g
e
N
e
g
l
e
c
t
i
ng
Ha
r
m
o
n
i
c
s
0.
1
0.11
5
0.
13
-4
0
0
0
40
0
Ti
m
e
(
S
)
C
u
rre
n
t
(A
)
T
i
m
e
D
o
m
a
in
M
o
d
u
la
te
d
C
u
rr
e
n
t
N
e
g
l
e
c
t
in
g
H
a
r
m
o
n
ic
s
0
50
10
0
15
0
0
0.
5
1
F
r
e
q
ue
nc
y(
H
z
)
C
u
r
ren
t(
P
U
)
F
r
e
que
n
c
y
D
o
m
a
i
n
M
o
d
u
l
a
t
e
d C
u
r
r
e
n
t
N
e
g
l
e
c
t
i
ng
H
a
rm
o
n
i
c
s
0.
1
0.
115
0.
13
-3
5
0
35
Ti
m
e
(
S
)
Vo
l
t
a
g
e
(
V
)
T
i
m
e
D
o
m
a
in
I
n
v
e
r
t
e
r
V
o
lt
a
g
e
C
o
n
s
id
e
r
in
g
H
a
r
m
o
n
ic
s
R
e
f
e
r
e
n
ce V
o
l
t
age
In
v
e
rte
r
V
o
l
t
a
g
e
0
50
100
15
0
0
0.
5
1
F
r
e
que
nc
y(
H
z
)
Vol
t
age
(
P
U)
F
r
e
q
u
e
n
c
y
D
o
m
a
in
I
n
v
e
r
t
e
r
V
o
lta
g
e
C
o
n
s
id
e
r
in
g
H
a
r
m
o
n
ic
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 3, Jun
e
2016 : 607
– 616
614
Figure 11. Inverter O
uput Current with Harmo
n
ics (RL
-
load
)
Figure 12. Modulate
d
Oup
u
t Voltage with Harmoni
cs (RL
-
lo
ad)
Figure 13. Modulate
d
Out
put Curre
n
t with Harm
oni
cs (RL
-
loa
d
)
0.
1
0.
11
5
0.
1
3
-2
5
0
50
35
0
Ti
m
e
(
S
)
C
u
rre
n
t
(A
)
Ti
m
e
Do
m
a
i
n
I
n
v
e
r
t
e
r
Cu
r
r
e
n
t
Co
n
s
i
d
e
r
i
n
g
H
a
r
m
o
n
i
c
s
Re
f
e
r
e
n
c
e
Cu
r
r
e
n
t
*
1
0
0
Inve
rt
e
r
C
u
rr
e
n
t
0
50
10
0
150
0
0.
5
1
F
r
e
q
ue
nc
y(
H
z
)
C
u
r
ren
t
(
P
U
)
F
r
e
q
u
e
n
c
y
D
o
m
a
in
I
n
v
e
rte
r
C
u
rr
e
n
t C
o
n
s
id
e
r
in
g
H
a
r
m
o
n
ic
s
0.1
0.
11
5
0.
1
3
-3
5
0
35
Ti
m
e
(
S
)
Vo
l
t
a
g
e
(
V
)
T
i
m
e
D
o
m
a
i
n
M
o
d
u
la
te
d
V
o
lta
g
e
C
o
n
s
i
d
e
r
in
g
H
a
rm
o
n
ic
s
0
50
10
0
15
0
0
0.
5
1
F
r
e
q
ue
nc
y
(
H
z
)
Vo
l
t
a
g
e
(
P
U)
T
i
m
e
D
o
m
a
i
n
M
o
d
u
la
te
d
V
o
lta
g
e
C
o
n
s
i
d
e
r
in
g
H
a
rm
o
n
ic
s
0.
1
0.
115
0.
13
-
250
0
250
Ti
m
e
(
S
)
C
u
rre
n
t
(
A
)
T
i
m
e
D
o
m
a
i
n
M
o
dul
a
t
e
d
C
u
r
r
e
nt
C
o
ns
i
d
e
r
i
n
g
Ha
r
m
o
n
i
c
s
0
50
10
0
15
0
0
0.
5
1
F
r
e
q
ue
nc
y(
Hz
)
C
u
r
ren
t(
P
U
)
F
r
e
que
nc
y D
o
m
a
i
n
M
o
du
l
a
t
e
d
C
u
r
r
e
n
t
C
o
ns
i
d
e
r
i
n
g
H
a
r
m
o
n
i
c
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Harm
oni
c An
alysis of a Single Pha
s
e M
odulate
d
Inve
rter
(Md Im
ra
n Azim
)
615
Figure 14. Ou
tput Current a
fter Filtering (RL
C
-lo
a
d
)
Figure 15. Ou
tput Voltage a
fter Filtering
(RL
C
-loa
d)
Finally, in order to visuali
z
e the note
w
or
thy perfo
rmance of the filter having leading
current capability, the out
put res
ponse derived from
Figu
re 5, are si
mulated.
As far as
Figure
14, an
d Fi
gure 15,
are
con
c
erned,
a
s
i
s
expecte
d,
onl
y desi
r
ed
sin
u
soi
dal
outpu
t re
spo
n
ses a
r
e
obtaine
d , it is noticed that
the fundame
n
ta
l comp
one
nts have the
highe
st ampli
t
ude.
Lastly, Equati
on 1 i
s
on
ce
again
utilize
d
and
cal
c
ul
ated T
HD i
s
0.0092% that
can
be
rega
rd
ed a
s
a negligibl
e
a
m
ount. Then
ce, harmo
nics
have bee
n su
ppre
s
sed to a
great extent.
4. Conclusio
n
Whe
n
ideal resp
on
se ha
s been e
s
timat
ed, THD i
s
0
%
which i
s
n
o
t plausi
b
le in real life
utilities. At normal
condition, harm
oni
cs have
to be taken into
consi
deration. If up to 7
th
order
harm
oni
cs
are co
nsi
dered
then the
r
e
exists 4
1
.415
% THD th
at
is un
disputed
ly beyond th
e
satisfa
c
tion.
But as so
on
as an L
C
lo
w pass f
ilter is
appe
nded, it has b
een d
r
o
pped to 0.00
92%
notifying a va
st improveme
n
t. This i
s
be
cau
s
e
of
the
cap
a
cita
nce
having a
gre
a
t effect on t
h
e
harm
oni
cs p
e
r
forma
n
ce.
It has be
en
found fro
m
e
x
perime
n
tal result
s [16] th
at the Total
Harmoni
c Di
stortion
(THD) of thre
e level, five level, seven level
and nine
level inverter sy
stems a
r
e
10.95%, 4.82
%,
4.65% and
3.
09% re
sp
ecti
vely referring
THD is
de
cli
n
ing
with the
enha
nceme
n
t of the leve
l of
inverter.
0.
1
0.
115
0.
13
-1
0
0
10
Ti
m
e
(
S
)
C
u
r
ren
t(A
)
T
i
m
e
D
o
m
a
i
n
F
i
l
t
e
r
e
d
O
u
t
put
C
u
r
r
e
nt
0
50
100
150
0
0.
5
1
F
r
e
que
nc
y
(
H
z
)
C
u
rr
en
t(P
U
)
F
r
e
que
nc
y
D
o
m
a
i
n
F
i
l
t
e
r
e
d
O
u
t
put
C
u
r
r
e
nt
0.
1
0.
115
0.
13
-2
0
0
20
Ti
m
e
(
S
)
Vo
l
t
ag
e
(
V)
T
i
m
e
D
o
m
a
i
n
F
i
l
t
er
ed
O
u
t
p
u
t
V
o
l
t
age
0
50
100
150
0
0.
5
1
F
r
e
que
nc
y
(
H
z
)
Vol
t
age
(
PU
)
F
r
e
que
nc
y
D
o
m
a
i
n
F
i
l
t
e
r
e
d
O
u
t
put
V
o
l
t
a
g
e
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
2, No. 3, Jun
e
2016 : 607
– 616
616
In contra
st, only 0.0092% THD i
s
deriv
ed in ca
se of
single ph
ase
inverter men
t
ioned in
this p
ape
r.
Therefore,
a
rem
a
rka
b
le
improv
emen
t has b
een
achi
eved
wit
h
the
prescri
bed
modelin
g wh
en it come
s to comp
are wi
th resp
ect to
THD.
In co
ming
da
ys, usi
n
g
this co
ncept, the
output
re
sp
onses of
sin
g
le p
h
a
s
e ful
l
bri
d
g
e
curre
n
t controlled inverte
r
undergoin
g
hystere
s
i
s
m
odulatio
n can
be observed
as well a
s
the
harm
oni
cs o
c
curre
d
at the output can
be minimi
zed
.
The implem
entation of seco
nd order
LC
low pa
ss filter would b
e
an
intere
sting ch
oice in thi
s
ca
se.
Referen
ces
[1]
Muhamm
ad H Rashi
d
.
Po
w
e
r
Electro
n
ics Ci
rcuits.
Devic
e
s
,
and
Ap
plic
ati
ons
, T
h
ird Ed
ition. D
o
rl
in
g
Kind
ersle
y
Pvt. Ltd. 2006: 22
6
-
299.
[2]
MI Azim, M
F
Z
a
man, M Rahman.
Benefic
ia
l Effect of
F
iltering
i
n
Curre
nt Contro
lle
d Inve
rter
. 16th Int'l
Conf. Comp
ute
r
and Informati
on T
e
chnol
og
y, Khulna, Ba
ngl
ades
h. 201
4: 30-33.
[3]
W
Z
hao-an, Hu
ang Ju
n. Po
w
e
r Electronic T
e
chno
log
y
. Be
iji
ng Ch
ina Mac
h
ine Press. 20
0
0
: 47-50.
[4] C
Lan
gton.
F
o
urier T
r
ansfor
m
mad
e
Easy
Part 1
, Edition.
2011: 1.
[5]
AJ Onah. Har
m
onics: Gener
ation a
nd
S
u
p
p
ressi
on in A
C
S
y
stem N
e
tw
o
r
ks.
Nig
eria
n Journ
a
l
o
f
T
e
chno
logy
. 2
012; 31(
3): 293
-299.
[6]
M Mahal
aksh
mi, V Kumares
an.
H
y
steresis
Modu
latio
n
of Casca
ded Inv
e
rter.
Internatio
nal Jo
urn
a
l of
Emer
gi
ng tren
ds in Eng
i
n
eeri
ng an
d Dev
e
lo
pment
. 201
2; 2
(
3).
[7]
A Alban
na. Mode
lin
g an
d Simulati
on of H
y
steresis
Curre
nt Control
l
ed I
n
verters Usin
g
MAT
L
AB. In
T
e
ch. 2011: 98
-120.
[8]
MP Kazmierk
o
w
s
k
i
a
nd
L Ma
l
e
san
i
. Curr
ent
control t
e
chn
i
q
ues for thr
ee-
p
hase v
o
lta
ge-s
ource PW
M
converters: A survey
.
IEEE Trans. Ind. Electron
. 199
8; 45(5)
: 691–7
03.
[9]
A Alba
nn
a a
n
d
Hatzia
do
niu.
Harmon
i
c Mo
d
e
lin
g
of H
y
ster
esis
Inverters i
n
F
r
equ
enc
y D
o
mai
n
.
IEEE
T
r
ans. on Pow
e
r Electron
ics
. 201
0.
[10]
D F
e
w
s
on. Introducti
on to Po
w
e
r Electro
n
ic.
Oxfo
rd Un
iver
sit
y
Press, Inc., Ne
w
y
ork. 19
9
8
: 81.
[11]
Y W
ang, Q Guo. H
y
ster
esis
Cu
rrent C
ontro
l techn
i
qu
e b
a
s
ed o
n
Sp
ace V
e
ctor Mod
u
lati
on for Acti
v
e
Po
w
e
r Filter.
In
ternatio
nal J
o
u
r
nal of Pow
e
r Electron
ics an
d Drive
System
. 2011; 1(1): 1-
6.
[12] Z
Salam.
Pow
e
r Electronics a
nd Driv
es
. Version 2. 20
02: 1
-
54.
[13]
L Males
a
n
i
, P Mattavelli
an
d, P
T
o
masin.
High-
P
e
rforma
nce H
y
steres
is
Modul
atio
n T
e
chn
i
qu
e fo
r
Active Filters.
IEEE Trans. On Power Electronics
. 199
7; 12(
5).
[14]
I Azim, H Rah
m
an. Harm
oni
cs Red
u
ction
o
f
a Sing
le P
h
a
s
e Ha
lf Bridg
e
Inverter.
Glob
al Jo
urna
l o
f
Rese
arch in E
ngi
neer
in
g
, Version 1. 20
13; 1
3
(4): 9-12.
[15]
B Sing
h, K Al-
H
ad
dad, A
Ch
andr
a. A Revi
e
w
of
Active F
ilt
ers for Po
w
e
r
Qualit
y Improv
ement.
IEEE
T
r
ans. on Indu
strial Electro
n
ic
s
. 1999; 46(
5): 960-
971.
[16]
G Mahesh, M
Kumar, SR R
e
dd
y. Simu
lati
o
n
an
d E
x
p
e
rim
ental
Res
u
lts
of 7-Lev
el Inv
e
rter S
y
stem.
Rese
arch Jour
nal of App
l
i
ed
Scienc
es, Engi
neer
ing a
nd T
e
chno
logy
. 2
011
; 3(2): 88-95.
Evaluation Warning : The document was created with Spire.PDF for Python.