Indonesian J
ournal of Ele
c
trical Engin
eering and
Computer Sci
e
nce
Vol. 1, No. 2,
February 20
1
6
, pp. 264 ~
272
DOI: 10.115
9
1
/ijeecs.v1.i2.pp26
4-2
7
2
264
Re
cei
v
ed O
c
t
ober 1
8
, 201
5; Revi
se
d Ja
nuary 14, 20
1
6
; Acce
pted Janua
ry 2
9
, 20
16
Modeling and Simulation of MPPT-SEPIC Combined
Bidirectional Control Inverse KY Converter Using
ANFIS in Microgrid System
Soedib
y
o
*, Farid D
w
i
Mur
d
ianto, Su
y
a
nto, Mocha
m
ad Asha
ri, Onto
seno P
e
nang
sang
Dep
a
rtment of Electrical E
ngi
neer
ing,
Institu
t
T
e
knolog
i Se
pul
uh No
pem
b
e
r (IT
S
)
Kampus IT
S Sukoli
lo Sur
a
b
a
y
a (6
01
11), Ind
ones
ia
*Corres
pon
di
n
g
author, e-ma
i
l
: dib
y
os
oe@
g
m
ail.com
*
,
farid
d12
4@gm
ail.c
o
m,
su
yanto
1
3
@
mhs.ee.ac.i
d
,
ashar
i@e
e
.its.ac.id, zenn
o3
7
9
@gma
il.com
A
b
st
r
a
ct
Photovo
l
taic s
ystem (PV)
is
w
i
dely
use
d
i
n
va
ri
ous r
e
n
e
w
able
en
ergy
ap
plic
ation. T
he
ma
i
n
problem
of PV
system
is
how to
get the
m
a
ximum
out
put
pow
er which is
integr
ated in
m
i
cr
ogrid system.
Furthermore, the re
dun
da
nc
y output p
o
w
e
r ge
nerate
d
by on a
distri
butio
n syste
m
shoul
d a
l
so
be
consi
dere
d
. T
h
is stu
d
y uti
l
i
z
es the
excess
pow
er fo
r
en
ergy stor
age
u
s
ing
bi
directi
o
nal
of KY i
n
ve
rs
e
converter. Si
nc
e the D
C
volt
a
ge w
h
ich
ge
ne
rated by P
V
an
d the e
ner
gy storag
e w
ill b
e
c
onverte
d i
n
to A
C
voltag
e usi
ng
inverter tow
a
r
d
lo
ad. T
h
is
p
aper
pr
op
oses
ANF
I
S as se
arch o
p
ti
mi
z
a
ti
on
meth
od
usi
n
g
SEPIC convert
e
r with a m
a
xim
u
m
efficienc
y of 99.95%
to impact to po
w
e
r ge
nerati
o
n
performanc
e i
n
microgrid s
y
st
em.
Ke
y
w
ords
:
Photovoltaic, B
i
directional of KY Inverse Co
nverter, SEPIC Converter, Maximum
Power Point
Tracking (MPP
T
), Inverter, A
N
FIS
Copy
right
©
2016 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
As the
devel
opment
of hi
gh e
nergy de
mand l
ead
to
the avail
abili
ty of fossil
fu
els
are
diminishing.
This requi
re
s
in studie
s
in the fiel
d of re
newable e
nergy as
an alte
rnative fuel fossil
discu
ssi
on i
s
req
u
ire
d
[22
-
23]. Research in
the fiel
d of re
ne
wab
l
e ene
rgy i
s
gro
w
ing
ra
pi
dly,
esp
e
ci
ally research on Ph
o
t
ovoltaic and
modellin
g
[1-3]. Hence a l
o
t of studies t
o
modelin
g PV
contin
ue
s on
optimizing t
he gen
erate
d
powe
r
. The
optimizatio
n
of powe
r
o
n
PV kno
w
n
as
Maximum Po
wer p
o
int tra
c
king (MPPT)
whi
c
h is b
e
in
g applie
d in microgri
d
system.
Studies on
MPPT by comparing several
methods such as hill climbing/P&O
,
incr
eme
n
tal condu
ctan
ce,
fraction
al op
en cir
c
uit
voltage, sh
ort ci
r
c
uit fractio
nal
voltage, fuzzy
logic
control, the current
sweep, loa
d
voltage
maximization, an
d
dP/dI feedback co
ntrol h
a
ve
been
condu
cted [4]. In ad
dition to th
ese metho
d
s th
ere
are al
so
other
metho
d
s
a
r
e
used t
o
maximize the
PV MPPT using artificial in
telligenc
e
such as
PSO [5], ANFIS [6].
In this case
have be
en d
e
velope
d met
hod
s to maxi
mize the
po
wer outp
u
t of PV. The
probl
em
s tha
t
appe
ar
wh
e
n
the PV i
s
con
n
e
c
ted to
a mi
crogri
d
system i
s
ho
w to
utilize t
he
exce
ss the p
o
we
r g
ene
rat
ed by
PV. Exce
ss po
we
r g
enerated
by PV
is imp
o
rta
n
t to be
co
nsi
der.
From
the
s
e
probl
em
s the
r
e a
r
e
a l
o
t
of re
sea
r
ch
b
e
ing
done
to
overcom
e
th
e excess
po
wer
gene
rated by
optimally utiliz
ing the ex
ce
ss p
o
wer.
Several previous
studie
s
that discuss
the parall
e
l con
n
e
c
tion b
e
twee
n the PV and
battery are e
a
ch
co
nne
cte
d
to the co
nverter [7
], Op
eration Bidi
re
ctional b
u
ck-boo
st co
nvert
e
r
with MPPT in a distributio
n
system [8], the stra
tegy in incre
a
si
ng th
e battery lifetime con
n
e
c
te
d
with PV [9],
the appli
c
atio
n of AC-DC
micro gr
id system
which conne
cted to the PV, energy
stora
ge, an
d
con
s
id
erin
g the influen
ce
of the criti
c
al
load [10], a
s
well a
s
ap
plications i
n
hybrid
electri
c
cars conne
cted
with PV and ene
rgy storage [1
1].
After a lot of studie
s
that discu
ss the
c
onne
ction of
PV with energy storag
e re
sea
r
ch
emerge
s ab
o
u
t mergi
ng M
PPT using P
&
O with bidi
rection
a
l conv
erter
as
a bri
dge to the
ba
ttery
and
DC bu
s gene
rate
d
by the PV and b
a
ttery
are
co
nverte
d into a vol
t
age di
strib
u
tion
con
d
itioned b
y
the inverters in the form
of
simulatio
n
and imple
m
entation [1
2-14]. Thi
s
paper
prop
oses
stu
d
y of the collective MPPT usin
g ANFI
S with bidirecti
onal converte
r as a b
r
idg
e
to
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Modeling and Sim
u
lation of MPPT-SEPIC Com
b
ined
Bidirectional
Control Inverse…
(Soedi
byo)
265
the battery a
nd DC b
u
s
g
enerated by t
he PV and
b
a
ttery is
conv
erted int
o
AC by an inve
rter
voltage distri
bution to the load [15]. Sub
s
ystem
s
of
the MPPT-Bidirection
al is sh
own in Fig
u
re
1.
Figure 1. Standard equival
ent circuit of a PV cell
2. Rese
arch
Metho
d
The PV mod
u
le con
s
ist of
multi cell
s which
gen
erate
DC volta
ge
whe
n
it is ex
posed to
light.
Gen
e
ral
l
y,
a
PV
mo
d
u
le can
b
e
co
mpri
sed
of 36
cells or 7
2
cells. The outp
u
t powe
r
of the
PV module
s
is affe
cted
b
y
light radiati
on a
nd te
mp
eratu
r
e. A l
o
ng
with the
i
n
crea
se
of li
gh
t
radiatio
n, the
greate
r
the
output po
we
r can
be ge
ne
rated by the
PV module a
nd vice ve
rsa
.
In
this pa
per,th
e 10 PV mo
dule
s
are u
s
ed in mi
crog
rid syste
m
. Each PV m
o
d
u
le po
we
r i
s
200
Watt, whi
c
h
are
connected in series
so that t
he total output power is
2000
Watts i
s
shown in
Table
1. By
conne
cting
in
seri
es,
the vo
ltage of
the P
V
modul
es
wi
ll incre
a
se
with the
num
be
r of
PV modul
es
con
n
e
c
ted i
n
seri
es.
Usin
g
stand
ard
e
qui
valent ci
rcuit
of a PV
cell
shown in
Fig
u
re
2, curre
n
t-voltage (I
-V)
cha
r
acteri
stic
equ
ation of
p
parallel stri
ngs with
s
s
e
rie
s
ce
lls pe
r st
ring i
s
develop
ed fro
m
(1) to (5
) a
s
belo
w
[1].
e
xp
1
(
1
)
(
2
)
ex
p
/
(
3
)
(
4
)
e
xp
/
1
(
5
)
Whe
r
e,
,
,
,
,
,
,
,
,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 2, February 201
6 : 264 – 272
266
Figure 2. Subsystem
s
of the MPPT-Bidirection
al
Table 1. PV Panel Spe
s
ification [21]
Parameter
Nilai
Maximu
m Po
w
e
r (Pmax
)
200 W
Voltag
e @ Pma
x
(Vm
p
)
24.5 V
Current @ Pma
x
(Imp)
8.16 A
Gura
ntee
d mi
ni
mu
m Pmax
182 W
Short-
circui
t Cu
rrent (Is
c
)
8.7 A
Ope
n
-circ
u
it V
o
ltage
(Voc
)
30.8 V
Tem
p
erat
ure co
efficie
n
t
of Vo
c
-(111 ±
10) mV/
o
C
Tem
p
erat
ure co
efficie
n
t
of Isc
(0.065 ± 0.
015)
%
/
o
C
NOC
T
2
47 ± 2
o
C
3. Modeling of Sepic Con
v
erter and MPPT Controll
er
3.1.
Sepic Conv
erter Mod
e
ling
Sepic conve
r
ter is the dev
elopme
n
t of a buc
k-boo
st
converte
r wi
th the same
function
that raisi
ng a
nd lowerin
g
the voltage. T
he differe
nce
is that the voltage
ge
ne
rated by the Sepic
c
onverter is
pos
itive. In this
paper, the SEPIC c
onv
erter is us
ed as an MPP
T
to optimiz
e
the
power o
u
tput
of PV Modu
le. Equation
(6) to
(1
0) a
r
e used to m
odelin
g sepic in Co
ntinuo
us
Con
d
u
c
tion
Mode [16]. Sepic
spe
c
ifica
t
ion and
de
si
gn paramete
r
s are
sho
w
n i
n
Table 2.
(
6
)
∆
(
7
)
∆
(8)
∆
(
9
)
∆
(
1
0
)
Switchin
g fre
quen
cy u
s
e
d
is
40 K
H
z t
o
mini
mi
ze
i
ndu
ctan
ce va
lue of
L1
an
d L2. By
using high-frequency output si
gnal
generated by t
he SEPIC
co
nverter output will be sm
ooth.
Overall
c
a
lculation of the SEPIC c
onverter is
almos
t
the s
a
me as
the c
a
lculation of the Buc
k
-
boo
st conve
r
ter.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Modeling and Sim
u
lation of MPPT-SEPIC Com
b
ined
Bidirectional
Control Inverse…
(Soedi
byo)
267
Table 2. SEPIC Spesificati
on and
Design Parameters
Parameter
S
y
mbol
Value
Unit
Input Voltage
Vin
245 V
Sw
itching Fr
equ
enc
y
fs
40 KHz
Output Voltage
Vo
400 V
Rated Output
Po
w
e
r
Po
2000
W
Curre
nt Ripple
∆
5%
A
Voltage Ripple
∆
5%
V
Inductor 1
L1
9.8 mH
Inductor 2
L2
9.8 mH
Coupling Capacitor
Cs
20 uH
Output Capacitor
Co
20 uH
3.2.
MPPT Contr
o
ller Modeling
The blo
ck
schematic of th
e ANFIS MPPT is
sho
w
n i
n
Figure 2. Data set for the ANFIS
is irradi
an
ce
and te
mpe
r
ature. Outp
ut for the
ANFIS is Iref
eren
ce. In
this
pape
r
e
a
ch
membe
r
ship
function con
s
ists of 7 triangle
s
so
that
the resulting
output is more preci
s
e a
nd
accurate. ANFIS is a
controller that
com
b
ine
s
the a
d
vantage
s p
o
ssessed
by
the fuzzy cont
roll
er
[22] and n
eural network, so fuzzy built
on ne
ural
net
work system as sho
w
n
i
n
Figure
3.
As with
neural net
wo
rk
system, A
N
FIS also co
ndu
cts trai
nin
g
data. Data
is obtai
ned
from the
curve
c
h
ar
ac
te
r
i
s
t
ics
PV mod
u
l
es
. T
h
e re
su
lts o
f
AN
F
I
S tr
ai
ning i
s
sho
w
n
in Fig
u
re 4.
Having
obtain
e
d
the right Ireference value, output
of ANFIS will be entered into th
e PI block to be com
pared
with
Ipv. After Ireference
compared
with Ipv, so e
rror will
produce and it will be forwarded to the
block
and generate P
W
M
duty c
y
c
l
e val
ue for switc
h
ing on the SEPIC c
onverter
Figure 3. ANFIS controlle
r Structure
Figur
e 4. Surface b
e
twe
en
two input
s an
d one
output
4.
KY In
v
e
rse Conv
erter M
odeling
Bidire
ctional
conve
r
ter is a
co
nverte
r th
at is
ca
pabl
e
of rai
s
ing
an
d
lowerin
g
the
voltage
in both
dire
ction
s
. Whe
n
bidi
re
ction
a
l c
onverte
r used to
chargi
ng th
e
ene
rgy
sto
r
age,
bidire
ction
a
l
conve
r
ter o
p
e
rating
on b
u
ck mod
e
o
r
lower the
voltage. Wh
en bidi
re
ctio
nal
conve
r
ter u
s
e
d
to di
scha
rgi
ng the
en
erg
y
storage,
bi
dire
ctional
co
nverter is op
erating
on
bo
ost
mode o
r
raise the voltage.
In this pa
per a bidire
ctio
n
a
l co
nverte
r i
s
u
s
ed to
sto
r
e excess p
o
w
er
gene
rated
by the PV mod
u
les i
n
to en
ergy stor
age
a
nd po
we
r
sho
r
tage
s
whe
n
the PV mod
u
l
e
s
to supply the load, the ene
rgy storage will help m
eet the need of P
V
module
s
in the power loa
d
.
Bidire
ctional
conve
r
ter
ha
s two
switch
es
whi
c
h
are
use
d
to tu
rn
a bu
ck o
r
b
oost m
ode
a
nd
cha
nge
the
dire
ction
of
cu
rrent flo
w
cha
r
gin
g
and
discha
rging
of the
ene
rgy
sto
r
age.
Bidire
ctional
conve
r
ter
circuit is sho
w
n i
n
Fig. 5.
Bidirection
a
l conv
erter
sp
ecifi
c
ation an
d de
sign
para
m
eters
i
s
sho
w
n
in Table 3.
Eq
uation (11
)
t
o
(1
2) are u
s
ed
to mo
de
ling Bidirecti
onal
conve
r
ter in
Contin
ou
s Co
ndu
ction Mod
e
[18, 19].
∆
(
1
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 2, February 201
6 : 264 – 272
268
∆
∆
(
1
2
)
.
Figure 5. KY Inverse co
nve
r
ter
Table 3. Bidirection
a
l Co
nverter
Spe
c
ification and
De
sign Pa
ramet
e
rs
Parameter
S
y
mbol
Value
Unit
DC link Voltage
VDC
400 V
Output voltage, b
a
tter
y
side
Vo
240 V
Output voltage
ripple
∆
5%
V
Sw
itching Fr
equ
enc
y
fs
40 KHz
Inductor curr
ent r
i
pple
∆
5%
A
Inductance
L
6 mH
Capacitance 1
C1
200 uF
Capacitance 2
C2
200 uF
5. In
v
e
rter Modeling And
Con
t
rol
A singl
e p
h
a
s
e i
n
verte
r
h
a
s t
w
o a
r
m
s
and
on e
a
ch
arm
co
nsi
s
ts
of two
switch
(IGBT).
By usin
g the
tech
niqu
es
of co
ntrol
Pul
s
e
wi
dth
mo
dulated
(P
WM) d
c
bu
s vo
ltage of
400
Vdc
conve
r
ted to
220VAC
by a
d
justin
g the
modulatio
n
in
dex on th
e calcul
ation of t
he inve
rter
with
the rest
rictio
n
s
sh
ould n
o
t be more tha
n
one. This
pape
r uses a
single p
h
a
s
e with frequ
e
n
cy
inverter 5
0
Hz, 220Va
c
. Specifi
c
ation a
nd de
si
gn p
a
r
amete
r
s
are
sho
w
n in Ta
ble 4. Equati
on
(13
)
to (15
)
are use
d
to cal
c
ulate
d
value
from modulat
ion index [20]
.
√
(
1
3
)
Equation (14) to (15) a
r
e u
s
ed to calcula
t
ed value fro
m
LC filter
(
1
4
)
(
1
5
)
LC filters are
use
d
to filter harm
oni
cs, so
the cu
rrent
or voltage
wa
veform gen
erated by
the inverter
become
s
sin
u
soi
dal. LC fi
lter is a f
ilter that is com
m
only use
d
in the inverte
r
to
redu
ce h
a
rm
onics.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Modeling and Sim
u
lation of MPPT-SEPIC Com
b
ined
Bidirectional
Control Inverse…
(Soedi
byo)
269
Table 4. Singl
e Phase Inve
rter Spe
c
ificat
ion And De
si
gn Param
e
ters
Parameter
S
y
mbol
Value
Unit
DC link Voltage
VDC
400 V
Ouput voltage
VAC
220 V
Sw
itching Fr
equ
enc
y
fs
10 KHz
Inductance Filter
L
1.36 mH
Capacitance Filter
C
6.37 uF
6.
Simulation Result and
Discussio
n
s
The
simul
a
tion i
s
pe
rformed u
s
in
g 1
0
PV mod
u
l
e
in
se
rie
s
with total
po
wer outp
u
t
2000
W at 2
4
5
V voltage. T
he en
ergy
st
orag
e u
s
ing
20 batte
ry at 12V 10Ah
are se
rie
s
, so that
the maximum
power
gen
erated 24
00
W
at 240V. The
power
at full load i
s
20
00
W. tempe
r
atu
r
e
input data a
s
sho
w
n in T
a
b
l
e 6. ANFIS
method irra
di
ance re
sp
on
ses at 10
00
W / m
2
is shown i
n
Figure 6.
To test the
ANFIS metho
d
in finding
the
maximum p
o
w
er point
of testing th
e inp
u
t data
irra
dian
ce va
riations
ran
g
in
g from 50
W /
m
2
up to 10
00W / m
2
is
shown in Tabl
e 5. In additi
on
,
the test is also ca
rri
ed ou
t with variations of
whe
n
the PV modules po
we
r is greate
r
than
the
power
co
nsu
m
ption of th
e
load, the
ba
ttery will
b
e
cha
r
gin
g
b
e
cause
the bidi
rectio
nal of KY
inverse co
nverter i
s
ope
ra
ting in buck
mode.
Table 5. Vari
ation Irra
dian
ce Effect
S
(
W / m
2
)
Pmax
(
W
a
t
t)
Pp
v
(
W
a
t
t)
AN
F
I
S
(%
)
Error
1000
2000
1998
99.90
0.001
950 1901
1899
99.89
0.001
900 1802
1800
99.89
0.001
850 1703
1701
99.88
0.001
800 1603
1601
99.88
0.001
750 1503
1500
99.80
0.002
700 1403
1400
99.79
0.002
650 1302
1300
99.85
0.002
600 1200
1196
99.67
0.003
550 1098
1094
99.64
0.004
500 997
994
99.70
0.003
450 895
892
99.66
0.003
400 793
790
99.62
0.004
350 690
688
99.71
0.003
300 588
583
99.15
0.009
250 486
482
99.18
0.008
200 385
381
98.96
0.008
150 284
282
99.30
0.007
100 185
183
98.92
0.011
50 89
87
97.75
0.011
Figure 6. MPPT Respon
se
s usi
ng ANFI
S
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 2, February 201
6 : 264 – 272
270
Table 6. Vari
ation Temp
erature Effect
T(
0
C)
Pmax
(
W
a
t
t)
Pp
v
(
W
a
t
t)
AN
F
I
S
(%
)
Error
40 1879
1877
99.89
0.001
39 1887
1885
99.89
0.001
38 1895
1893
99.89
0.001
37 1903
1901
99.89
0.001
36 1911
1910
99.95
0.001
35 1919
1917
99.90
0.001
34 1927
1925
99.90
0.001
33 1935
1934
99.95
0.001
32 1946
1942
99.79
0.002
31 1952
1950
99.90
0.001
30 1960
1958
99.90
0.001
29 1968
1965
99.85
0.002
28 1976
1974
99.90
0.001
27 1984
1982
99.90
0.001
26 1992
1990
99.90
0.001
25 2000
1998
99.90
0.001
24 2008
2006
99.90
0.001
23 2016
2014
99.90
0.001
22 2024
2022
99.90
0.001
21 2032
2030
99.90
0.001
Whe
n
the
P
V
po
wer i
s
l
e
ss tha
n
th
e
po
we
r
con
s
umed
by the
load,
battery will b
e
discha
rgin
g b
e
ca
use bidi
re
ctional
co
nve
r
ter i
s
op
erating in b
o
o
s
t mode. In thi
s
simulatio
n
S
O
C
(State Of
Ch
arge
)
of the
battery i
s
9
0
%
and
gi
ve
s
a chan
ce
to l
ook the
ch
arge a
nd
disch
a
rge
pro
c
e
ss of th
e battery. Ch
argin
g
and di
sc
harging p
r
o
c
e
ss i
s
sh
own in Figure 7.
Figure 7. Cha
r
ging, Di
scha
rging b
a
ttery and DC Lin
k
Voltage
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEECS
ISSN:
2502-4
752
Modeling and Sim
u
lation of MPPT-SEPIC Com
b
ined
Bidirectional
Control Inverse…
(Soedi
byo)
271
Test
s on si
ng
le pha
se inve
rter with
a fre
quen
cy of 10
KHz i
s
by varying the load
at 50%
load a
nd at f
u
ll load, to
se
e wh
ether th
e gen
erate
d
voltage 22
0VAC is fixed in
accordan
ce
with
the re
sults
of the cal
c
ul
ation of
the in
d
e
x modulatio
n. Testing
wi
th load vari
ations to
se
e the
respon
se inv
e
rter o
u
tput current and vol
t
age is sho
w
n
in Figure 8.
Figure 8. Voltage an
d cu
rrent In
verter d
u
ring va
riatio
n load
7. Conclu
sion
Integrated
su
bsyste
m MPPT-Bidire
c
tio
nal in
a microgrid
system
has bee
n prese
n
ted.
The
simulatio
n
re
sult
s sho
w
that the i
n
tegratio
n
of the mi
cro
g
rid
system i
s
ru
nning
pro
p
e
r
l
y
.
Maximizatio
n
of the output powe
r
of PV module
wi
th
ANFIS prod
uce
s
very hig
h
efficien
cy and
stable o
n
the
irradi
an
ce variation
s
an
d
temperatu
r
e.
Cha
r
ging a
n
d
discha
rgin
g
pro
c
e
ss g
o
e
s
well an
d yielding the corresp
ondi
ng wave. The re
sulting DC voltage bu
s is
also a
b
le to be
maintaine
d
at
a
sp
ecifie
d v
o
ltage. T
he i
n
verter
is
a
b
l
e
to maintain
the output voltage with lo
ad
var
i
ations
.
Referen
ces
[1]
A Labo
uret, M Villoz. So
lar Ph
otovolta
ic Ener
g
y
. L
ond
on: IET. 2010.
[2]
BH Khan. No
n
conve
n
tio
nal e
nerg
y
so
urce
.
Ed. 1.
T
a
ta Mc
Gra
w
H
ills. 2
0
0
6
.
[3]
RA Messen
ger
, J Ventre. Photovoltaic S
y
ste
m
s Engin
eeri
n
.
2
nd
Edition. W
ile
y
I
n
terscie
n
c
e
. 2003.
[4]
E
T
r
ishan, L Patrick. Compari
s
on of Photov
ol
taic Arra
y M
a
ximum Po
w
e
r
Point T
r
acking T
e
chniques
.
IEEE Trans.
Energy C
onvers
i
on
. 200
7; 22(2)
.
[5]
R Hu
gu
es, D
F
abrizio, F
J
u
li
en, P Gi
ovan
n
i
, S Giova
n
n
i
,
M Jea
n
-Phi
lip
p
e
, P Ser
ge. A
PSO-Base
d
Globa
l MPPT
T
e
chnique
for
Distribut
ed PV
Po
w
e
r
Gen
e
r
a
tion.
IEEE Tr
ans. Industrial Electronics
.
201
5; 62(2).
[6]
A Iqbal, H Abu-
Rub, M Ahme
d
.
Adaptive N
e
u
r
o-F
u
zz
y
Infer
e
nce Syste
m
ba
sed Maxi
mu
m Pow
e
r Poin
t
Tracking of A Solar PV Module
. IEEE Internation
a
l En
erg
y
Confer
ence. 2
010.
[7]
G Rog
e
r, P J
u
l
i
an
o, H
Hel
i
o, I
Joh
n
ins
on. A
Ma
ximum P
o
w
e
r Po
int T
r
acking
w
i
th P
a
ra
lle
l Co
nn
ectio
n
for PV Stand-Alon
e Appl
icati
o
ns.
IEEE Trans. Industrial Ele
c
tronics
. 200
8; 55(7).
[8]
W
T
s
ai-F
u, K
Chia-
L
i
ng, S Kun-H
an, C Yu
n
g
-Ru
e
i,
L Yih-
Der. Integrati
o
n an
d Operati
o
n of a Sin
g
le-
Phase
Bid
i
recti
ona
l Invert
er
w
i
th T
w
o
Buck/
B
oost MPPT
s for DC-D
i
stributi
on A
p
lic
atio
ns.
IEEE
T
r
ans
.
Power Electronics
. 2013; 2
8
(1
1).
[9]
D Moumit
a, A Vivek.
A Nov
e
l
Contro
l Strate
gy for Stan
d-al
one S
o
l
a
r Systems w
i
th E
n
h
a
n
ced B
a
tter
y
Life
. T
h
ird Internatio
nal C
onfer
ence. 20
13.
[10]
M T
an, S Bran
d
y
,
M Osama.
Dis
tribut
ed
Co
ntrol
of H
y
br
id
AC-DC M
i
crogr
id
w
i
th S
o
l
a
r e
nerg
y
, E
ner
g
y
Storage, a
nd C
r
itical L
oad.
IEEE.
2014.
[11]
K De
ep
esh, H
Nira
n
j
an.
B
i
di
rection
a
l
DC/D
C
C
onverter
S
ystem for So
l
a
r a
n
d
F
uel
C
e
ll
Pow
e
re
d
Hybrid El
ectric
Vehic
l
e
. Intern
ation
a
l Co
nfere
n
ce. 201
4.
[12]
P Muoka, M
Haq
ue, A Gar
goom, M Ne
g
nevitsk
y
.
M
o
d
e
lin
g a
nd Sim
u
lati
on of a S
epic C
onv
erter
Based Ph
otovo
l
taic S
y
st
em
w
i
th Batter
y
Ener
g
y
Stor
age.
IEEE
. 2013.
[13]
P Muoka, M Haqu
e, A Gargo
o
m, M Negnev
i
t
sk
y
.
Model
in
g, Simulati
on an
d Hard
w
a
re Implem
entatio
n
of a PV Po
w
e
r Plant in a D
i
stri
buted En
erg
y
Generati
on S
ystem.
IEEE.
20
13.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 25
02-4
752
IJEECS
Vol.
1, No. 2, February 201
6 : 264 – 272
272
[14]
P Muoka, M
Haq
ue, A Gar
goom, M N
e
g
nevitsk
y
.
Mod
e
lin
g a
nd
E
x
p
e
riment
al V
a
li
d
a
tion
of a
DS
P
Contro
lle
d Pho
t
ovoltaic Po
w
e
r
S
y
stem
w
i
th B
a
tter
y
En
erg
y
Storage.
IEEE
. 2013.
[15]
Soed
ib
yo,
Rib
ka Steph
an
i, Aprile
l
y
Aj
en
g
F
i
tri
ana, R
a
tih
Mar’atus S
h
o
l
iha
h
, Primad
it
ya Sul
i
stijo
no
,
Suy
anto. Po
w
e
r Optimization fo
r Ada
p
tiv
e
W
i
nd T
u
rbi
ne: Cas
e
Stu
d
y
on Isl
a
n
d
e
d
an
d Grid
Con
necte
d.
Internati
ona
l Rev
i
ew
of Electrical
Engin
eeri
ng (I
REE)
. 2014; 9(
4): 835-8
43.
[16]
M F
a
rhat, L La
ssaad.
Adv
anc
ed ANF
I
S-MPPT
Control Al
g
o
rith
m for Sun
s
hin
e
Photov
ol
taic Pu
mpi
n
g
System
s.
Inter
natio
nal C
onfer
ence R
e
n
e
w
a
b
l
e Ener
gies
an
d Vehic
u
lar T
e
chno
log
y
. 2
012
.
[17]
DW Hart. Pow
e
r Electronics.
Ne
w
York: McGra
w
-
Hil
l. 201
1.
[18]
B Hauk
e. Basi
c Calcu
l
ati
on o
f
a Buck Co
nv
erte
r’s Po
w
e
r
Stage. T
e
xas I
n
struments, D
a
llas, T
e
xas,
T
e
ch. Rep. SLVA477. 2
011.
[19]
B Hauk
e. Basi
c Calc
ulati
on
o
f
a Boost C
o
n
v
erte
r’s Po
w
e
r
Stage. T
e
xas
Instruments, D
a
llas, T
e
xas,
T
e
ch. Rep. SLVA372B. 20
10
.
[20]
MH Rashi
d
. Po
w
e
r El
ectroni
cs: Circuit, Devices, and Ap
plicati
ons.
3
rd
ed. Ne
w
Jers
e
y
: Pe
ars
o
n
educ
atio
n, Inc.
200
4.
[21]
BP Solar. SX3
200 2
00 W
a
tt Photovo
l
taic M
odu
le. 20
07.
[22]
Soed
ib
yo, F
e
b
y
A
g
u
ng P
a
m
u
ji, Moc
ham
ad
Ashari.
Gri
d
Qualit
y H
y
b
r
id
Po
w
e
r
S
y
ste
m
Contro
l of
Microh
ydr
o
, W
i
nd T
u
rbine
an
d F
uel C
e
l
l
Us
ing F
u
zz
y
Log
i
c
.
In
te
rn
a
t
i
o
na
l R
e
vi
e
w
on
Mo
d
e
l
l
i
n
g
and
Simulati
ons (I.RE.MO.S). 2013; 6(4): 127
1-1
278.
[23]
Soed
ib
yo, F
e
b
y
Agu
ng Pam
u
ji, Mocham
ad
Ashar
i. Contr
o
l Desi
gn of W
i
nd T
u
rbine S
y
stem Usi
n
g
F
u
zz
y
L
o
g
i
c
Contro
ller for
Middl
e Vo
ltag
e Grid.
T
E
LK
OMNIKA Indo
nesi
an Jo
urn
a
l of Electric
al
Engi
neer
in
g.
2015; 13(
3): 476
-482.
Evaluation Warning : The document was created with Spire.PDF for Python.