I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
p
u
t
er
Science
Vo
l.
9
,
No
.
2
,
Feb
r
u
ar
y
2
0
1
8
,
p
p
.
38
7
~3
9
4
I
SS
N:
2
5
0
2
-
4
7
5
2
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
ee
cs.v
9
.
i2
.
p
p
3
8
7
-
394
387
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijeec
s
Ex
tended
FTO
PS
IS w
ith
Dista
nce
a
nd Set
T
heo
retic
-
Ba
sed
Si
m
ila
ri
ty M
ea
sure
No
r
H
a
s
hi
m
a
h Sul
a
i
m
a
n
,
Da
ud
M
o
ha
m
a
d,
J
a
m
ila
h M
o
hd
Sh
a
rif
f
,
Sh
a
rif
a
h Aniza
S
a
y
ed
Ah
m
a
d,
K
a
m
ila
h A
bd
ul
la
h
F
a
c
u
lt
y
o
f
Co
m
p
u
ter an
d
M
a
th
e
m
a
ti
c
a
l
S
c
ien
c
e
s,
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
A
R
A
,
4
0
4
5
0
S
h
a
h
A
la
m
,
S
e
lan
g
o
r
Da
ru
l
E
h
sa
n
,
M
A
LAYSIA
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
A
ug
9
,
2
0
1
7
R
ev
i
s
ed
No
v
2
0
,
2
0
1
7
A
cc
ep
ted
J
an
14
,
2
0
1
8
Co
m
p
a
rin
g
f
u
z
z
y
n
u
m
b
e
rs
is
a
n
e
ss
e
n
ti
a
l
p
ro
c
e
ss
in
d
e
d
u
c
in
g
th
e
o
u
t
p
u
t
o
f
m
a
n
y
f
u
z
z
y
d
e
c
isio
n
m
a
k
in
g
m
e
th
o
d
s.
O
n
e
o
f
th
e
c
o
m
p
a
riso
n
m
e
th
o
d
s
c
o
m
m
o
n
l
y
u
se
d
is
b
y
u
sin
g
sim
i
larity
m
e
a
su
re
.
T
h
e
m
a
in
a
d
v
a
n
tag
e
o
f
th
e
sim
il
a
rit
y
m
e
a
su
re
o
v
e
r
o
th
e
r
a
p
p
ro
a
c
h
e
s
is
it
s
a
b
il
it
y
to
m
in
i
m
ize
th
e
lo
ss
o
f
in
f
o
rm
a
ti
o
n
in
t
h
e
c
o
m
p
u
tatio
n
a
l
p
ro
c
e
ss
.
S
e
v
e
ra
l
sim
il
a
rit
y
m
e
a
s
u
re
s
h
a
v
e
b
e
e
n
a
p
p
li
e
d
e
ff
e
c
ti
v
e
l
y
in
f
u
z
z
y
d
e
c
isio
n
m
a
k
in
g
m
e
th
o
d
s.
In
th
i
s
p
a
p
e
r,
a
n
e
w
si
m
il
a
rit
y
m
e
a
su
re
b
a
se
d
o
n
t
h
e
g
e
o
m
e
tri
c
d
istan
c
e
,
th
e
c
e
n
ter
o
f
g
ra
v
it
y
,
H
a
u
sd
o
rf
d
istan
c
e
a
n
d
t
h
e
se
t
th
e
o
re
ti
c
sim
il
a
rit
y
f
o
r
m
u
la
k
n
o
w
n
a
s
th
e
Dic
e
si
m
il
a
rit
y
in
d
e
x
a
r
e
in
c
o
rp
o
ra
te
d
in
to
t
h
e
Ex
ten
d
e
d
F
u
z
z
y
T
e
c
h
n
iq
u
e
f
o
r
Ord
e
r
P
re
f
e
re
n
c
e
b
y
S
i
m
il
a
rit
y
to
Id
e
a
l
S
o
lu
ti
o
n
(
F
T
OP
S
IS
)
m
e
th
o
d
p
a
rti
c
u
larly
in
c
a
lcu
latin
g
th
e
c
lo
se
n
e
ss
c
o
e
ff
icie
n
ts.
T
h
is
si
m
il
a
rit
y
m
e
a
su
re
is
in
fa
v
o
r
o
f
o
th
e
rs
a
s
it
is
a
b
le
to
d
isc
ri
m
in
a
te
t
w
o
si
m
il
a
r
sh
a
p
e
f
u
z
z
y
n
u
m
b
e
rs
e
ff
e
c
ti
v
e
l
y
w
it
h
tw
o
d
iff
e
re
n
t
lo
c
a
ti
o
n
s.
A
v
a
li
d
a
ti
o
n
p
ro
c
e
ss
is
c
a
rried
o
u
t
b
y
i
m
p
le
m
e
n
ti
n
g
th
e
p
ro
p
o
se
d
p
r
o
c
e
d
u
re
o
f
th
e
Ex
ten
d
e
d
F
T
OP
S
IS
w
it
h
th
e
n
e
w
si
m
il
a
ri
ty
m
e
a
su
re
in
so
lv
in
g
a
su
p
p
li
e
r
se
lec
ti
o
n
p
ro
b
lem
a
n
d
th
e
ra
n
k
in
g
o
u
tco
m
e
is
th
e
n
c
o
m
p
a
re
d
w
it
h
th
e
Ex
ten
d
e
d
F
T
OP
S
IS
w
it
h
o
th
e
r
e
x
isti
n
g
sim
il
a
rit
y
m
e
a
su
re
.
T
h
e
re
su
lt
sh
o
w
s
th
a
t
th
e
Ex
ten
d
e
d
F
T
OP
S
I
S
w
it
h
th
e
p
ro
p
o
se
d
sim
il
a
rit
y
m
e
a
su
re
g
iv
e
s
a
c
o
n
siste
n
t
re
su
lt
w
it
h
o
u
t
re
d
u
c
i
n
g
a
n
y
in
f
o
rm
a
ti
o
n
i
n
th
e
c
o
m
p
u
tatio
n
a
l
p
r
o
c
e
ss
.
K
ey
w
o
r
d
s
:
FT
OP
SIS
Fu
zz
y
Nu
m
b
er
s
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
No
r
Hash
i
m
ah
Su
la
i
m
a
n
,
Facu
lt
y
o
f
C
o
m
p
u
ter
an
d
Ma
t
h
e
m
a
tical
Scie
n
ce
s
,
U
n
i
v
er
s
iti
T
ek
n
o
lo
g
i M
A
R
A
,
4
0
4
5
0
Sh
ah
A
la
m
,
Sela
n
g
o
r
D
ar
u
l E
h
s
a
n
,
M
AL
A
Y
SI
A
.
E
m
ail:
n
h
a
s
h
i
m
a
@
t
m
s
k
.
u
it
m
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
Dec
is
io
n
m
a
k
i
n
g
(
DM
)
i
n
f
u
zz
y
e
n
v
ir
o
n
m
e
n
t
r
eq
u
ir
es
e
x
t
en
s
i
v
e
u
s
e
o
f
f
u
zz
y
n
u
m
b
er
s
.
R
ati
n
g
o
f
alter
n
ati
v
es
an
d
cr
iter
ia
w
e
ig
h
ts
d
eter
m
i
n
atio
n
ar
e
co
m
m
o
n
l
y
e
x
p
r
ess
ed
in
ter
m
s
o
f
f
u
z
z
y
lin
g
u
is
tic
v
al
u
es
d
ef
in
ed
m
at
h
e
m
atica
ll
y
b
y
f
u
zz
y
n
u
m
b
er
s
.
D
u
e
to
t
h
i
s
r
ep
r
esen
tat
io
n
,
co
m
p
ar
is
o
n
o
f
f
u
z
z
y
n
u
m
b
er
s
b
ec
o
m
e
a
c
r
u
cial
ele
m
e
n
t
i
n
s
o
lv
i
n
g
a
DM
p
r
o
b
lem
.
Si
m
ilar
it
y
m
ea
s
u
r
e
is
a
v
er
y
u
s
ef
u
l
m
ea
n
s
f
o
r
th
e
p
u
r
p
o
s
e
o
f
co
m
p
ar
i
n
g
f
u
zz
y
n
u
m
b
er
s
as
i
t
h
a
s
t
h
e
ad
v
an
tag
e
o
f
m
in
i
m
i
zin
g
t
h
e
lo
s
s
o
f
i
n
f
o
r
m
atio
n
i
n
th
e
co
m
p
u
tatio
n
a
l
p
r
o
ce
s
s
[
1
]
.
E
ar
ly
w
o
r
k
s
o
n
f
u
zz
y
s
i
m
ilar
it
y
m
ea
s
u
r
e
s
ca
n
b
e
f
o
u
n
d
i
n
[
2
]
an
d
[
3
]
.
Var
io
u
s
f
u
zz
y
s
i
m
ilar
it
y
m
ea
s
u
r
es
w
h
ic
h
tak
e
i
n
to
co
n
s
id
er
atio
n
f
ac
to
r
s
li
k
e
d
is
ta
n
c
e,
ce
n
ter
o
f
g
r
av
it
y
,
s
p
r
ea
d
,
J
ac
ca
r
d
in
d
ex
,
Dice
s
i
m
ilar
it
y
i
n
d
ex
,
g
eo
m
etr
ic
m
ea
n
an
d
g
eo
m
etr
ic
s
h
ap
e
ch
a
r
ac
ter
is
tics
li
k
e
h
ei
g
h
t,
ar
ea
a
n
d
p
ar
am
eter
h
av
e
b
ee
n
in
tr
o
d
u
ce
d
in
th
e
li
ter
atu
r
e
[
4
-
1
0
]
.
R
ec
en
tl
y
[
1
1
]
in
tr
o
d
u
ce
d
a
g
en
er
alize
d
s
i
m
ilar
i
t
y
m
ea
s
u
r
e
t
h
at
ca
n
m
ea
s
u
r
e
m
o
s
t
t
y
p
es
o
f
f
u
zz
y
n
u
m
b
er
s
,
m
ea
n
w
h
i
le
[
1
2
]
p
r
o
p
o
s
ed
a
s
i
m
ilar
it
y
w
it
h
m
u
ltip
le
f
ea
t
u
r
es
to
o
v
er
co
m
e
s
h
o
r
tco
m
in
g
s
o
f
s
o
m
e
ex
i
s
ti
n
g
s
i
m
ilar
it
y
m
ea
s
u
r
es.
Si
m
i
lar
it
y
m
ea
s
u
r
e
h
as
b
ee
n
ap
p
lied
to
s
o
lv
e
p
r
o
b
le
m
s
i
n
v
ar
io
u
s
f
ield
s
.
Si
m
ilar
it
y
m
ea
s
u
r
e
h
a
s
b
ee
n
in
co
r
p
o
r
ated
in
th
e
d
ev
elo
p
m
e
n
t
o
f
a
f
u
zz
y
k
n
o
w
le
d
g
e
b
ased
s
y
s
te
m
[
1
3
]
.
R
ef
[
1
4
]
in
tr
o
d
u
ce
d
an
d
u
tili
ze
d
s
i
m
ilar
it
y
m
ea
s
u
r
e
i
n
m
atc
h
i
n
g
f
i
n
g
er
p
r
in
t
i
m
a
g
e.
R
is
k
a
n
al
y
s
is
p
r
o
b
le
m
s
h
av
e
b
ee
n
s
o
l
v
ed
b
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
2
,
Feb
r
u
ar
y
2
0
1
8
:
3
8
7
–
394
388
s
ev
er
al
s
i
m
ilar
it
y
ap
p
r
o
ac
h
es
[
8
,
1
2
,
1
5
]
.
A
f
o
r
ec
asti
n
g
p
r
o
b
le
m
h
as
b
ee
n
s
tu
d
ied
b
y
[
1
6
]
w
h
er
e
a
co
m
b
in
ed
m
et
h
o
d
o
f
f
u
zz
y
ti
m
e
s
er
ie
s
an
d
s
i
m
ilar
it
y
m
ea
s
u
r
e
is
u
s
e
d
to
p
r
e
d
ict
th
e
f
u
tu
r
e
s
to
c
k
v
alu
e
s
.
I
n
ad
d
itio
n
,
s
i
m
ilar
it
y
m
ea
s
u
r
es
h
av
e
al
s
o
b
ee
n
in
teg
r
ated
i
n
s
y
s
te
m
d
ev
elo
p
m
e
n
t
w
h
ich
i
n
cl
u
d
e
a
r
ec
o
m
m
e
n
d
er
s
y
s
te
m
f
o
r
p
r
o
d
u
ct
clas
s
i
f
icatio
n
[
1
7
]
,
Fu
zz
y
L
o
g
ic
-
De
m
p
s
ter
T
h
eo
r
y
s
y
s
te
m
[
1
8
]
a
n
d
a
s
y
s
te
m
f
o
r
d
eter
m
in
i
n
g
f
u
zz
y
r
eg
io
n
m
er
g
i
n
g
o
n
i
m
ag
e
s
e
g
m
e
n
tat
io
n
[
1
9
]
.
T
h
e
ap
p
licatio
n
s
o
f
s
i
m
i
lar
it
y
m
e
asu
r
es
i
n
r
an
k
i
n
g
d
ec
is
io
n
alter
n
ati
v
es
in
DM
m
et
h
o
d
s
h
av
e
also
b
ee
n
e
x
p
lo
r
ed
b
y
m
a
n
y
r
esear
c
h
er
s
,
in
p
ar
ticu
lar
,
t
h
e
FT
OP
SIS
h
as
b
ee
n
t
h
e
f
o
cu
s
o
f
att
e
n
tio
n
.
Si
m
ilar
it
y
f
u
n
cti
o
n
s
[
1
,
2
0
-
2
1
]
h
av
e
also
b
ee
n
i
n
teg
r
ated
i
n
v
ar
ian
ts
o
f
FT
OP
SIS
lik
e
th
e
E
x
te
n
d
ed
FT
O
P
SIS
an
d
th
e
Mo
d
if
ied
FT
O
P
SIS
w
h
ic
h
t
h
en
w
er
e
ap
p
lied
to
s
o
lv
e
s
u
p
p
lier
s
elec
tio
n
p
r
o
b
lem
s
.
R
ef
[
2
2
]
in
tr
o
d
u
ce
d
a
s
i
m
ilar
i
t
y
m
ea
s
u
r
e
b
ased
o
n
th
e
g
e
n
e
r
alize
d
Ł
u
k
asie
w
icz
s
tr
u
ct
u
r
e
in
FT
OP
SIS
th
at
e
n
h
an
ce
s
p
aten
t r
an
k
in
g
r
es
u
lts
.
Dis
ta
n
ce
an
d
s
et
t
h
eo
r
etic
b
as
ed
s
i
m
ilar
it
y
m
ea
s
u
r
e
p
r
o
p
o
s
e
d
b
y
[
1
0
]
h
as
th
e
ab
ili
t
y
to
d
i
s
cr
i
m
i
n
ate
t
w
o
s
i
m
ilar
s
h
ap
e
f
u
zz
y
n
u
m
b
er
s
ef
f
ec
tiv
e
l
y
w
it
h
t
w
o
d
if
f
er
en
t
lo
ca
tio
n
s
.
T
h
e
p
er
f
o
r
m
an
c
e
o
f
th
e
m
ea
s
u
r
e
i
n
d
eter
m
in
i
n
g
th
e
s
i
m
ilar
it
y
d
eg
r
ee
s
o
f
co
m
p
ar
ed
g
en
er
ali
ze
d
tr
ap
ez
o
id
al
f
u
zz
y
n
u
m
b
er
s
is
f
o
u
n
d
to
b
e
co
m
p
ar
ab
le
w
it
h
s
o
m
e
e
x
is
t
in
g
m
ea
s
u
r
e
s
.
I
n
t
h
is
p
ap
er
,
th
e
s
i
m
i
lar
it
y
m
ea
s
u
r
e
i
s
i
n
co
r
p
o
r
ated
in
th
e
E
x
ten
d
ed
FT
OP
SIS
b
ase
d
d
ec
is
io
n
m
a
k
i
n
g
[
1
]
s
p
ec
if
ica
ll
y
i
n
ca
lc
u
lat
in
g
t
h
e
clo
s
e
n
ess
co
e
f
f
ic
ien
t
s
o
f
d
ec
is
io
n
alter
n
ati
v
es.
I
m
p
le
m
en
tatio
n
o
f
th
e
n
e
w
d
ec
is
io
n
m
ak
in
g
p
r
o
ce
d
u
r
e
i
n
s
o
l
v
i
n
g
a
s
u
p
p
lier
s
elec
tio
n
p
r
o
b
lem
i
n
a
s
u
p
p
l
y
ch
ai
n
s
y
s
te
m
ad
o
p
ted
f
r
o
m
[
1
]
is
t
h
en
ca
r
r
ied
o
u
t
to
in
v
est
ig
ate
t
h
e
co
n
s
i
s
te
n
c
y
o
f
th
e
r
an
k
i
n
g
r
esu
l
ts
.
2.
P
RE
L
I
M
I
NARIE
S
I
n
t
h
is
s
ec
tio
n
,
a
n
e
w
d
ec
i
s
io
n
m
a
k
i
n
g
(
DM
)
p
r
o
ce
d
u
r
e
is
p
r
o
p
o
s
ed
w
h
er
eb
y
t
h
e
s
i
m
ilar
it
y
m
ea
s
u
r
e
b
y
[
1
0
]
is
i
n
teg
r
ated
i
n
to
th
e
ex
ten
d
ed
FT
OP
SIS
p
r
o
ce
d
u
r
e
[
1
]
.
So
m
e
d
ef
i
n
itio
n
s
r
elate
d
to
th
e
g
e
n
er
alize
d
tr
ap
ez
o
id
al
f
u
zz
y
n
u
m
b
er
s
(
G
T
FNs
)
ar
e
g
iv
en
as
f
o
llo
w
s
.
Def
ini
t
io
n 1
[
2
3
]
A
g
e
n
er
alize
d
tr
ap
ez
o
id
al
f
u
zz
y
n
u
m
b
er
(
GT
FN)
A
a
a
a
a
A
~
4
3
2
1
:
,
,
,
~
is
a
f
u
zz
y
s
et
d
ef
i
n
ed
b
y
a
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
]
,
[
:
)
x
(
A
~
1
0
w
h
er
e
o
t
h
e
r
w
i
s
e
,
a
x
a
,
a
a
a
x
a
x
a
,
a
x
a
,
a
a
a
x
x
A
~
A
~
A
~
A
~
0
4
3
4
3
4
3
2
2
1
1
2
1
(
1
)
s
u
c
h
th
a
t
4
3
2
1
a
,
a
,
a
,
a
,
4
3
2
1
a
a
a
a
an
d
1
0
,
A
~
.
I
n
p
ar
ticu
lar
,
f
o
r
1
A
~
,
A
~
is
ca
lled
a
t
r
ap
ez
o
id
al
f
u
zz
y
n
u
m
b
er
i
f
4
3
2
1
a
a
a
a
,
a
tr
ian
g
u
la
r
f
u
zz
y
n
u
m
b
er
i
f
4
3
2
1
a
a
a
a
,
an
d
is
a
s
i
n
g
le
to
n
i
f
4
3
2
1
a
a
a
a
.
Fig
u
r
e
1
s
h
o
w
s
a
g
r
ap
h
ical
r
ep
r
esen
tatio
n
o
f
a
GT
FN.
Fig
u
r
e
1
.
T
h
e
Gr
ap
h
ical
R
ep
r
esen
tat
io
n
o
f
GT
FN
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
E
xten
d
ed
F
TOPS
I
S
w
ith
Dis
ta
n
ce
a
n
d
S
et
Th
eo
r
etic
-
B
a
s
ed
S
imila
r
ity
Mea
s
u
r
e
(
N
o
r
Ha
s
h
i
ma
h
S
u
la
ima
n
)
389
Def
ini
t
io
n 2
[
2
4
]
Op
er
atio
n
s
o
n
t
w
o
GT
FNs
A
~
:
a
,
a
,
a
,
a
A
~
4
3
2
1
an
d
B
~
;
b
,
b
,
b
,
b
B
~
4
3
2
1
.
a)
A
d
d
itio
n
:
B
~
A
~
,
m
i
n
(
;
b
a
,
b
a
,
b
a
,
b
a
B
~
A
~
4
4
3
3
2
2
1
1
b
)
Mu
ltip
licatio
n
:
)
,
(
m
i
n
;
b
a
,
b
a
,
b
a
,
b
a
B
~
A
~
B
~
A
~
4
4
3
3
2
2
1
1
.
Def
ini
t
io
n 3
[
1
0
]
Giv
e
n
a
co
n
ti
n
u
o
u
s
u
n
i
v
er
s
e
U
=
[
0
,
1
]
an
d
a
s
et
o
f
g
en
er
alize
d
f
u
zz
y
n
u
m
b
er
s
o
v
er
U
,
FS
(
U
)
.
L
et
A
~
:
a
,
a
,
a
,
a
A
~
4
3
2
1
an
d
B
~
:
b
,
b
,
b
,
b
B
~
4
3
2
1
b
e
t
w
o
g
e
n
er
alize
d
tr
a
p
ez
o
id
al
f
u
zz
y
n
u
m
b
er
s
i
n
FS
(
U
)
an
d
]
,
[
)
U
(
FS
)
U
(
FS
:
S
1
0
.
T
h
e
s
i
m
ilar
it
y
m
e
asu
r
e
b
et
w
ee
n
A
~
an
d
B
~
is
d
ef
i
n
ed
as
)
(
)
(
)
(
B
~
A
~
B
~
A
~
B
~
A
~
B
~
S
,
A
~
S
B
B
~
A
~
i
i
i
b
a
,
b
a
,
b
a
,
b
a
m
a
x
b
b
b
b
)
(
a
a
a
a
)
(
)
b
b
)(
a
a
(
)
b
b
)(
a
a
(
x
ˆ
x
ˆ
b
a
B
~
,
A
~
S
)
(
)
(
)
(
)
(
4
4
3
3
2
2
1
1
2
4
3
2
2
1
2
2
4
3
2
2
1
2
4
3
4
3
2
1
2
1
4
1
1
1
2
1
4
1
1
w
h
er
e
A
~
x
ˆ
an
d
A
~
y
ˆ
ar
e
th
e
h
o
r
izo
n
tal
ce
n
ter
o
f
g
r
a
v
it
y
(
C
OG)
o
f
A
~
an
d
B
~
ca
lcu
lated
as
A
~
A
~
A
~
A
~
A
~
a
a
y
ˆ
a
a
y
ˆ
x
ˆ
2
4
1
3
2
,
1
0
2
1
0
2
6
4
1
4
1
1
4
2
3
A
~
A
~
A
~
A
~
A
~
and
a
a
if
,
and
a
a
if
a
a
a
a
y
ˆ
an
d
0
0
0
1
B
~
A
~
B
~
A
~
B
~
A
~
S
S
if
S
S
if
S
,
S
B
s
u
ch
t
h
at
1
4
a
a
S
A
~
an
d
1
4
b
b
S
B
~
.
T
h
e
s
i
m
ilar
it
y
m
ea
s
u
r
e
B
~
,
A
~
S
s
atis
f
ies th
e
f
o
llo
w
in
g
p
r
o
p
er
ties
:
(
P
1
)
T
w
o
f
u
zz
y
n
u
m
b
er
s
A
~
an
d
B
~
ar
e
id
en
tical
if
an
d
o
n
l
y
if
1
B
~
,
A
~
S
.
(
P
2
)
A
~
,
B
~
S
B
~
,
A
~
S
(
P
3
)
I
f
A
~
:
a
,
a
,
a
,
a
A
~
an
d
B
~
:
b
,
b
,
b
,
b
B
~
ar
e
r
ea
l n
u
m
b
er
s
,
th
en
B
~
A
~
B
~
A
~
B
~
A
~
b
a
b
a
b
a
b
a
B
~
,
A
~
S
1
1
2
2
2
2
2
.
T
h
e
ab
o
v
e
s
i
m
ilar
it
y
m
ea
s
u
r
e
e
m
b
ed
s
f
o
u
r
ele
m
e
n
t
s
in
th
e
f
o
r
m
u
la
w
h
ich
ar
e
th
e
g
eo
m
etr
ic
d
is
tan
ce
,
t
h
e
ce
n
ter
o
f
g
r
av
it
y
,
Hau
s
d
o
r
f
f
d
is
tan
ce
,
a
n
d
Dice
s
i
m
ilar
it
y
i
n
d
ex
th
a
t
ar
e
i
m
p
o
r
ta
n
t
a
n
d
f
a
v
o
r
ab
le
in
s
i
m
ilar
it
y
m
ea
s
u
r
e
m
e
n
t.
T
h
e
m
ea
s
u
r
e
h
a
s
th
e
ad
v
an
tag
e
o
f
d
is
cr
i
m
i
n
at
in
g
t
w
o
s
i
m
ilar
s
h
ap
e
f
u
zz
y
n
u
m
b
er
s
e
f
f
ec
ti
v
el
y
w
it
h
t
w
o
d
if
f
er
e
n
t lo
ca
tio
n
s
[
1
0
]
.
3.
E
XT
E
ND
E
D
F
T
O
P
SI
S U
SI
NG
DI
ST
ANC
E
AND
S
E
T
T
H
E
O
R
E
T
I
C
-
B
ASE
D
SI
M
I
L
ARI
T
Y
M
E
ASURE
An
ex
te
n
d
ed
FT
OP
SIS
p
r
o
ce
d
u
r
e
in
co
r
p
o
r
atin
g
a
s
i
m
i
lar
it
y
m
ea
s
u
r
e
b
y
[
1
0
]
p
ar
t
icu
lar
l
y
i
n
ca
lcu
lati
n
g
th
e
clo
s
e
n
es
s
co
ef
f
icien
t
s
o
f
th
e
d
ec
i
s
io
n
alter
n
ati
v
es i
s
p
r
esen
ted
as
f
o
llo
w
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
2
,
Feb
r
u
ar
y
2
0
1
8
:
3
8
7
–
394
390
S
tep
1
:
Set u
p
a
co
m
m
ittee
o
f
K
d
ec
is
i
o
n
m
a
k
er
s
to
d
eter
m
i
n
e
th
e
i
m
p
o
r
tan
ce
w
ei
g
h
ts
o
f
n
cr
iter
ia
an
d
to
r
ate
m
alter
n
ativ
e
s
b
ase
d
o
n
th
e
cr
iter
ia.
L
i
n
g
u
i
s
tic
ter
m
s
a
n
d
th
e
co
r
r
esp
o
n
d
in
g
tr
ap
ez
o
id
al
f
u
zz
y
n
u
m
b
er
s
u
s
ed
f
o
r
th
e
s
e
p
u
r
p
o
s
es a
r
e
as sh
o
w
n
in
T
ab
le
1
.
I
n
th
e
f
o
llo
w
i
n
g
s
te
p
s
,
let
)
w
,
w
,
w
,
w
(
w
~
jk
jk
jk
jk
k
j
4
3
2
1
an
d
)
d
,
c
,
b
,
a
(
x
~
i
j
k
i
j
k
i
j
k
i
j
k
k
ij
r
ep
r
esen
t
th
e
w
ei
g
h
ts
o
f
cr
it
er
ia
j
C
an
d
r
atin
g
s
o
f
alter
n
ati
v
es
i
A
g
i
v
en
b
y
t
h
e
k
-
th
d
ec
is
io
n
-
m
ak
er
,
k
D
,
r
esp
ec
ti
v
el
y
,
w
i
t
h
m
.
.
.
,
,
,
i
2
1
,
n
...,
,
,
j
2
1
an
d
K
,...,
,
,
k
2
1
.
T
ab
le
1
.
L
in
g
u
i
s
tic
T
er
m
s
f
o
r
C
r
iter
ia
W
eig
h
ts
a
n
d
R
ati
n
g
o
f
A
lter
n
a
tiv
e
s
C
r
i
t
e
r
i
a
W
e
i
g
h
t
F
u
z
z
y
N
u
mb
e
r
L
i
n
g
u
i
st
i
c
T
e
r
ms
F
u
z
z
y
N
u
mb
e
r
V
e
r
y
l
o
w
(
V
L
)
(
0
.
0
,
0
.
0
,
0
.
1
,
0
.
2
)
V
e
r
y
P
o
o
r
(
V
P
)
(
0
,
0
,
1
,
2
)
L
o
w
(
L
)
(
0
.
1
,
0
.
2
,
0
.
2
,
0
.
3
)
P
o
o
r
(
P
)
(
1
,
2
,
2
,
3
)
M
e
d
i
u
m L
o
w
(
M
L
)
(
0
.
2
,
0
.
3
,
0
.
4
,
0
.
5
)
M
e
d
i
u
m Po
o
r
(
M
P
)
(
2
,
3
,
4
,
5
)
M
e
d
i
u
m (
M
)
(
0
.
4
,
0
.
5
,
0
.
5
,
0
.
6
)
F
a
i
r
(
F
)
(
4
,
5
,
5
,
6
)
M
e
d
i
u
m H
i
g
h
(
M
H
)
(
0
.
5
,
0
.
6
,
0
.
7
,
0
.
8
)
M
e
d
i
u
m G
o
o
d
(
M
G
)
(
5
,
7
,
8
,
9
)
H
i
g
h
(
H
)
(
0
.
7
,
0
.
8
,
0
.
8
,
0
.
9
)
G
o
o
d
(
G
)
(
7
,
8
,
8
,
9
)
V
e
r
y
H
i
g
h
(
V
H
)
(
0
.
8
,
0
.
9
,
1
.
0
,
1
.
0
)
V
e
r
y
G
o
o
d
(
V
G
)
(
8
,
9
,
1
0
,
1
0
)
S
tep
2
:
Ob
tain
th
e
a
g
g
r
eg
ated
cr
iter
ia
w
ei
g
h
t
4
3
2
1
j
j
j
j
j
w
,
w
,
w
,
w
w
~
w
it
h
r
esp
ec
t to
j
C
w
h
er
e
1
1
jk
k
j
w
m
i
n
w
,
K
k
jk
j
w
K
w
1
2
2
1
,
K
k
jk
j
w
K
w
1
3
3
1
,
4
4
jk
k
j
w
m
a
x
w
.
S
tep
3
:
Ob
tain
th
e
a
g
g
r
eg
ated
f
u
zz
y
r
atin
g
s
,
)
d
,
c
,
b
,
a
(
x
~
ij
ij
ij
ij
ij
,
o
f
th
e
i
-
th
alter
n
ati
v
e
w
it
h
r
esp
ec
t
to
j
C
,
n
,
.
.
.
,
,
j
2
1
s
u
c
h
t
h
at
i
j
k
K
k
k
ij
K
k
i
j
k
ij
i
j
k
ij
i
j
k
k
ij
d
m
a
x
d
,
c
K
c
,
b
K
b
,
a
m
i
n
a
1
1
1
1
.
S
tep
4
:
C
o
n
s
tr
u
ct
a
f
u
zz
y
d
ec
is
io
n
m
a
tr
ix
,
n
x
m
ij
]
x
~
[
D
,
an
d
th
e
n
o
r
m
alize
d
f
u
zz
y
d
ec
is
io
n
m
atr
i
x
,
n
m
ij
r
~
R
~
w
h
er
e
C
j
,
a
m
i
n
a
,
a
a
,
b
a
,
c
a
,
d
a
r
~
;
B
j
,
d
m
a
x
d
,
d
d
,
d
c
,
d
b
,
d
a
r
~
ij
i
j
ij
j
ij
j
ij
j
ij
j
ij
i
ij
*
j
*
j
ij
*
j
ij
*
j
ij
*
j
ij
ij
w
it
h
B
an
d
C
r
ep
r
ese
n
ti
n
g
b
en
ef
it a
n
d
co
s
t c
r
iter
ia,
r
esp
ec
tiv
el
y
.
S
tep
5
:
Ob
tain
t
h
e
w
ei
g
h
ted
n
o
r
m
a
lized
f
u
zz
y
d
ec
is
io
n
m
atr
i
x
,
V
~
,
b
y
m
u
ltip
l
y
i
n
g
t
h
e
n
o
r
m
alize
d
f
u
zz
y
d
ec
is
io
n
m
atr
ix
n
m
ij
r
~
R
~
an
d
th
e
co
l
u
m
n
cr
iter
ia
w
ei
g
h
t
m
atr
i
x
,
]
w
~
,
.
.
.
,
w
~
,
w
~
[
W
~
n
2
1
.
W
e
h
av
e
n
m
ij
v
~
V
~
w
h
er
e
4
3
2
1
ij
ij
ij
ij
j
ij
ij
v
,
v
,
v
,
v
w
~
r
~
v
~
.
S
tep
6
:
Dete
r
m
i
n
e
th
e
Fu
zz
y
P
o
s
itiv
e
I
d
ea
l So
lu
tio
n
(
FP
I
S),
}
A
,
A
{
A
*
T
*
T
*
2
1
an
d
th
e
Fu
zz
y
Neg
ati
v
e
I
d
ea
l So
lu
tio
n
(
FNI
S),
}
A
,
A
{
A
T
T
2
1
s
u
ch
t
h
at
*
n
*
j
*
*
T
v
~
,...,
v
,...,
v
~
A
1
1
w
it
h
}
v
{
m
a
x
},
v
{
m
a
x
},
v
{
m
a
x
},
v
{
m
a
x
v
~
ij
i
ij
i
ij
i
ij
i
*
j
4
4
4
4
,
n
j
T
v
~
,
.
.
.
,
v
~
.
.
.
,
,
v
~
A
1
1
w
it
h
}
v
{
m
i
n
},
v
{
m
i
n
},
v
{
m
i
n
},
v
{
m
i
n
v
~
ij
i
ij
i
ij
i
ij
i
*
j
1
1
1
1
;
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
E
xten
d
ed
F
TOPS
I
S
w
ith
Dis
ta
n
ce
a
n
d
S
et
Th
eo
r
etic
-
B
a
s
ed
S
imila
r
ity
Mea
s
u
r
e
(
N
o
r
Ha
s
h
i
ma
h
S
u
la
ima
n
)
391
*
n
*
j
*
*
T
v
~
,...,
v
,...,
v
~
A
1
2
w
it
h
}
v
{
m
a
x
},
v
{
m
a
x
},
v
{
m
a
x
},
v
{
m
a
x
v
~
ij
i
ij
i
ij
i
ij
i
*
j
4
3
2
1
,
n
j
T
v
~
,...,
v
~
...,
,
v
~
A
1
2
w
it
h
}
v
{
m
i
n
},
v
{
m
i
n
},
v
{
m
i
n
},
v
{
m
i
n
v
~
ij
i
ij
i
ij
i
ij
i
*
j
4
3
2
1
.
S
tep
7
:
Usi
n
g
De
f
i
n
itio
n
3
,
ca
lcu
lat
e
th
e
s
i
m
ilar
it
y
v
a
lu
e
s
*
i
S
an
d
i
S
f
o
r
th
e
i
-
t
h
alter
n
ati
v
e
f
r
o
m
FP
I
S,
}
A
,
A
{
A
*
T
*
T
*
2
1
an
d
FNI
S,
}
A
,
A
{
A
T
T
2
1
w
h
er
e
n
j
*
j
ij
i
*
i
*
i
v
~
,
v
~
S
A
,
A
S
1
,
n
j
j
ij
i
i
i
v
~
,
v
~
S
A
,
A
S
1
,
m
.
.
.
,
,
,
i
2
1
.
S
tep
8
:
C
alcu
late
t
w
o
t
y
p
e
s
o
f
clo
s
en
es
s
co
ef
f
icie
n
ts
f
o
r
th
e
i
-
th
a
lter
n
ati
v
e
,
i
T
A
CC
1
an
d
i
T
A
CC
2
,
m
.
.
.
,
,
,
i
2
1
w
h
er
e
)
A
,
A
(
S
)
A
,
A
(
S
)
A
,
A
(
S
A
CC
T
i
i
*
T
i
*
i
*
T
i
*
i
i
T
1
1
1
1
,
)
A
,
A
(
S
)
A
,
A
(
S
)
A
,
A
(
S
A
CC
T
i
i
*
T
i
*
i
*
T
i
*
i
i
T
2
2
2
2
.
S
tep
9
:
Dete
r
m
i
n
e
th
e
r
a
n
k
i
n
g
p
o
s
itio
n
o
f
t
h
e
i
-
t
h
alter
n
ati
v
es a
cc
o
r
d
in
g
to
th
e
1
T
CC
an
d
2
T
CC
v
alu
e
s
.
T
h
e
h
ig
h
er
t
h
e
v
al
u
e,
t
h
e
h
i
g
h
er
is
th
e
r
a
n
k
in
g
p
o
s
iti
o
n
.
4.
RE
SU
L
T
S AN
D
AN
AL
Y
SI
S
I
n
th
is
s
ec
t
io
n
,
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
s
i
m
i
lar
it
y
m
ea
s
u
r
e
b
y
[
1
0
]
in
th
e
co
n
tex
t
o
f
d
ec
is
i
o
n
m
ak
in
g
(
DM
)
is
in
v
e
s
ti
g
ated
b
y
i
m
p
l
e
m
en
tin
g
t
h
e
p
r
o
p
o
s
ed
DM
p
r
o
ce
d
u
r
e
in
s
o
lv
i
n
g
a
s
u
p
p
lier
s
elec
tio
n
p
r
o
b
le
m
ad
o
p
ted
f
r
o
m
[
1
]
in
w
h
ic
h
th
e
d
ata
ar
e
p
r
esen
ted
in
T
ab
le
2
a
n
d
T
ab
le
3
.
N
u
merica
l
E
xa
mp
le:
A
h
i
g
h
-
t
ec
h
n
o
lo
g
y
m
an
u
f
ac
tu
r
i
n
g
co
m
p
an
y
d
esire
s
to
s
elec
t
a
s
u
itab
l
e
m
a
ter
ial
s
u
p
p
lier
to
p
u
r
c
h
ase
n
e
w
p
r
o
d
u
cts.
Af
ter
p
r
eli
m
i
n
ar
y
s
cr
ee
n
i
n
g
,
f
iv
e
ca
n
d
id
ates,
i
A
,
5
2
1
,
.
.
.
,
,
i
ar
e
s
h
o
r
tli
s
ted
f
o
r
f
u
r
th
er
ev
a
lu
at
i
o
n
.
A
co
m
m
i
ttee
o
f
d
ec
is
io
n
m
ak
er
s
,
k
D
,
3
2
1
,
,
k
r
ate
th
e
s
h
o
r
tlis
ted
s
u
p
p
lier
s
b
ased
o
n
f
iv
e
b
en
e
f
i
t c
r
iter
ia
j
C
,
5
2
1
,...,
,
j
s
h
o
w
n
i
n
T
ab
le
1
.
T
ab
le
2
.
Dec
is
io
n
C
r
iter
ia
D
e
c
i
si
o
n
c
r
i
t
e
r
i
a
j
C
P
r
o
f
i
t
a
b
i
l
i
t
y
o
f
su
p
p
l
i
e
r
1
C
R
e
l
a
t
i
o
n
s
h
i
p
c
l
o
se
n
e
ss
2
C
T
e
c
h
n
o
l
o
g
i
c
a
l
c
a
p
a
b
i
l
i
t
y
3
C
C
o
n
f
o
r
man
c
e
q
u
a
l
i
t
y
4
C
C
o
n
f
l
i
c
t
r
e
so
l
u
t
i
o
n
5
C
T
h
e
w
ei
g
h
t
s
o
f
cr
iter
ia
an
d
r
atin
g
o
f
al
ter
n
ati
v
es
b
y
t
h
e
d
ec
is
io
n
m
a
k
er
s
ar
e
p
r
esen
ted
in
T
ab
le
3
an
d
4
,
r
esp
ec
tiv
el
y
.
T
ab
le
3
.
I
m
p
o
r
tan
ce
W
eig
h
t
s
o
f
C
r
iter
ia
j
C
b
y
Dec
is
io
n
Ma
k
e
r
s
k
D
C
1
C
2
C
3
C
4
C
5
D
1
D
2
D
3
D
1
D
2
D
3
D
1
D
2
D
3
D
1
D
2
D
3
D
1
D
2
D
3
H
H
H
VH
VH
VH
VH
VH
H
H
H
H
H
H
H
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
2
,
Feb
r
u
ar
y
2
0
1
8
:
3
8
7
–
394
392
T
ab
le
4
.
R
atin
g
o
f
al
ter
n
ati
v
es
i
A
,
b
ased
o
n
cr
iter
ia
j
C
b
y
d
ec
is
io
n
m
ak
er
k
D
C
1
C
2
C
3
C
4
C
5
D
1
D
2
D
3
D
1
D
2
D
3
D
1
D
2
D
3
D
1
D
2
D
3
D
1
D
2
D
3
A
1
MG
MG
MG
MG
MG
VG
G
G
G
G
G
G
G
G
G
A
2
G
G
G
VG
VG
VG
VG
VG
VG
G
VG
VG
VG
VG
VG
A
3
VG
VG
G
VG
G
G
VG
VG
G
VG
VG
VG
G
VG
G
A
4
G
G
G
G
G
MG
MG
MG
G
G
G
G
G
G
G
A
5
MG
MG
MG
MG
G
G
MG
MG
MG
MG
MG
G
MG
MG
MG
T
ab
le
5
s
h
o
w
s
t
h
e
w
e
ig
h
ted
n
o
r
m
al
ized
f
u
zz
y
d
ec
is
io
n
m
atr
ix
o
b
tai
n
ed
b
y
p
er
f
o
r
m
i
n
g
Ste
p
3
to
Step
5
i
n
t
h
e
p
r
o
ce
d
u
r
e
p
r
esen
ted
in
Sectio
n
3
.
T
ab
le
5
.
W
eig
h
ted
No
r
m
alize
d
Fu
zz
y
Dec
i
s
io
n
Ma
tr
i
x
C
1
C
2
C
3
C
4
C
5
A
1
(
0
.
3
5
,
0
.
4
8
,
0
.
5
6
,
0
.
7
2
)
(
0
.
3
5
,
0
.
5
3
,
0
.
6
4
,
0
.
9
0
)
(
0
.
4
9
,
0
.
6
4
,
0
.
6
4
,
0
.
8
1
)
(
0
.
4
9
,
0
.
6
4
,
0
.
6
4
,
0
.
8
1
)
(
0
.
4
9
,
0
.
6
4
,
0
.
6
4
,
0
.
8
1
)
A
2
(
0
.
5
6
,
0
.
7
2
,
0
.
8
0
,
0
.
9
0
)
(
0
.
6
4
,
0
.
7
2
,
1
.
0
0
,
1
.
0
0
)
(
0
.
6
4
,
0
.
7
2
,
1
.
0
0
,
1
.
0
0
)
(
0
.
5
6
,
0
.
7
2
,
0
.
9
3
,
1
.
0
0
)
(
0
.
6
4
,
0
.
7
2
,
1
.
0
0
,
1
.
0
0
)
A
3
(
0
.
4
9
,
0
.
6
9
,
0
.
8
7
,
1
.
0
0
)
(
0
.
4
9
,
0
.
6
9
,
0
.
8
1
,
1
.
0
0
)
(
0
.
4
9
,
0
.
6
9
,
0
.
8
7
,
1
.
0
0
)
(
0
.
5
6
,
0
.
6
9
,
0
.
9
3
,
1
.
0
0
)
(
0
.
4
9
,
0
.
6
9
,
0
.
8
1
,
1
.
0
0
)
A
4
(
0
.
4
9
,
0
.
6
4
,
0
.
6
4
,
0
.
8
1
)
(
0
.
3
5
,
0
.
5
9
,
0
.
6
1
,
0
.
8
1
)
(
0
.
3
5
,
0
.
5
3
,
0
.
5
9
,
0
.
8
1
)
(
0
.
4
9
,
0
.
6
4
,
0
.
6
4
,
0
.
8
1
)
(
0
.
4
9
,
0
.
6
4
,
0
.
6
9
,
0
.
9
0
)
A
5
(
0
.
3
5
,
0
.
4
8
,
0
.
5
6
,
0
.
7
2
)
(
0
.
3
5
,
0
.
5
9
,
0
.
6
1
,
0
.
8
1
)
(
0
.
3
5
,
0
.
4
8
,
0
.
5
6
,
0
.
7
2
)
(
0
.
3
5
,
0
.
5
3
,
0
.
5
9
,
0
.
8
1
)
(
0
.
3
5
,
0
.
4
8
,
0
.
5
6
,
0
.
7
2
)
T
h
e
f
u
zz
y
p
o
s
iti
v
e
id
ea
l
s
o
l
u
tio
n
(
FP
I
S),
}
{
2
1
*
T
*
T
*
A
,
A
A
an
d
th
e
f
u
zz
y
n
eg
at
iv
e
id
ea
l
s
o
l
u
tio
n
(
FNI
S),
}
{
2
1
T
T
A
,
A
A
ar
e
d
eter
m
i
n
ed
b
ased
o
n
t
h
e
w
ei
g
h
ted
n
o
r
m
a
lized
f
u
zz
y
d
ec
is
io
n
m
atr
i
x
.
T
h
e
co
r
r
esp
o
n
d
in
g
FP
I
Ss
an
d
FNI
Ss
ar
e
p
r
esen
te
d
as f
o
llo
w
s
.
(
1
,
1
,
1
,
1
)
(
1
,
1
,
1
,
1
)
,
(
1
,
1
,
1
,
1
)
,
(
1
,
1
,
1
,
1
)
(
1
,
1
,
1
,
1
)
,
1
,
A
*
T
,
,
,
A
T
)
,
0
.
3
5
,
0
.
3
5
(
0
.
3
5
,
0
.
3
5
),
,
0
.
3
5
,
0
.
3
5
(
0
.
3
5
,
0
.
3
5
),
,
0
.
3
5
,
0
.
3
5
(
0
.
3
5
,
0
.
3
5
)
,
0
.
3
5
,
0
.
3
5
(
0
.
3
5
,
0
.
3
5
),
,
0
.
3
5
,
0
.
3
5
(
0
.
3
5
,
0
.
3
5
1
,
,
A
*
T
,
1
,
1
)
(
0
.
6
4
,
0
.
7
2
,
0
.
9
3
,
1
)
,
(
0
.
5
6
,
0
.
7
2
,
1
,
1
)
,
(
0
.
6
4
,
0
.
7
2
,
1
,
1
)
(
0
.
6
4
,
0
.
7
2
,
0
.
8
7
,
1
)
,
(
0
.
5
6
,
0
.
7
2
2
.
,
A
T
)
,
0
.
5
6
,
0
.
7
2
(
0
.
3
5
,
0
.
4
8
),
,
0
.
5
9
,
0
.
8
1
(
0
.
3
5
,
0
.
5
3
),
,
0
.
5
6
,
0
.
7
2
(
0
.
3
5
,
0
.
4
8
)
,
0
.
6
1
,
0
.
8
1
(
0
.
3
5
,
0
.
5
3
),
,
0
.
5
6
,
0
.
7
2
(
0
.
3
5
,
0
.
4
8
2
Usi
n
g
De
f
i
n
itio
n
3
,
s
i
m
ilar
it
y
v
alu
e
s
b
et
w
ee
n
ea
ch
a
lter
n
ati
v
e
an
d
t
h
e
t
w
o
t
y
p
es
o
f
FP
I
S
(
FNI
S)
ar
e
ca
lcu
lated
.
B
ased
o
n
th
ese
v
alu
es,
th
e
clo
s
e
n
es
s
co
ef
f
icie
n
ts
i
T
A
CC
1
an
d
i
T
A
CC
2
,
5
2
1
,
.
.
.
,
,
i
ar
e
d
er
iv
ed
,
an
d
th
e
r
esu
l
ts
ar
e
d
is
p
la
y
ed
in
T
ab
le
6
an
d
T
a
b
l
e
7
,
r
esp
ec
tiv
el
y
.
R
a
n
k
in
g
o
r
d
er
s
o
f
alter
n
ati
v
e
s
o
b
tain
ed
b
ased
th
e
ca
lcu
lated
clo
s
en
es
s
co
ef
f
icien
ts
w
it
h
r
esp
ec
t
to
th
e
tw
o
t
y
p
e
s
o
f
FP
I
S
an
d
FNI
S
ar
e
also
co
m
p
ar
ed
w
it
h
th
e
r
an
k
i
n
g
o
r
d
er
s
b
y
[
1
]
.
T
ab
le
6
.
C
lo
s
en
ess
C
o
ef
f
icie
n
t
s
o
f
A
lter
n
a
tiv
e
s
,
i
T
A
CC
1
S
i
mi
l
a
r
i
t
y
v
a
l
u
e
s
C
r
i
t
e
r
i
a
C
l
o
se
n
e
ss
C
o
e
f
f
i
c
i
e
n
t
R
a
n
k
i
n
g
C
1
C
2
C
3
C
4
C
5
i
T
A
CC
1
P
r
o
p
o
se
d
M
e
t
h
o
d
R
e
su
l
t
u
si
n
g
[
1
]
A
1
)
A
,
A
(
S
*
T
*
1
1
1
0
.
1
3
8
0
.
1
9
5
0
.
2
5
1
0
.
2
5
1
0
.
2
5
1
0
.
3
3
7
4
4
)
A
,
A
(
S
T
1
1
1
0
.
6
0
3
0
.
4
5
2
0
.
3
6
0
0
.
3
6
0
0
.
3
6
0
A
2
)
A
,
A
(
S
*
T
*
1
2
2
0
.
3
6
4
0
.
5
0
3
0
.
5
0
3
0
.
4
2
9
0
.
5
0
3
0
.
7
3
6
1
1
)
A
,
A
(
S
T
1
2
2
0
.
2
3
1
0
.
1
3
9
0
.
1
3
9
0
.
1
7
6
0
.
1
3
9
A
3
)
A
,
A
(
S
*
T
*
1
3
3
0
.
3
6
3
0
.
3
5
0
0
.
3
6
4
0
.
4
2
1
0
.
3
5
0
0
.
6
2
8
2
2
)
A
,
A
(
S
T
1
3
3
0
.
2
2
1
0
.
2
3
6
0
.
2
2
1
0
.
1
8
0
0
.
2
3
6
A
4
)
A
,
A
(
S
*
T
*
1
4
4
0
.
2
5
1
0
.
1
8
2
0
.
1
6
8
0
.
2
5
0
0
.
2
8
5
0
.
3
5
8
3
3
)
A
,
A
(
S
T
1
4
4
0
.
3
6
0
0
.
4
9
4
0
.
5
2
1
0
.
3
6
0
0
.
3
1
0
A
5
)
A
,
A
(
S
*
T
*
1
5
5
0
.
1
3
8
0
.
1
8
2
0
.
1
3
8
0
.
1
6
8
0
.
1
3
8
0
.
2
1
3
5
5
)
A
,
A
(
S
T
1
5
5
0
.
6
0
3
0
.
4
9
3
0
.
6
0
3
0
.
5
2
1
0
.
6
0
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
E
xten
d
ed
F
TOPS
I
S
w
ith
Dis
ta
n
ce
a
n
d
S
et
Th
eo
r
etic
-
B
a
s
ed
S
imila
r
ity
Mea
s
u
r
e
(
N
o
r
Ha
s
h
i
ma
h
S
u
la
ima
n
)
393
T
ab
le
7
.
C
lo
s
en
ess
co
ef
f
icie
n
ts
o
f
alter
n
a
tiv
e
s
,
)
A
(
CC
i
T
2
S
i
mi
l
a
r
i
t
y
v
a
l
u
e
s
C
r
i
t
e
r
i
a
C
l
o
se
n
e
ss
C
o
e
f
f
i
c
i
e
n
t
R
a
n
k
i
n
g
C
1
C
2
C
3
C
4
C
5
i
T
A
CC
2
P
r
o
p
o
se
d
M
e
t
h
o
d
R
e
su
l
t
u
si
n
g
[
1
]
A
1
)
A
,
A
(
S
*
T
*
2
1
1
0
.
3
6
5
0
.
4
3
3
0
.
4
7
9
0
.
5
5
3
0
.
4
7
9
0
.
3
8
7
4
4
)
A
,
A
(
S
T
2
1
1
0
.
9
0
2
0
.
8
3
0
0
.
7
0
8
0
.
7
5
6
0
.
4
6
2
A
2
)
A
,
A
(
S
*
T
*
2
2
2
0
.
7
9
7
0
.
9
3
2
0
.
9
3
2
0
.
9
3
8
0
.
9
3
2
0
.
7
1
3
1
1
)
A
,
A
(
S
T
2
2
2
0
.
5
1
1
0
.
3
6
4
0
.
3
3
0
0
.
4
2
9
0
.
1
9
1
A
3
)
A
,
A
(
S
*
T
*
2
3
3
0
.
8
3
2
0
.
7
1
3
0
.
7
7
7
0
.
9
3
7
0
.
7
1
3
0
.
6
4
3
2
2
)
A
,
A
(
S
T
2
3
3
0
.
4
5
2
0
.
5
5
2
0
.
4
5
2
0
.
4
3
6
0
.
3
1
4
A
4
)
A
,
A
(
S
*
T
*
2
4
4
0
.
5
5
3
0
.
3
9
9
0
.
3
7
0
0
.
5
5
3
0
.
5
5
3
0
.
4
0
4
3
3
)
A
,
A
(
S
T
2
4
4
0
.
7
0
8
0
.
8
7
8
0
.
8
3
3
0
.
7
5
6
0
.
4
0
3
A
5
)
A
,
A
(
S
*
T
*
2
5
5
0
.
3
6
5
0
.
3
9
9
0
.
3
1
3
0
.
4
2
9
0
.
3
1
3
0
.
3
0
0
5
5
)
A
,
A
(
S
T
2
5
5
0
.
9
0
2
0
.
8
7
8
0
.
9
0
2
0
.
9
1
9
0
.
6
5
8
B
ased
o
n
T
ab
le
6
an
d
T
ab
le
7
,
it
i
s
o
b
s
er
v
ed
th
a
t
s
i
m
i
lar
it
y
v
al
u
es
b
et
w
ee
n
t
h
e
i
-
t
h
alter
n
ati
v
es,
i
A
,
5
2
1
,
.
.
.
,
,
i
an
d
t
h
e
FP
I
S,
*
T
A
2
(
o
r
FNI
S,
2
T
A
)
ar
e
r
elati
v
el
y
h
ig
h
er
a
s
co
m
p
ar
ed
to
s
i
m
i
lar
it
y
v
a
lu
e
s
b
et
w
ee
n
t
h
e
i
-
th
alter
n
at
iv
e
s
a
n
d
th
e
FP
I
S,
*
T
A
1
(
o
r
FNI
S,
1
T
A
)
,
ac
r
o
s
s
all
cr
iter
ia.
Ne
v
er
th
e
less
,
b
o
th
t
y
p
es
o
f
clo
s
en
es
s
co
ef
f
icie
n
ts
,
i
T
A
CC
1
an
d
i
T
A
CC
2
,
lead
to
s
i
m
ilar
o
r
d
er
in
g
s
o
f
a
lter
n
ati
v
es
i
n
w
h
ic
h
2
A
is
r
an
k
ed
f
ir
s
t
f
o
llo
w
ed
b
y
3
A
,
4
A
,
1
A
an
d
5
A
.
T
h
e
r
an
k
i
n
g
o
r
d
er
s
o
f
alte
r
n
ativ
e
s
ar
e
f
o
u
n
d
to
b
e
co
n
s
i
s
ten
t
w
it
h
[
1
]
.
5.
CO
NCLU
SI
O
N
I
n
t
h
is
p
ap
er
,
w
e
h
a
v
e
p
r
o
p
o
s
ed
an
E
x
te
n
d
ed
FT
OP
SIS
p
r
o
ce
d
u
r
e
in
co
r
p
o
r
atin
g
th
e
s
i
m
ilar
it
y
m
ea
s
u
r
e
p
r
o
p
o
s
ed
b
y
[
1
0
]
.
T
h
e
ad
v
an
tag
e
o
f
t
h
e
s
i
m
ila
r
it
y
m
ea
s
u
r
e
[
1
0
]
w
h
ich
ar
e
co
m
p
o
s
ed
o
f
th
e
g
eo
m
etr
ic
d
is
ta
n
ce
,
t
h
e
ce
n
ter
o
f
g
r
av
it
y
,
Ha
u
s
d
o
r
f
d
i
s
tan
ce
an
d
t
h
e
Dice
s
i
m
ilar
it
y
i
n
d
ex
lies
in
it
s
ab
ilit
y
i
n
d
is
cr
i
m
i
n
ati
n
g
t
w
o
s
i
m
ilar
s
h
a
p
e
f
u
zz
y
n
u
m
b
er
s
ef
f
ec
ti
v
el
y
w
it
h
t
w
o
d
if
f
er
en
t
lo
ca
tio
n
s
.
T
h
e
i
m
p
le
m
e
n
tatio
n
o
f
th
e
E
x
te
n
d
ed
FT
OP
SISin
w
h
ic
h
t
h
e
clo
s
e
n
es
s
co
ef
f
icie
n
ts
o
f
th
e
d
ec
i
s
io
n
a
lter
n
ati
v
es
ar
e
ca
lcu
lated
u
s
i
n
g
th
e
s
i
m
ilar
it
y
m
ea
s
u
r
e
g
i
v
e
n
b
y
[
1
0
]
i
s
elu
cid
ated
w
i
th
a
n
ap
p
licatio
n
in
s
o
lv
i
n
g
a
s
u
p
p
lier
s
elec
tio
n
p
r
o
b
le
m
.
T
w
o
d
if
f
er
e
n
t
r
u
le
s
f
o
r
d
ete
r
m
in
in
g
t
h
e
p
o
s
iti
v
e
id
ea
l
s
o
lu
tio
n
a
n
d
th
e
n
e
g
ati
v
e
id
ea
l
s
o
lu
tio
n
[
1
]
ar
e
e
m
p
lo
y
ed
.
T
h
e
r
es
u
lt
s
h
o
w
s
t
h
at
r
a
n
k
i
n
g
o
r
d
er
s
o
f
alter
n
at
iv
es
w
it
h
r
esp
ec
t
to
a
n
y
t
y
p
e
o
f
id
ea
l
s
o
l
u
tio
n
s
b
ein
g
u
s
ed
as
b
en
c
h
m
ar
k
i
n
g
f
u
zz
y
n
u
m
b
er
s
in
ca
lcu
lati
n
g
t
h
e
s
i
m
ilar
it
y
d
e
g
r
ee
s
ar
e
co
n
s
is
ten
t
w
it
h
o
n
e
an
o
th
er
.
C
o
m
p
ar
i
s
o
n
w
it
h
[
1
]
also
in
d
icate
s
t
h
at
r
a
n
k
i
n
g
o
f
a
lter
n
ati
v
es a
r
e
p
r
eser
v
ed
as b
o
th
ap
p
r
o
ac
h
es g
i
v
e
s
i
m
ilar
o
r
d
er
in
g
s
o
f
al
ter
n
ati
v
es.
Fo
r
f
u
t
u
r
e
w
o
r
k
,
d
if
f
er
en
t
s
i
m
ilar
it
y
m
ea
s
u
r
es
m
a
y
b
e
co
n
s
id
er
ed
in
d
eter
m
in
i
n
g
th
e
clo
s
e
n
e
s
s
co
ef
f
icien
ts
i
n
th
e
E
x
te
n
d
ed
FT
O
P
SIS
an
d
co
m
p
ar
ati
v
e
an
al
y
s
i
s
ca
n
b
e
m
ad
e.
Ac
k
no
w
ledg
e
m
e
nts
T
h
e
au
th
o
r
s
w
o
u
ld
lik
e
to
th
an
k
t
h
e
R
e
s
ea
r
ch
Ma
n
a
g
e
m
e
n
t
C
e
n
tr
e
(
R
MC)
an
d
Fac
u
lt
y
o
f
C
o
m
p
u
ter
an
d
Ma
th
e
m
atica
l
Scie
n
ce
s
,
Un
i
v
er
s
iti
T
ek
n
o
lo
g
i
M
AR
A
(
U
iT
M)
,
Ma
lay
s
ia
f
o
r
f
in
a
n
cia
ll
y
s
u
p
p
o
r
tin
g
th
i
s
r
esear
ch
u
n
d
er
th
e
g
r
a
n
t o
f
L
E
ST
A
R
I
(
6
0
0
-
I
R
MI
/D
A
N
A
5
/3
/L
E
ST
AR
I
(
0
1
3
3
/2
0
1
6
)
)
.
Ref
er
ence
s
[1
]
Ni
y
ig
e
n
a
,
L
.
,
L
u
u
k
k
a
,
P
.
,
&
Co
ll
a
n
,
M
.
S
u
p
p
li
e
r
e
v
a
lu
a
ti
o
n
w
it
h
fu
z
z
y
si
m
il
a
rit
y
b
a
s
e
d
f
u
z
z
y
T
OP
S
IS
w
it
h
n
e
w
f
u
z
z
y
si
m
il
a
rit
y
m
e
a
su
re
.
In
IEE
E
1
3
t
h
In
ter
n
a
ti
o
n
a
l
S
y
mp
o
siu
m
o
n
Co
m
p
u
t
a
ti
o
n
a
l
In
tell
ig
e
n
c
e
a
n
d
In
f
o
rm
a
ti
c
s.
2
0
1
2
;
2
3
7
-
2
4
4
.
[2
]
Zw
ic
k
,
R.
,
Ca
rlstein
,
E.
,
&
Bu
d
e
sc
u
,
D.
V
.
M
e
a
su
re
s
o
f
sim
i
larity
a
m
o
n
g
f
u
z
z
y
c
o
n
c
e
p
ts:
A
c
o
m
p
a
ra
ti
v
e
a
n
a
ly
sis.
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Ap
p
ro
x
im
a
te R
e
a
s
o
n
i
n
g
.
1
9
8
7
;
1
(
2
),
2
2
1
-
2
4
2
.
[3
]
P
a
p
p
is,
C.
P
.
,
&
Ka
ra
c
a
p
il
i
d
is,
N
.
I.
A
c
o
m
p
a
ra
ti
v
e
a
ss
e
ss
m
e
n
t
o
f
m
e
a
su
re
s
o
f
si
m
il
a
rit
y
o
f
f
u
z
z
y
v
a
lu
e
s.
Fu
zz
y
S
e
ts a
n
d
S
y
ste
ms
.
1
9
9
3
;
56
(2
),
1
7
1
-
1
7
4
.
[4
]
Ch
e
n
,
S
.
J.
&
Ch
e
n
,
S
.
M
.
F
u
z
z
y
risk
a
n
a
l
y
sis
b
a
se
d
o
n
sim
il
a
rit
y
m
e
a
su
re
s
o
f
g
e
n
e
ra
li
z
e
d
f
u
z
z
y
n
u
m
b
e
rs.
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Fu
zz
y
S
y
ste
ms
.
2
0
0
3
;
11
(1
)
,
4
5
-
5
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
2
,
Feb
r
u
ar
y
2
0
1
8
:
3
8
7
–
394
394
[5
]
Yo
n
g
,
D.,
W
e
n
Ka
n
g
,
S
.
,
Zh
e
n
F
u
,
Z.
,
&
Qi,
L
.
C
o
m
b
in
i
n
g
b
e
li
e
f
f
u
n
c
ti
o
n
s
b
a
se
d
o
n
d
istan
c
e
o
f
e
v
id
e
n
c
e
.
De
c
isio
n
S
u
p
p
o
rt
S
y
ste
ms
.
2
0
0
4
;
38
(3
),
4
8
9
-
4
9
3
.
[6
]
Ch
e
n
,
S
.
J.
A
n
e
w
si
m
il
a
rit
y
m
e
a
s
u
re
o
f
g
e
n
e
ra
li
z
e
d
f
u
z
z
y
n
u
m
b
e
rs
b
a
se
d
o
n
g
e
o
m
e
tri
c
-
m
e
a
n
a
v
e
ra
g
in
g
o
p
e
ra
to
r.
In
IEE
E
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
Fu
zz
y
S
y
ste
ms
.
2
0
0
6
;1
8
7
9
-
1
8
8
6
.
[7
]
Ch
e
n
,
S
.
M
.
,
&
Ch
e
n
,
J.H.
F
u
z
z
y
risk
a
n
a
l
y
sis
b
a
se
d
o
n
ra
n
k
in
g
g
e
n
e
ra
li
z
e
d
f
u
z
z
y
n
u
m
b
e
rs
w
it
h
d
if
f
e
r
e
n
t
h
e
ig
h
ts
a
n
d
d
if
fe
re
n
t
sp
re
a
d
s,
Exp
e
rt S
y
st
e
ms
wit
h
Ap
p
li
c
a
ti
o
n
s
.
2
0
0
9
;
3
6
,
6
8
3
3
–
6
8
4
2
.
[8
]
W
e
i,
S
.
H.,
&
Ch
e
n
,
S
.
M
.
A
n
e
w
a
p
p
ro
a
c
h
f
o
r
f
u
z
z
y
risk
a
n
a
l
y
s
is
b
a
se
d
o
n
sim
il
a
rit
y
m
e
a
su
re
s
o
f
g
e
n
e
ra
li
z
e
d
f
u
z
z
y
n
u
m
b
e
rs.
Exp
e
rt S
y
ste
ms
wit
h
A
p
p
l
ica
ti
o
n
s
.
2
0
0
9
;
36
(1
)
,
5
8
9
-
5
9
8
.
[9
]
Ye
,
J.
T
h
e
Dic
e
si
m
il
a
rit
y
m
e
a
su
r
e
b
e
tw
e
e
n
g
e
n
e
ra
li
z
e
d
trap
e
z
o
id
a
l
f
u
z
z
y
n
u
m
b
e
rs
b
a
se
d
o
n
th
e
e
x
p
e
c
ted
in
terv
a
l
a
n
d
it
s
m
u
lt
icriteria
g
ro
u
p
d
e
c
isio
n
-
m
a
k
in
g
m
e
th
o
d
.
J
o
u
rn
a
l
o
f
t
h
e
Ch
in
e
se
In
stit
u
te
o
f
In
d
u
stri
a
l
En
g
in
e
e
rs
.
2
0
1
2
;
29
(
6
),
3
7
5
-
3
8
2
.
[1
0
]
S
a
y
e
d
A
h
m
a
d
,
S
.
A
.
,
M
o
h
a
m
a
d
,
D.,
S
u
laim
a
n
,
N.H.,
M
o
h
d
S
h
a
riff
,
J.&
A
b
d
u
ll
a
h
,
K.
A
Dist
a
n
c
e
a
n
d
S
e
t
T
h
e
o
re
ti
c
-
Ba
se
d
S
imil
a
rity
M
e
a
su
re
fo
r
Ge
n
e
ra
li
ze
d
T
ra
p
e
zo
i
d
a
l
Fu
zz
y
Nu
mb
e
rs
.
P
a
p
e
r
p
re
se
n
ted
a
t
2
5
th
Na
ti
o
n
a
l
S
y
m
p
o
siu
m
o
f
M
a
th
e
m
a
ti
c
a
l
S
c
ien
c
e
s,
P
a
h
a
n
g
,
M
a
lay
sia
.
2
0
1
7
.
[1
1
]
Ch
o
u
,
C.
C.
A
g
e
n
e
ra
li
z
e
d
si
m
il
a
rit
y
m
e
a
su
re
f
o
r
f
u
z
z
y
n
u
m
b
e
rs.
J
o
u
rn
a
l
o
f
In
tel
li
g
e
n
t
&
Fu
zz
y
S
y
ste
ms
.
2
0
1
6
;
30
(
2
),
1
1
4
7
-
1
1
5
5
.
[1
2
]
Kh
o
rsh
i
d
i,
H.
A
.
,
&
Ni
k
f
a
laz
a
r,
S
.
A
n
i
m
p
ro
v
e
d
si
m
il
a
rit
y
m
e
a
su
re
f
o
r
g
e
n
e
ra
li
z
e
d
f
u
z
z
y
n
u
m
b
e
rs
a
n
d
it
s
a
p
p
li
c
a
ti
o
n
t
o
f
u
z
z
y
risk
a
n
a
l
y
sis.
Ap
p
li
e
d
S
o
f
t
Co
m
p
u
ti
n
g
.
2
0
1
7
;
52
,
4
7
8
-
4
8
6
.
[1
3
]
Ch
e
n
,
S
.
M
.
A
n
e
w
a
p
p
ro
a
c
h
to
h
a
n
d
l
in
g
f
u
z
z
y
d
e
c
isio
n
-
m
a
k
in
g
p
ro
b
lem
s.
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
S
y
ste
ms
,
M
a
n
,
a
n
d
Cy
b
e
rn
e
ti
c
s
.
1
9
8
8
;
18
(
6
),
1
0
1
2
-
1
0
1
6
.
[1
4
]
S
rid
e
v
i,
B.
,
&
Na
d
a
ra
jan
,
R.
F
u
z
z
y
si
m
il
a
rit
y
m
e
a
su
re
f
o
r
g
e
n
e
r
a
li
z
e
d
f
u
z
z
y
n
u
m
b
e
rs.
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Op
e
n
Pro
b
lem
s in
C
o
mp
u
ter
S
c
ie
n
c
e
a
n
d
M
a
t
h
e
ma
ti
c
s
.
2
0
0
9
;
2
(2
)
,
2
4
2
-
2
5
3
.
[1
5
]
L
i,
J.,
&
Zen
g
,
W
.
F
u
z
z
y
risk
a
n
a
l
y
sis
b
a
se
d
o
n
th
e
sim
il
a
rit
y
m
e
a
su
re
o
f
g
e
n
e
ra
li
z
e
d
trap
e
z
o
id
a
l
f
u
z
z
y
n
u
m
b
e
rs.
J
o
u
rn
a
l
o
f
In
telli
g
e
n
t
&
Fu
zz
y
S
y
ste
ms
.
2
0
1
7
;
32
(3
),
1
6
7
3
-
1
6
8
3
.
[1
6
]
Ch
e
n
g
,
S
.
H.
,
Ch
e
n
,
S
.
M
.
,
&
Jia
n
,
W
.
S
.
F
u
z
z
y
ti
m
e
se
rie
s
f
o
re
c
a
stin
g
b
a
se
d
o
n
f
u
z
z
y
lo
g
ica
l
re
l
a
ti
o
n
sh
i
p
s
a
n
d
sim
il
a
rit
y
m
e
a
su
re
s.
In
fo
rm
a
ti
o
n
S
c
ien
c
e
s
.
2
0
1
6
;
3
2
7
,
2
7
2
-
2
8
7
.
[1
7
]
F
a
rd
,
K.
B.
,
Nilas
h
i,
M
.
,
&
S
a
li
m
,
N.
Re
c
o
m
m
e
n
d
e
r
s
y
ste
m
b
a
se
d
o
n
se
m
a
n
ti
c
sim
il
a
rit
y
.
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
.
2
0
1
3
;
3
(
6
),
7
5
1
.
[1
8
]
M
a
se
len
o
,
A
.
,
Ha
sa
n
,
M
.
M
.
,
&
T
u
a
h
,
N.
Co
m
b
in
in
g
F
u
z
z
y
L
o
g
ic
a
n
d
De
m
p
ste
r
-
S
h
a
fe
r
T
h
e
o
ry
.
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
.
2
0
1
5
;
16
(3
),
5
8
3
-
5
9
0
.
[1
9
]
G
u
n
a
w
a
n
,
W
.
,
&
A
ri
f
in
,
A
.
Z.
F
u
z
z
y
Re
g
io
n
M
e
rg
in
g
u
sin
g
F
u
z
z
y
S
i
m
il
a
rit
y
M
e
a
su
re
m
e
n
t
o
n
Im
a
g
e
S
e
g
m
e
n
tatio
n
.
I
n
ter
n
a
t
io
n
a
l
J
o
u
r
n
a
l
o
f
E
lec
trica
l
a
n
d
Co
mp
u
ter
E
n
g
i
n
e
e
rin
g
(
IJ
ECE
)
.
2
0
1
7
;
7
(6
)
,
3
4
0
2
-
3
4
1
0
.
[2
0
]
L
u
u
k
k
a
,
P
.
F
u
z
z
y
si
m
il
a
rit
y
in
m
u
lt
icriteria
d
e
c
isio
n
-
m
a
k
in
g
p
ro
b
l
e
m
a
p
p
li
e
d
t
o
su
p
p
li
e
r
e
v
a
lu
a
ti
o
n
a
n
d
se
lec
ti
o
n
in
su
p
p
ly
c
h
a
in
m
a
n
a
g
e
m
e
n
t.
Ad
v
a
n
c
e
s in
Arti
fi
c
ia
l
In
tel
li
g
e
n
c
e
.
2
0
1
1
;
2
0
1
1
,
6
.
[2
1
]
Co
ll
a
n
,
M
.
,
&
L
u
u
k
k
a
,
P
.
Ev
a
lu
a
ti
n
g
R&
D
p
ro
jec
ts
a
s
in
v
e
st
m
e
n
ts
b
y
u
sin
g
a
n
o
v
e
ra
ll
ra
n
k
in
g
fro
m
f
o
u
r
n
e
w
f
u
z
z
y
si
m
il
a
rit
y
m
e
a
su
re
-
b
a
se
d
TOP
S
I
S
v
a
rian
ts.
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
Fu
zz
y
S
y
ste
ms
.
2
0
1
4
;
22
(
3
),
5
0
5
-
5
1
5
.
[2
2
]
L
u
u
k
k
a
,
P
.
,
&
Co
ll
a
n
,
M
.
Hist
o
g
ra
m
ra
n
k
in
g
w
it
h
g
e
n
e
ra
li
z
e
d
sim
il
a
rit
y
-
b
a
se
d
T
OP
S
IS
a
p
p
li
e
d
to
p
a
ten
t
ra
n
k
in
g
.
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Op
e
ra
ti
o
n
a
l
Res
e
a
rc
h
.
2
0
1
6
;
25
(
4
),
4
3
7
-
4
4
8
.
[2
3
]
L
i,
G
.
,
Ko
u
,
G
.
,
L
in
,
C.
,
Xu
,
L
.
&
L
iao
,
Y.
M
u
lt
i
-
a
tt
ri
b
u
te
d
e
c
isio
n
m
a
k
in
g
w
it
h
g
e
n
e
ra
li
z
e
d
f
u
z
z
y
n
u
m
b
e
rs.
J
o
u
rn
a
l
o
f
t
h
e
Op
e
ra
ti
o
n
a
l
Res
e
a
rc
h
S
o
c
iety
.
2
0
1
5
;
66
(1
1
),
1
7
9
3
-
1
8
0
3
.
[2
4
]
Ch
e
n
,
S
.
H.,
&
Hs
ieh
,
C.
H.
Ra
n
k
in
g
g
e
n
e
ra
li
ze
d
f
u
zz
y
n
u
mb
e
r
wit
h
g
r
a
d
e
d
me
a
n
i
n
teg
ra
ti
o
n
r
e
p
re
se
n
ta
ti
o
n
.
In
P
r
o
c
e
e
d
in
g
s o
f
th
e
8
th
In
tern
a
t
io
n
a
l
Co
n
f
e
re
n
c
e
o
f
F
u
z
z
y
S
e
ts
a
n
d
S
y
ste
m
s
As
so
c
iatio
n
W
o
rld
Co
n
g
re
ss
.
1
9
9
9
,
2
,
5
5
1
-
5
5
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.