TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 14, No. 1, April 2015, pp. 80 ~ 89
DOI: 10.115
9
1
/telkomni
ka.
v
14i1.745
4
80
Re
cei
v
ed
De
cem
ber 1
2
, 2014; Re
vi
sed
Februar
y 3, 2
015; Accepte
d
March 1, 20
15
Single Phase Z
-
Source Inverter with Differential
Evolution (DE) based Maximu
m Power Point Tracker
M.F.N. Tajuddin*
1
, S. M
.
Ay
ob
2
, Z.
Salam
2
, B. Ismail
1
, A. Azm
i
1
1
Po
w
e
r Electro
n
ics, Contro
l a
nd Optimizati
o
n
Rese
arch Group (PECO),
Schoo
l of Elect
r
ical S
y
stem Engi
neer
in
g,
Uni
v
ersiti Mala
ys
i
a
Perlis (U
niM
AP),
Pauh Putra C
a
mpus, 026
00 A
r
au, Perlis, MA
LAYSIA
2
Centre forElec
t
ricalEnergy
S
ystems, Fa
cult
y
of Electrical En
gin
eeri
ng,
Univers
i
ti T
e
knolo
g
i Mal
a
y
s
ia
(UT
M
), 81310
Skuda
i, Johor,
MALAYSIA
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: faridun
@un
i
map.ed
u.m
y
A
b
st
r
a
ct
This paper pr
esents an
efficient power conditi
oning system
for PV power system
generation. The
prop
osed
Ph
otovolta
ic Pow
e
r
Con
d
iti
oni
ng
System
(PVP
C
S
) used
a s
i
n
g
l
e-stag
e si
ngl
e
-
phas
e Z
-
Sour
ce
Inverter (Z
SI) integrate w
i
th a
relative
ly n
e
w
evol
ut
ion
a
ry o
p
timi
z
a
ti
on a
l
g
o
rith
m kn
ow
n as the Differ
e
n
t
ia
l
Evoluti
on (DE)
as the Max
i
mum P
o
w
e
r Poi
n
t (MPP) T
r
a
cker. Utili
z
a
ti
on
of sing
le-stag
e
pow
er con
d
iti
o
n
e
r
overco
mes sev
e
ral draw
b
a
ck of the tw
o-stage config
ur
atio
n
namely a hi
gh
er part count, low
e
r efficiency
,
low
e
r rel
i
ab
ility
,
high
er cost a
nd l
a
rger
si
z
e
.
Furthermo
re, w
i
th a h
i
g
h
ly
effective D
i
fferent
ial Ev
oluti
on (
D
E)
base
d
MPPT
techn
i
qu
e, the
max
i
mu
m p
o
w
e
r extraction
fr
om PV p
o
w
e
r gen
erator is a
l
w
a
ys at the optimu
m
valu
e. T
he pr
opos
ed tech
ni
que c
an track
the true gl
ob
al MPP in
mo
st environ
ment
al circu
m
sta
n
c
e
s
particularly
dur
ing the occ
u
rrence of
partial s
hading c
o
nd
ition. The
proposed PVPC
S is
developed using
MATLAB/Simulink. Simulation resu
lts show
that the pr
oposed PVPCS is able to
reali
z
e inversion and
boost functi
on i
n
sing
le proc
es
sing stag
e as
w
e
ll as dea
lin
g
w
i
th partial sh
adi
ng co
nditi
on
.
Ke
y
w
ords
:
z
-
s
ource i
n
verter, MPPT
, differential evo
l
utio
n (DE)
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
1. Introduc
tion
In the pa
st, the p
r
ice of th
e PV modul
e
s
was a
m
a
jo
r contrib
u
tion
to the ove
r
al
l co
st of
the syste
m
s.
Ho
wever, fo
r
the pa
st 20 y
ears, sol
a
r
el
ectri
c
en
ergy has
gro
w
n t
r
e
m
endo
usly d
u
e
to the de
crea
sing
co
sts an
d pri
c
e
s
. Thi
s
decli
ne
ha
s
been
drive
n
by an in
crea
sing efficie
n
cy
of
sola
r
cell
s, manufa
c
turi
n
g
tech
nolo
g
y improve
m
en
ts and
e
c
on
o
m
ies
of scal
e. Therefore, the
co
st of the p
o
we
r
con
d
itioning u
n
it is
n
o
w b
e
co
ming
more
domi
n
ant in the
overall
system
co
st.
Thus,
the
key
issue
s
fo
r P
V
appli
c
ation
system
is
to l
o
we
r the
cost
per inve
rter
watt an
d at t
he
same
time
achi
eve the
best
perfo
rmance of th
e po
we
r ele
c
troni
cs
con
v
erter o
r
p
o
w
er
conditioner.
Re
cently, gri
d
con
nect
ed PV systems
have
become
very popular beca
u
se the
y
do not
need
battery
back-up
s to e
n
su
re MPPT.
Stand alon
e system
s can also ac
hieve
MPPT, but they
woul
d nee
d suitable batte
ry back-u
p
s fo
r this p
u
rp
ose
.
Multi-stag
e conve
r
ter
systems have
be
en
repo
rted fo
r
certai
n a
ppli
c
ation,
but PV
system
appl
ication
s
n
o
rm
ally
employ dual stage
s
[
1
].
The first stag
e is u
s
ed to
track the MP
P and pe
rha
p
s am
plify the PV array v
o
ltage while t
h
e
se
con
d
stag
e invert
s thi
s
d
c
po
we
r
into hig
h
q
u
a
lity ac
po
wer.
Normally, the first
stage
comp
ri
se
s of
a boo
st o
r
bu
ck-bo
o
st type
dc-d
c conver
ter topol
ogy. Two
-
sta
ge
co
nfiguratio
ns
a
r
e
proven to be
performi
ng
well, but have some
d
r
a
w
ba
cks
su
ch
as highe
r p
a
rt cou
n
t, lower
efficien
cy, lower reli
ability, highe
r
co
st
and la
rg
er
si
ze [2]. The i
s
sue is whethe
r it is p
o
ssible
to
redu
ce
the
numbe
r of
power
pro
c
e
ssi
ng
stage
s in such
systems. T
w
o sim
p
le a
n
d
straig
htforward solution
s to
this
req
u
ire
m
ent c
ould
b
e
(1
) u
s
in
g
convention
a
l
H-b
r
id
ge inve
rter
followe
d with
step up tran
sform
e
r
(line
freque
ncy tr
a
n
sformer) [3] or (2) u
s
ing
a
large PV a
r
ray
with suffici
ent
ly high PV voltage co
nne
ct
ed to H-b
r
id
g
e
inverter [4, 5].
Although the
s
e
solutio
n
s are in fa
ct
is practi
cal,
they suffer from the f
o
llowin
g
sho
r
tco
m
ing
s
. The line
-
freque
ncy tra
n
sformer i
s
rega
rd
ed a
s
a poo
r co
mpone
nt du
e to
increa
sed
size, weight, an
d pri
c
e [6]. In addition,
the
inverter ha
s
to be oversized to co
pe with
the wide PV
array voltage
chan
ge. On
the other
han
d, a PV array
with larg
e d
c
voltage suffe
rs
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Single Pha
s
e
Z-Source In
verter
with Differential E
v
olu
t
ion (DE) b
a
sed… (M.F.
N
. Tajuddi
n)
81
from drawba
cks such as hot-s
pots d
u
ring p
a
rtial
sha
d
ing of
the array, re
duced safety and
increa
sed
p
r
obability of l
e
aka
ge
cu
rren
t throu
gh
th
e
pa
ra
sitic
ca
pacita
n
ce b
e
twee
n the
pa
nel
and th
e sy
ste
m
ground
[7]. Furth
e
rm
ore,
in both
the
o
p
tions, th
e in
verter m
u
st t
a
ke
care
of t
h
e
MPPT.
Therefore, ba
sed on the
cu
rre
nt trend
s a
nd literat
ures,
it is sensible
to con
c
lude t
hat the
best o
p
tion for PV syste
m
s is to h
a
ve a sin
g
le p
r
oce
s
sing
sta
ge between
PV array an
d the
grid/loa
d that
able to pe
rfo
r
m the MPPT
task, voltage
boostin
g
a
s
well a
s
inversion. Thi
s
is i
n
line with mod
e
rn day nee
d
s
whi
c
h re
qui
re a sy
stem
to be compa
c
t, highly reliable, excelle
nt
perfo
rman
ce,
less
comp
on
ents count an
d redu
ce
d we
ight at lower
co
st.
Z-source i
n
verter
(ZSI)
was first pro
p
o
s
ed
by Fang
Zheng
(20
0
3
)
is a ne
w top
o
logy in
power
conversion.
One of t
he mai
n
advantages of
ZSI is it
s ability
to realize inve
rsion and
boost
function
in
si
ngle
processi
ng
stage
[8]. In
contrast
with the
tra
d
i
t
ional voltag
e
so
urce
(VSI) or
curre
n
t so
urce inve
rters
(CSI
), the Z
-
Source i
n
ve
rter
(Z
SI) e
m
ploys a
un
ique imp
eda
nce
netwo
rk
with split indu
ctor
L
1
, L
2
and ca
pacito
r
C
1
, C
2
conne
cted i
n
X
shape b
e
t
ween the in
p
u
t
voltage a
nd t
he inve
rter bridge.
With th
e uni
que
imp
edan
ce
net
work,
ZSI can i
n
tentionally
u
s
e
a
swit
chin
g
sta
t
e that is not
permitted in
the VSI
whi
c
h i
s
call
ed t
he “sh
oot-th
r
ough
”
state.
By
utilizing thi
s
swit
chin
g sta
t
e, the inverter can
o
u
tput
voltage high
er o
r
lower t
han the
DC l
i
nk
voltage.
Therefore, th
e inverte
r
i
s
a bu
ck-b
oo
st
ty
pe co
nverte
r an
d
can
out
put whatever
voltage
desi
r
ed, an
d overcome th
e voltage limitation of t
he voltage so
urce inverter a
n
d cu
rre
nt sou
r
ce
inverter. F
u
rt
herm
o
re, th
e
reliability of t
he Z
-
sour
ce
inverter is
gre
a
tly enhan
ce
d with th
e a
b
i
lity
to han
dle th
e
sho
o
t-throug
h state.
He
nce, by ex
ploiti
ng the
adva
n
tage
s of
ZSI, numbe
r
of a
c
tive
swit
chin
g
dev
ice
s
,
volume and co
st
ca
n also be
mini
mized. Fi
nall
y
, the overall
efficien
cy of the
system i
s
gre
a
tly improved
by reali
z
ing
singl
e stag
e i
n
versi
on, bo
o
s
t and m
a
ximum po
wer
poi
nt
tracking (MP
P
T).
So far seve
ral re
sea
r
che
r
s have im
pl
ement ZSI for PV ba
sed
powe
r
con
d
i
tioning
system (PVP
CS) an
d the result
s are hi
g
h
ly enco
u
ra
gi
ng [9-12]. Hu
ang
et. al.
[xx] have propo
sed
a sin
g
le
stag
e co
nfiguratio
n for a
split
pha
se
syste
m
for PV ap
plicatio
n which uses
ZSI. This
config
uratio
n
requi
re
s
six switch
es, o
perating at
hig
h
frequ
en
cy is
recom
m
en
ded
for high
po
wer
swit
che
s
. P&
O alg
o
rithm
has be
en i
m
plemente
d
a
s
the
MPPT
metho
d
. Op
timal op
erati
on
perfo
rman
ce
of a bru
s
hle
s
s dc m
o
tor
(BLDC),
usi
n
g
ZSI fed by
PV system to drive a
wa
ter
pumpin
g
sy
st
em ha
s b
een
pro
p
o
s
ed i
n
[13]. The
p
r
o
posed
syste
m
employ
s a
ZSI to extract
the
maximum po
wer
of PV array and su
ppl
y the BLDC
moto
r. In ord
e
r to achieve
an accu
rate
MPP,
a variable
ste
p
size increm
ental co
ndu
ct
ance met
hod
was utili
zed.
Since ZSI is rega
rde
d
as a
new type
of inverters, a lot
of research
on this to
pic is still focusing on the cont
rol algorithm
[12],
swit
chin
g
sch
e
me [14]
an
d
ne
w top
o
log
y
derived
fr
om it such as
quas
i
z
-
s
o
urce [15], multilevel
ZSI [16], etc.
Most of the works d
one in t
h
is
a
r
ea o
n
ly use
d
co
nvent
ional MPPT a
l
gorithm
s such
as Pertu
r
b a
nd Ob
serve
(P&O), Incre
m
ental
Co
nd
uctan
c
e (In
c
Con
d
), Hill Climbing (HC) and
etc
.
to track
the MPP.
The co
nventi
onal algo
rith
ms perfo
rm very well und
e
r
the uniform
insolation
co
ndition
s,
but it deviate
s from
and
o
scill
ates
aro
u
nd the ma
xim
u
m po
we
r poi
nt, since the
system m
u
st
be
contin
uou
sly
pertu
rbe
d
in
orde
r to
dete
c
t the maxim
u
m po
we
r po
int [17]. Ho
wever, when t
he
weath
e
r
rapi
dly ch
ange
s,
the P&O m
e
thod fail
s to
t
r
ack th
e max
i
mum p
o
we
r
point effe
ctively
[18]. Furthermore, in p
a
rti
a
l sh
ading
co
ndition
s, t
hey can
not distin
guish betwee
n
the glob
al p
e
a
k
(GP)
and l
o
cal pea
k
(LP) sin
c
e l
o
cal
MPP sho
w
s
the sa
me typ
i
cal
cha
r
a
c
teristics a
s
gl
ob
al
MP
P
,
su
ch a
s
it
h
a
s
dP
/
dV
=0 a
nd th
e
slop
e at it
s ri
ght an
d left
si
des have
different
sig
n
s.
T
hus,
an amou
nt of power
gen
eration
can
n
o
t be utiliz
e
d
by using
convention
a
l algorith
m
s
when
partially sh
ad
ed co
ndition
occurs o
r
so
me part
s
of PV array are d
a
mage
d [19].
Obviou
sly, co
nventional
M
PPT algo
rithm will fail to
conve
r
ge
to t
he real valu
e
of glob
al
MPP point. I
n
effort to
o
v
erco
me th
e
aforementio
ned
problem
s,
several
re
sea
r
che
r
s ha
ve
utilized the a
r
tificial intellig
ent (AI) tech
n
i
que
s su
ch a
s
fuzzy logic
control (F
LC) [20] and neu
ral
netwo
rk (NN) [21]. Both tech
ni
qu
es
are proven to
be very
effective in deali
n
g with
nonli
n
ear
cha
r
a
c
t
e
ri
st
ic
s of
sola
r c
e
ll
I-V
cu
rve
,
but the drawb
a
ck i
s
that they ne
ed an
exten
s
ive
comp
utationa
l and still una
ble to locate
the global
pe
ak of MPP. Evolutionary al
gorithm
s (EA
s
)
have come
o
u
t to be a
better
solution
an
d app
ear very
promi
s
in
g to
overcome thi
s
p
r
oble
m
. EAs
are ve
ry pop
u
l
ar in m
any e
ngine
erin
g ap
plicatio
ns
but
to date, num
b
e
r of
researchers who a
p
p
l
y
this metho
d
for MPPT ap
p
lication i
s
still very small.
Ability of EAs to handl
e no
nlinea
r fun
c
tions
without requi
ring de
rivatives info
rmatio
n makes
it as an attract
i
ve choi
ce. These metho
d
s
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 80 – 89
82
sea
r
ch from a populatio
n
of points instead of a
si
ngle point a
s
in conventio
nal sea
r
ch a
n
d
optimizatio
n t
e
ch
niqu
es.
Hence, it is forese
en to
b
e
ve
r
y
e
ffic
i
en
t in
d
e
a
lin
g w
i
th
MPPT
pr
oble
m
[22]. Variou
s EA metho
d
s are fou
nd i
n
the lite
r
ature but
the m
o
st po
pula
r
o
nes a
r
e
gen
etic
algorith
m
(G
A), particle
swarm optimization (PSO
) a
nd differential
evolution (DE). Among them,
PSO and
DE
are
hig
h
ly p
o
tential du
e t
o
its
simp
l
e
stru
cture, ea
sy imple
m
ent
ation an
d fa
st
computation capability.
This pa
per ai
ms to
ove
r
co
me the
sho
r
tcomin
g
of the
dual
-stage
s
VSI or
CSI a
s
well
as
improvin
g th
e current
M
PPT strate
gi
es
by em
plo
y
ing ZSI an
d ap
plying
a
rel
a
tively n
e
w
evolutiona
ry optimizatio
n
algorith
m
kno
w
n a
s
the
Differential Evol
u
t
ion (DE) a
s
t
he MPP tra
c
ker.
The main im
petus of u
s
in
g DE is ba
se
d on studi
es
in other field
s
that demon
strated that
DE
conve
r
ge
s fa
st, accurate,
robu
st, simpl
e
and re
quires only a few co
ntrol pa
rameters [23-25].
The metho
d
appe
ars to b
e
highly ca
p
able an
d up
till now, no
research
er
has a
pplie
d this
method for M
PP tracki
ng o
f
PV system wi
th the use of z-sou
r
ce in
verter.
2. ZSI Based
PV Po
w
e
r Conditioning
Sy
stem (PV-PCS)
A ZSI can
b
e
used to
re
alize
both
DC volt
age
bo
ost an
d DC-AC inversio
n
in sin
g
le
stage
with a
dditional feat
ure
s
that can
not be
acco
mplish
ed wit
h
the traditio
nal PV-PCS. The
power
circuit
of a PV based sin
g
le
-ph
a
se ZSI with
the tradition
al dire
ct sh
o
o
t-thro
ugh
co
ntrol
stru
cture is
shown in Fi
gu
re 1. An im
p
edan
ce
net
work containin
g
two e
qual
(split) i
ndu
ctors in
seri
es a
nd di
agon
ally con
necte
d to two equal (split
) cap
a
cito
rs, outputs
DC voltage (DC li
nk
voltage) to a
sin
g
le
-pha
se
inverte
r
brid
ge
whi
c
h
i
s
comp
ri
sed
of
four po
we
r I
G
BT’s with
a
n
ti-
parall
e
l diodes. The Z
-
net
work fac
ilitates the
shoot-through states
so that they are utilized more
advantag
eou
sly without an
y harmful effe
cts to the inverter o
peratio
n.
Figure 1. PCS based Z
-
So
urce Inverter
The MPPT
control
algo
rith
m provide
s
a
sho
o
t-throug
h
inte
rval whi
c
h sh
ould
be
inse
rted
in the switch
ing wavefo
rms of the in
verter to out
put maximu
m amount of
powe
r
to th
e Z-
netwo
rk. At this in
stant, the voltage
a
c
ro
ss the Z
-
source
cap
a
cit
o
r,
V
C
is eq
u
a
l to the out
put
voltage of the PV array (
V
PV
). A ZSI h
a
s thre
e ope
rating mode
s,
namely an a
c
tive (non
sh
oot-
throug
h) mo
d
e
, a shoot
-through mo
de a
nd a tradition
al zero mod
e
.
From the
symmetry of the Z-source
n
e
twork the follo
wing i
s
obtain
ed:
C
C
C
V
V
V
2
1
L
L
L
v
v
v
2
1
(
1
)
Whe
r
e
is voltage a
c
ro
ss the Z-sou
r
ce
ca
pacito
r
, and
is voltage a
c
ross the indu
ctor.
Con
s
id
er tha
t
the inverter bridg
e
is in
one of the
four no
n-sho
o
t-thro
ugh
switchi
ng
states, for an
interval of
.
No
w the inverter bri
dge a
c
ts as a traditional VSI, thu
s
acting a
s
a
curre
n
t sou
r
ce as
sho
w
n i
n
Figure 2. Beca
use of
the symmetri
c
a
l
configu
r
atio
n of the circu
i
t,
both of the equal indu
cto
r
s have ide
n
tical current value
s
. The di
ode
D
, sho
w
n in the power
circuit i
s
forward
biased i
n
this
ca
se. T
he volt
age
a
c
ro
ss the
Z-netwo
rk in th
is case can
be
written as
follows
:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Single Pha
s
e
Z-Source In
verter
with Differential E
v
olu
t
ion (DE) b
a
sed… (M.F.
N
. Tajuddi
n)
83
C
PV
L
V
V
v
PV
dc
V
v
(
2
)
PV
C
L
C
dc
V
V
v
V
v
2
ˆ
Whe
r
e
is the output volta
ge of the PV
array,
is the DC lin
k voltage and
is the peak
DC lin
k volta
ge of the inverter.
Figure 2.
Equivalent circuit of the Z-so
urce invert
e
r
viewe
d
from th
e dc lin
k duri
ng non
-shoot
-
throug
h state
Duri
ng the
n
on-sho
o
t-thro
ugh
swit
chin
g state of
op
eration, the i
n
verter
brid
g
e
ca
n be
rep
r
e
s
ente
d
by
a
current source with ze
ro
valu
e (i.e.,
an op
en
circu
i
t). T
herefore, Figure 5.3
can
rep
r
e
s
ent the
equivale
nt ci
rcuit
of ZSI from the
dc-
lin
k p
o
int of vie
w
when
the i
n
verter bri
d
g
e
is
in one of the four no
n-sh
oo
t-throu
gh swit
chin
g state
s
.
Figure 3. Equivalent circuit of the Z-so
urce inve
rte
r
viewe
d
from th
e dc lin
k wh
e
n
the inverter
bridge is
in the s
h
oot-through z
e
ro s
t
ate
The inverte
r
bridg
e
is un
der the shoo
t-throu
gh sta
t
e for an interval of
, duri
ng a
swit
chin
g cy
c
l
e
,
. During thi
s
mode, the inverter b
r
idg
e
is seen a
s
a sho
r
t circuit from the DC
link poi
nt of view. From
the equival
ent circui
t
shown in Fig
u
re 3, the v
o
ltage a
c
ross the
impeda
nce el
ements
can b
e
related a
s
:
C
L
V
V
;
C
PV
V
V
2
;
0
dc
v
(
3
)
In steady
sta
t
e con
d
ition,
the avera
ge
i
ndu
ctor volt
age ove
r
on
e switchi
ng
period
,
sho
u
ld be
zero. Thus fro
m
Equation (2)
and (3
), one
has
0
)
(
1
0
T
V
V
T
V
T
v
V
C
PV
C
L
L
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 80 – 89
84
Or,
0
1
1
T
T
T
V
V
PV
C
(
5
)
Whe
r
e
is a
the non-sho
o
t
-throu
gh peri
od and
is the shoot-th
r
o
u
gh perio
d. Similarly, the
averag
e dc-li
n
k voltage of
the
inverter
can be written as:
C
PV
PV
C
dc
DC
V
V
T
T
T
T
V
V
T
T
v
V
0
1
1
1
0
)
2
(
0
(
6
)
The pea
k d
c
-link voltage a
c
ro
ss the inverter
b
r
idg
e
, expre
s
sed in
Equation (2),
can be
rewritten as
:
PV
PV
PV
C
L
C
dc
V
B
V
T
T
T
V
V
v
V
v
0
1
2
ˆ
(
7
)
Whe
r
e,
1
2
1
1
)
(
2
1
1
0
0
0
1
D
T
T
T
T
T
B
(
8
)
Is the boo
st factor
and
can be referre
d
to as the shoot-th
r
ou
gh
duty ratio an
d is equ
al to
)
(
0
T
T
On the AC si
de, the output
peak p
h
a
s
e
volt
age from the inverte
r
ca
n be expre
ssed as:
2
2
ˆ
ˆ
PV
dc
ac
V
B
M
v
M
v
(
9
)
Whe
r
e
is the
modulatio
n i
ndex (
1
. By choosi
ng the a
ppro
p
ri
ate bu
ck-bo
o
st fa
ctor,
,
the output voltage ca
n be stepped u
p
an
d down.
)
0
(
B
M
B
B
(
1
0
)
From Equ
a
tio
n
(1), (5) an
d (8), the capa
citor voltage can be written as:
PV
PV
C
C
C
V
D
D
V
T
T
T
T
V
V
V
0
0
0
0
2
1
2
1
1
)
(
2
1
)
(
1
(
1
1
)
2.1. MPPT Control of ZSI
To ensure t
he optim
al utilization of l
a
rg
e PV array, maximum power
poi
nt tracker
(MPPT) i
s
e
m
ployed in
conjun
ction
wi
th the power
conve
r
ter (d
c-dc co
nverte
r
and/or
i
n
vert
er).
Ho
wever,
du
e to the
varyi
ng e
n
viron
m
e
n
tal conditio
n
su
ch
a
s
tem
peratu
r
e
an
d
sola
r in
sol
a
tion,
the
P
–
V
ch
a
r
acte
ri
stics curve exhibit
inco
nsi
s
tent
maximum po
wer point
(M
PP), posi
ng
a
chall
enge
to t
he tracking
p
r
oble
m
. A variety of MPPT
algo
rithm
s
h
a
ve be
en
rep
o
rted
to extra
c
t
maximum po
wer fro
m
a PV array [19].
The MPPT control sch
e
m
e
for a ZSI b
a
se
d PV-PCS is
sho
w
n in Fi
g
u
re 4. Fo
r a
ZSI based P
VPCS, the MPPT algorith
m
gene
rate
s
a sho
o
t-throu
g
h
perio
d (
) to
boo
st the Z-sou
r
ce ca
pacitor voltage
to the PV array voltage at the MPP. As
discu
s
sed in
the previou
s
se
cti
on, the shoot
-thro
u
gh duty peri
od (
) requi
re
d to boost the
cap
a
cito
r voltage is di
re
ctly calculate
d
and t
he sh
oot-throug
h referen
c
e
straight line
s
a
r
e
gene
rated to
prod
uce sh
oo
t-throu
gh pul
ses with a
si
m
p
le boo
st co
n
t
rol, as shown in Figure 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Single Pha
s
e
Z-Source In
verter
with Differential E
v
olu
t
ion (DE) b
a
sed… (M.F.
N
. Tajuddi
n)
85
Figure 4.
ZSI
PV-PCS cont
rol blo
ck di
ag
ram
3. Differential E
v
o
l
ut
ion (DE) Algo
rith
m
Differential E
v
olution (DE
)
is one of m
e
ta-h
e
u
ri
stic
method an
d
powerful tool
s to find
global optim
a
l
solution. DE
was invente
d
by K.
Price
and R. Storn [26] after they find out the
pro
c
ed
ure of
differential m
u
tation combi
ned
with di
screte recombi
nation a
nd p
a
ir
wise
selection
without an
ne
aling facto
r
. A conventio
n
a
l dire
ct
se
arch meth
od u
s
e
s
a st
rateg
y
that genera
t
es
variation
s
of the desi
gn p
a
ram
e
ter ve
ctors. On
ce
a variation i
s
g
enerated, the
new p
a
ra
me
ter
vector i
s
a
c
cepted o
r
not.
The ne
w pa
ramete
r vect
or is
accepte
d
in the case it redu
ce
s
the
obje
c
tive function value. T
h
is metho
d
is usua
lly nam
ed the gre
e
d
y
search. Th
e gree
dy sea
r
ch
conve
r
ge
s fa
st but can b
e
trappe
d by local mi
nima
. This disa
dvantage can b
e
eliminated
by
runni
ng seve
ral vecto
r
s
si
multaneo
usly
. This is
the
main idea
of differential
evolution (DE)
algorith
m
[27
]. The main
differen
c
e
be
tween th
e g
e
netic al
go
rith
m and
DE i
s
GA u
s
e bi
n
a
r
y
codi
ng for rep
r
esenting p
r
o
b
lem pa
ramet
e
rs
while DE
use re
al co
di
ng of floating point numb
e
rs.
The
cruci
a
l i
dea
behi
nd
DE i
s
a
sch
e
m
e for g
ene
rating tri
a
l p
a
rameter vecto
r
s. Ba
si
cally, DE
add
s the wei
ghted differe
n
c
e bet
wee
n
two po
pulatio
n vectors to a
third vector.
The key parameters of control a
r
e:
NP
- the pop
ulation si
ze,
CR
- the crossover
c
o
ns
tant,
F
- the weight a
pplied to ra
n
dom differe
ntia
l (scalin
g factor). It is worth noting t
hat
DE’s control
variable
s
,
NP
,
F
and
CR
, are n
o
t difficult to choo
se
in orde
r to o
b
tain promisi
n
g
results. Sto
r
n
[28]
have
come
out
with
seve
ra
l
rules in selecting the control param
e
ters. The
rule
s are liste
d belo
w
:
1)
The initialize
d
popul
ation
sho
u
ld be
sp
read
a
s
mu
ch
as po
ssible
over the obj
e
c
tive
function surfa
c
e.
2)
Freq
uently th
e cro
s
sover
p
r
oba
bility
CR
[0,1] must
be
con
s
id
era
b
ly lowe
r tha
n
on
e
(e.g. 0.3). If no conve
r
ge
nce can b
e
achi
eved,
CR
[0.8, 1] often helps.
3)
For m
any ap
plicatio
ns
NP
=10
×
D,
wh
ere
D
i
s
the n
u
m
ber
of pro
b
l
e
m dime
nsi
o
n.
F
is
us
ually c
h
os
en at [0.5, 1].
4)
The high
er th
e popul
ation
size,
NP
, the lowe
r the wei
ghting facto
r
F
shoul
d ch
o
o
se.
These rul
e
s
of thumb for
DE’s
control variabl
e
s
whi
c
h is e
a
sy to
work with i
s
one of
DE’s m
a
jor
contributio
n [2
9]. The detail
ed Differ
entia
l Evolution al
gorithm
used
in the p
r
e
s
e
n
t
study is given
below:
1) Req
u
ire:
a)
D
– pro
b
lem
dimen
s
ion
b)
NP
,
CR
,
F
– control pa
ram
e
ters
c)
G
– Num
ber
of generation/
stoppi
ng con
d
ition
d)
L
,
H
– bou
nda
ry con
s
trai
nts
2)
Initialize all th
e vector po
pu
lation ran
dom
ly in the given upper & lo
we
r boun
d.
NP
j
D
i
L
H
L
Pop
ij
ij
,....,
1
,
,....,
1
)
1
,
0
(
rand
).
(
3)
Evaluate the fit
ness of each vector.
)
(
j
Pop
f
Fit
4)
Perform m
u
ta
tion & cro
s
so
ver.
a)
For ea
ch ve
ctor x
j,G
(target vector), a mutant
vector i
s
gene
rated by:
)
.(
,
3
,
2
,
1
1
,
G
r
G
r
G
r
G
j
x
x
F
x
v
Whe
r
e the th
ree di
stin
ct vectors
x
r1
,
x
r2
and
x
r3
rand
omly
cho
s
e
n
from
the current
popul
ation ot
her than ve
ctor
x
j,G
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 80 – 89
86
b) Perfo
r
m crossover fo
r e
a
ch ta
rget ve
ctor
with its
mutant vecto
r
to create a
trial
vec
t
or
1
,
G
j
u
)
,...,
,
(
1
,
1
,
2
1
,
1
1
,
G
Dj
G
j
G
j
G
j
u
u
u
u
otherwise
)
Rnd
(
)
rand
(
if
,
1
,
1
,
G
ij
i
G
ij
G
ij
x
i
CR
v
U
i
= 1,…,
D
5)
Verifying the boun
dary con
s
traint. If the boun
d (i.e. lo
wer & up
pe
r limit of a variable)
is violated
th
en it
can
be
brou
ght in
th
e bo
und
ra
ng
e (i.e. b
e
twe
en lo
we
r & u
pper
limit) either
by forci
ng it
to lower/up
per
limit (forced bou
nd
) or
by ran
d
o
m
ly
assigni
ng a value in the bo
und ra
nge
(wi
t
hout forcin
g).
)
1
,
0
(
rand
).
(
],
,
[
(
if
i
i
i
L
H
L
x
H
L
x
6)
Selection is p
e
rform
ed for each target vector,
,
by com
parin
g its fitn
ess value with
that of the
trial ve
ctor.
Vector with
lower fitness value is selected for
next
gene
ration.
7)
Process is
re
peated u
n
til a te
rmination
criterio
n is met
.
The flowcha
r
t
sho
w
n in Fig
u
re 5 summa
rize
s the DE
algorith
m
.
Figure 5. Flowchart of DE
method
4. Simulation Resul
t
s
Figure 6
sho
w
s the
MATL
AB/Simulink
simulatio
n
m
odel fo
r th
e
converte
r
with
the MPPT
implemented in this
work
. To verify the feas
ib
ili
ty of the propo
sed
algo
rithm, first it
is
impleme
n
ted
by usin
g ZSI. The follo
win
g
sp
ecifi
c
atio
ns fo
r the b
u
c
k–bo
ost
con
v
erter a
r
e
used:
L
1
=
L
2
=
1 m
H
,
C
1
=
C
2
= 1000
μ
F. T
h
e
swit
chin
g fre
quen
cy is
set
to 10
kHz. F
u
rthe
rmo
r
e, to
ensure the
system attains steady state
before an
ot
her MPPT cy
cle is initiate
d, the sampli
ng
interval is cho
s
en a
s
0.01
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Single Pha
s
e
Z-Source In
verter
with Differential E
v
olu
t
ion (DE) b
a
sed… (M.F.
N
. Tajuddi
n)
87
Figure 6. PV
system
with ZSI
(a)
(b)
Figure 7.
I-V
and
P-V
cu
rv
es du
ring p
a
rt
ial sha
d
ing
Figure 10. Tracking voltag
e, current, po
wer of
DE MPPT
Figure 11. Lo
ad voltage
V
L
, load curre
n
t
I
L
,
cap
a
cito
r voltage
V
C
and in
verter voltage
V
i
of
ZSI
As
can
be
se
en in
Fig
u
re
7, until
t
=
1.0
s,
at which p
o
int shadi
ng
occurs, th
e
DE ba
sed
MPPT
co
ntrol
l
er cal
c
ulate
s
the
co
rrect
V
MP
voltage (
V
4
.
239
4
1
.
17
) and
I
MP
current (3.5 A
)
,
respe
c
tively, corre
s
p
ondin
g
to the
maxi
mum p
o
wer
p
o
int. Du
e to
shadin
g
of the
PV array (at
t
=
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 14, No. 1, April 2015 : 80 – 89
88
1.0 s), the o
u
tput po
we
r
of PV sud
d
e
n
ly decre
ase
s
fro
m
its
op
timal value o
w
ing to
sudd
en
cha
nge in o
p
e
rating
cu
rre
nt. This will tend to rei
n
itia
lize the MPP
T
algorith
m
a
nd the ne
w
MPP
(i.e. global
MPP) will be search via
DE algori
thm
.
It can be
seen in Fi
gure 7, the M
P
PT
controlle
r accurately com
putes the
ne
w glob
al
I
MP
current (2.7
4 A), corre
s
pondi
ng to the
maximum po
wer point
(14
6
.56 W) (se
e
Figure 6
)
. Fi
gure
8
sho
w
s the co
rrespo
nding
output
of
ZSI. It can be see
n
tha
t
the inverter output
voltage is bo
ost
ed without the need of
an
interme
d
iate
stage
su
ch a
s
boo
st dc-d
c converte
r.
4. Conclusio
n
In this pap
er,
DE based
MPP tracker
works
in conj
unctio
n
with
a singl
e-stag
e singl
e-
pha
se ZSI is pre
s
e
n
ted.
Inability of the c
onven
tional MPPT techniqu
es in dealing with
multimodality
of
P-V
cha
r
acte
ri
stic cu
rve duri
ng p
a
rtial shadin
g
can
be o
v
erco
me by
the
prop
osed
MPPT tech
niqu
e
.
In additio
n
t
he ove
r
al
l
efficien
cy of th
e
propo
sed
P
VPCS is furt
her
enha
nced by
employin
g
a si
ngle
-
sta
g
e
po
we
r
co
n
v
erter. Imple
m
entation
of the switchi
ng
scheme
and
its MPPT co
ntrol st
ru
cture are p
r
ovid
e
d
as d
e
si
gn
guidelin
es. M
A
TLAB/Simulink
simulation is
used to validate the feasi
b
ility
of the proposed PVPCS parti
cularl
y how it handle
the partial sh
ading
con
d
ition.
Referen
ces
[1]
Bose BK, PM
Szczesn
y
,
RL
Steiger
w
a
l
d
. M
i
croc
omp
u
ter c
ontrol
of a r
e
si
denti
a
l
phot
ov
oltaic
po
w
e
r
cond
ition
i
n
g
s
y
stem
.
IEEE
Transactions on In
dustry Applications
. 198
5; IA-21(5): 118
2-1
1
9
1
.
[2]
Jain
S, V A
g
ar
w
a
l.
A si
ngl
e-stage
gri
d
c
onn
ec
ted
inv
e
rter topo
log
y
f
o
r sol
a
r PV
s
y
stems
w
i
th
maximum po
w
e
r point tracking
.
IEEE Transactions on Power Electronics
. 2
007; 22(
5): 192
8-19
40.
[3]
Kang F
S
, et a
l
. A ne
w
co
ntro
l schem
e of a
cascad
ed tra
n
s
former t
y
p
e
multilev
e
l PW
M inverter for
a
resid
entia
l ph
otovolta
ic po
w
e
r cond
ition
i
n
g
s
y
stem
.
Solar Energy.
200
5; 78(
6): 727-7
38.
[4]
Lia
ng T
J
, YC
Kuo, JF
C
hen.
Sin
g
le-sta
ge
photov
olta
ic e
nergy
conv
ersi
on syste
m
.
IE
E Proce
edi
ngs
:
Electric Po
w
e
r Appl
icatio
ns. 2
001; 14
8(4): 33
9-34
4.
[5]
Che
n
Y, KM Smedl
e
y
. A c
o
st-effective sin
g
l
e
-s
tage inverte
r
w
i
t
h
ma
xim
u
m
po
w
e
r po
int tracking.
IE
EE
T
r
ansactio
n
s o
n
Pow
e
r Electronics.
20
04; 19
(5): 1289-
12
94
.
[6]
Blaa
bjer
g F
,
Z
Che
n
, SB Kja
e
r
. Po
w
e
r e
l
ectr
onics
as
effici
e
n
t interface
in
disp
ersed
po
wer ge
nerati
o
n
s
y
stems
.
IEEE Transactions on Power Electronics.
20
04; 19
(5): 1184-
11
94
.
[7]
Kjaer SB, JK
Peders
en, F
Blaab
jer
g
. A revie
w
of singl
e-ph
ase gr
i
d
-con
necte
d i
n
verters for
photov
olta
ic modu
les
.
Industr
y Applic
ations,
IEEE Transactions.
200
5; 41(
5): 1292-
13
06.
[8]
F
ang Z
hen
g P. Z
-
source inver
t
er
.
Industry Applicati
ons, IEEE Transactions
.
2003; 39(
2): 504-5
10.
[9]
Badi
n R, et
al.
Grid Inter
c
onn
ected Z
-
Source PV S
ystem
. in P
o
w
e
r Electro
n
ic
s Speci
a
lists
Confer
ence, P
ESC 200
7. 200
7.
[10]
Das A, D Lah
ir
i, AK Dhakar.
Residential solar power system
s using Z - source inverter
.
In
T
E
NCON
200
8 - 200
8 IEEE Regi
on 1
0
Confer
ence. 2
008.
[11]
Po
X, et
al.
Study of
Z
-
So
urce Inv
e
rter f
o
r Grid-C
on
ne
cted PV
Systems
. I
n
Po
w
e
r Electronic
s
Speci
a
lists Co
nferenc
e, PESC '06. 2006.
[12]
Yuan L, et al
.
Controller design for qua
si-Z-source inverter in
photovoltaic system
s
. In Energ
y
Conv
ersio
n
Co
ngress a
nd E
x
positi
on (ECC
E). 2010.
[13] Mozafari
Niapoor
SAK,
S Dany
ali, MBB S
har
ifian.
PV power
system
bas
ed MPPT
Z-source inv
e
rter t
o
supp
ly a se
ns
orless BL
DC
motor
. In Po
wer Electron
ic &
Drive S
y
stem
s &
T
e
chnol
og
i
e
s Conf
erenc
e
(PEDST
C). 20
10.
[14]
T
hangapr
akas
h S, A Krishna
n. A ne
w
s
w
itc
h
in
g schem
e for Z
-
source i
n
verter to mini
mize rip
p
les
in
the Z
-
source el
ements
.
Intern
ation
a
l Jo
urna
l of Automatio
n
and C
o
mputi
n
g
. 2012; 9(2): 20
0-21
0.
[15]
Shah
par
asti M,
et a
l
.
Quas
i Z
-
source inv
e
rter fo
r photov
olt
a
ic system connec
ted to s
i
ngle phas
e AC
grid
. In Po
w
e
r
Electron
ic & Drive S
y
st
ems & T
e
chnolog
ies
Confer
ence (P
EDST
C). 2010.
[16]
Bana
ei
MR,
et al. Z
-
so
urc
e
-bas
ed
mult
i
l
e
vel
inv
e
rter
w
i
t
h
r
educti
on
of s
w
itc
hes.
IET Power
Electron
ics.
20
12; 5(3): 38
5-3
92.
[17]
Solo
dovn
i
k EV
, L Sh
en
g
y
i,
R
A
Do
ug
al. Po
wer co
ntroll
er
de
sign
for ma
xim
u
m p
o
w
e
r
trac
king
in
so
lar
installations.
Power Electronics, IEEE
Transactions
. 20
04;
19(5): 12
95-
13
04.
[18] Yeon
g-Ch
au
K,
L
T
s
or
ng-J
uu, C. Jian
n-
F
uh. Novel m
a
ximum-p
o
w
e
r
-poi
nt-tracking
controll
er for
photov
olta
ic e
nerg
y
c
onv
ersi
on s
y
stem. I
ndustrial E
l
ectronics, IEEE Transactions
.
200
1
;
48(3): 5
94-
601.
[19]
Esram T
,
PL
Cha
p
man.
Comp
ariso
n
o
f
P
hotovolt
a
ic
Array
M
a
x
i
mum Po
w
e
r
Point T
r
acking
T
e
chniques
.
E
nergy Convers
i
on, IEEE Transactions
. 20
07;
22(2): 43
9-4
4
9
.
[20]
Chekir
ed F
,
et
al.
I
mplem
ent
ation
of a MP
PT
fuzz
y
co
nt
roller
for p
hot
ovolta
ic s
y
ste
m
s on F
P
GA
circuit
.
Energy Proced
ia
. 20
11
; 6(0): 541-54
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Single Pha
s
e
Z-Source In
verter
with Differential E
v
olu
t
ion (DE) b
a
sed… (M.F.
N
. Tajuddi
n)
89
[21]
Rai AK,
et al.
Simulati
on
mo
del
of ANN
ba
s
ed maximum
po
w
e
r point tracking c
ontroller
for solar
P
V
sy
s
t
e
m
.
Sol
a
r Energy Mater
i
a
l
s and So
lar C
e
lls
. 20
11; 95(
2): 773-7
78.
[22]
Miy
a
take M, et al. Maximum
Po
w
e
r Po
int T
r
ackin
g
of Multi
p
le Ph
otovo
l
tai
c
Arra
y
s
: A PSO Approach
.
Aerospace and Electronic Sys
t
em
s, IEEE Transactions
. 201
1; 47(1): 36
7-3
80.
[23]
T
a
juddin
MF
N, SM A
y
o
b
, Z
Salam.
T
r
ack
i
ng of maxi
mu
m pow
er poi
nt
in parti
al
s
h
a
d
in
g
co
nd
itio
n
usin
g differe
nti
a
l ev
oluti
on (D
E)
. In Po
w
e
r a
nd En
erg
y
(PE
C
on), 2
012 IE
EE Internatio
n
a
l Co
nfere
n
ce.
201
2.
[24]
T
a
juddin MF
N,
et al. Evoluti
o
nar
y bas
ed m
a
ximum
p
o
w
e
r
point tracki
ng
techniq
ue
usi
ng differ
entia
l
evol
ution alg
o
ri
thm.
Energy an
d Buil
din
g
s.
20
13; 67(0): 2
45-
252.
[25]
T
a
juddin MF
N
,
SM A
y
o
b
, Z
Salam.
Glo
b
a
l
maxi
mu
m p
o
w
e
r poi
nt tra
cking
of PV s
ystem
usin
g
dyna
mic p
opu
latio
n
si
z
e
di
fferential
evo
l
ution (
D
ynNP
-DE) al
gorith
m
. In En
erg
y
Conv
ersi
o
n
(CENCON), 2014 IEEE
Conference. 2014.
[26]
Storn R, K Price.
Differenti
a
l Evol
utio
n - A Simp
le a
n
d
Efficient Ad
aptive Sch
e
m
e for Globa
l
Optimi
z
a
t
i
o
n
o
v
er Conti
nuo
us
Spaces
. 19
95,
Internation
a
l C
o
mputer Sci
e
n
c
e Institute, Berkele
y
, CA.
[27]
Karab
o
g
a
, D.
and
S. Okdem,
A Si
mp
le
an
d
Globa
l Opti
mi
zation
Alg
o
rith
m for En
gin
eeri
n
g Pro
b
le
ms
:
Differenti
a
l Evo
l
utio
n Algor
ith
m
.
T
u
rke
y
Jurn
al Electric
al En
gin
eeri
ng, 20
0
4
. 12(1): p. 53-
60.
[28] Storn
R.
On th
e Usa
ge of D
i
fferenti
a
l Evo
l
uti
on for F
uncti
on
Optimi
z
a
t
i
o
n
. In
Proce
edi
ngs
of the F
u
zz
y
Information Pr
ocessi
ng Soci
e
t
y
.
Berkel
e
y
, C
A
, USA. 1996.
[29]
Storn R, K Price. Diffe
renti
a
l
Evoluti
on – A
Simple
an
d Efficient He
uristic
for Global Opti
mizatio
n
ov
e
r
Conti
nuo
us Sp
aces
.
Journ
a
l o
f
Global Opti
mi
z
a
ti
on
. 19
97; 1
1
(4): 341-
35
9.
Evaluation Warning : The document was created with Spire.PDF for Python.