TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 5154 ~ 51
6
2
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.590
8
5154
Re
cei
v
ed Fe
brua
ry 3, 201
4; Revi
se
d Ma
rch 12, 201
4
;
Accepte
d
March 27, 201
4
Power Loss Research
on IGCT-applied NPC Three-level
Converter
Dong Xu*
1
, Min-Xiao Han
1
, and Lei Wan
2
1
North Chi
na E
l
ectric Po
w
e
r U
n
iversit
y
,
Bein
ong R
o
a
d
, Beiji
ng, P.R.Chin
a, 102
206
2
Chin
a Electric
Po
w
e
r R
e
sear
ch Institute
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: xu
don
g_
ncep
u@1
63.com
A
b
st
r
a
ct
IGCT
has a
broa
d app
lic
ation pr
ospects
in high
pow
er conversi
on
such as flexible
D
C
transmissio
n
d
ue to its ch
ara
c
teristics of hi
gh vo
lt
ag
e an
d
larg
e cap
a
city
. Compar
ed w
i
t
h IGBT
it has a
voltag
e a
nd c
u
rrent lev
e
l
of
4.5kV/4kA a
nd it
s slop
e resist
a
n
ce is
le
ss th
a
n
IGBT
’
s. In a
d
d
itio
n, du
e to t
he
di/dt snu
b
b
e
r c
i
rcuit, IGCT
’
s
o
pen
ing
loss w
i
l
l
be re
duc
ed. B
e
caus
e of i
m
pr
ove
m
e
n
t of IGCT
perfor
m
a
n
c
e
,
the loss of IGCT-appl
ie
d thr
ee-l
e
vel c
onve
r
ter w
ill have s
o
me n
e
w
characteristics, so
it is necess
a
ry
to
mo
de
l the IGCT
-
type three-
level c
onv
erter
.
Based on
pi
ecew
ise li
ne
ar
curve fitting
meth
od, the I
G
CT
sw
itching l
o
ss
math
e
m
atic
al
mo
de
l is esta
b
lishe
d firs
tly. W
i
th its use in
IGCT
-
type three-l
e
vel c
onve
r
ter
loss
mode
l, a
IGCT
-
type thre
e-lev
e
l c
onv
erter
math
e
m
atic
al
mode
l is
est
ablis
he
d. If the
mo
de
l is
ap
pl
ie
d i
n
the ±20
0
kV fle
x
ible
DC trans
miss
ion
’
s calc
u
l
atio
n exa
m
pl
e,
it can be co
ncl
ude
d that
the l
o
ss rate is 0.3
1
%
-
0.78% w
hen th
e pow
er factor ang
le cha
n
g
e
s
betw
een 0 an
d
π
, w
h
ile the loss rate of IGBT
-
type converter
und
er s
a
me v
o
ltage
lev
e
l
is
2
%
-3.5%, s
o
it c
an
be
c
onc
lu
de
d that
IGCT
is
mor
e
s
u
itab
le
than
IGBT
for u
s
e
in h
i
g
h
volt
age
and
lar
ge c
a
pacity situ
atio
n
such
as freq
u
ency co
ntrol
o
f
motor s
p
e
e
d
and
flexi
b
l
e
DC
transmission.
Ke
y
w
ords
: IGCT
,
three-leve
l
,
loss mo
del, p
o
w
e
r factor angle, flexi
b
le D
C
transmiss
io
n
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
IGCT is th
e g
eneri
c
term o
f
integrated g
a
te
drive ci
rcuit and the ga
te conve
r
ter t
h
yristo
r.
Comp
ared
wi
th IGBT, IGCT ha
s severa
l advantag
es
:
it has
a hig
h
e
r voltag
e an
d cu
rrent lev
e
l
(4.
5
kV
/
4
kA
),
it
also ha
s a
lowe
r slo
pe
resi
st
an
ce [1]
.
Due to the
s
e adva
n
tag
e
s, IGCT
ha
s a
broa
d appli
c
ation pro
s
p
e
c
ts in flexibl
e
DC tr
an
smissi
on. Th
ree-level
will be a re
ason
able
stru
cture for the IGCT
-type
conve
r
ter, b
e
ca
use it not only raises
voltage level, it also red
u
ces
the probl
em
of excessive
harm
oni
c co
n
t
ent. Three
-
level converter is simp
ler and more reliable
than topology with more levels. Consequently
, ABB will adopt the IGCT
-type three-l
e
ve
l
conve
r
ter in f
u
ture me
dium
voltage frequ
ency c
ontrol
and flexible DC tran
smi
ssi
o
n
proje
c
t.
Currently, the lo
ss of a
IGBT-type co
nverter
ha
s been
analyze
d system
atically, but
there is n
o
profound a
naly
s
is fo
r a IGCT-type co
nv
e
r
ter. In [2], circuit simul
a
tio
n
usin
g physi
cal
model
is ad
o
p
ted, but
the
swit
chin
g p
r
o
c
e
s
s is ve
ry
short(l
e
ss th
an
10u
s [3])
an
d very
co
mpl
e
x,
so
simulatio
n
step is
usual
ly set to 10n
s. But it is
not appli
c
able i
n
the simul
a
tio
n
of flexible DC
transmissio
n. Anothe
r m
e
thod i
s
estima
ting the l
o
ss
usin
g the
dat
a sheet
provided
by the IG
CT
manufa
c
tures, but it cann
ot accu
rately
calcul
at
e the
l
o
ss of
a
conv
erter [4]. The
method
ado
pted
in this a
r
ticle
is a
n
exten
s
i
on of th
e
pie
c
e
w
ise lin
ear cu
rve fitting
approa
ch [5]
and it ta
ke
s the
reverse
re
co
very proce
ss of anti-parallel di
o
d
e
s
and
stray
indu
ctan
ce o
f
the line i
n
to
con
s
id
eratio
n
.
On this b
a
s
is, thi
s
arti
cle anal
y
z
es t
he IGCT
-typ
e three
-
level
conve
r
ter l
o
ss
cha
r
a
c
teri
stics, and an
alyzes the impa
ct
of t
he switchi
ng frequ
en
cy and po
we
r factor on lo
ss.
2. The S
w
i
t
c
h
ing Proces
s of IGCT a
n
d diode
Becau
s
e th
e
voltage an
d current cann
ot cha
nge
su
dd
enly wh
ether
power d
e
vice
s are in
turn-on or tu
rn-off pro
c
e
s
s, the switching
loss
cau
s
e
d
can b
e
expre
s
sed a
s
:
0
0
/
()
()
tt
on
of
f
t
E
Vt
I
t
d
t
(
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Lo
ss
Re
sea
r
ch on
IGCT-appli
e
d
NPC Th
ree
-
l
e
vel
Con
v
e
r
ter (Don
g Xu)
5155
Whe
r
e
∆
t i
s
t
he du
ratio
n
of
turn
-on
or turn-off p
r
o
c
e
ss,
t
0
is the
begi
nning tim
e
of
turn-on
or turn-off proc
es
s
.
2.1. The Tur
n-on Proc
es
s of IGCT
In [3], the wa
veform of IG
CT turn-on p
r
oce
s
s ha
d be
en d
r
awn through
experi
m
ent. The
diagram obtai
ned by cu
rve fitting method is sho
w
n in F
i
gure 1.
Whe
n
IGCT i
s
in the turn
-on pro
c
e
s
s, the cu
rrent be
gins to ri
se o
n
ly after the voltage
almost
de
clin
es to
0, so th
e turn
-on
lo
ss is
minim
a
l. Becau
s
e
IGCT usually works und
er
rate
d
voltage, the l
o
ss can b
e
consi
dered o
n
l
y
as the fu
nct
i
on of current.
Assuming E
on
is turn
-o
n lo
ss,
i
L
is the ope
ra
ting cu
rre
nt, I
N
is the test current
provid
ed by data sh
eet, E
onN
is th
e co
rre
sp
ondi
ng
turn-on lo
ss, the turn
-on lo
ss und
er
different curre
n
t ca
n be expre
ssed as:
()
(
)
L
To
n
T
o
n
N
N
i
EE
I
(
2
)
0(
)
on
t
1(
)
on
t
2(
)
on
t
,
TT
VI
()
do
n
t
r
t
rr
a
t
rr
b
t
rrm
I
T
V
0.
9
T
V
0.1
T
V
()
T
Vt
()
T
It
()
T
Vo
n
Figure 1. Dia
g
ram of the IGCT Tu
rn
-on
Tran
sient Waveform
2.2. The Tur
n-off Proce
s
s
of IGCT
Acco
rdi
ng to
the expe
rime
ntal wavefo
rms in
[3], the
diag
ram
of IGCT tu
rn
-off
pro
c
e
s
s
is sh
own in Figure 2. Th
e turn
-off pro
c
e
ss i
s
explain
e
d
as follo
ws.
0(
)
of
f
t
1(
)
off
t
2(
)
off
t
3(
)
of
f
t
()
do
f
f
t
T
I
T
V
f
t
,
TT
VI
()
T
Vt
()
T
It
0.8
T
I
0.3
T
I
D
SP
V
Figure 2. Dia
g
ram of the IGCT Tu
rn
-off Tran
sient Waveform
Whe
r
e, t
d(off)
i
s
the
turn-off delay
whi
c
h
is the
inte
rval
between
se
nding
turn
-off
sig
nal
and the cu
rre
n
t decrea
s
ing
to 0.8I
T
, t
f
is the fall time
durin
g whi
c
h
the current d
e
crea
se
s from
0.8I
T
to 0.3I
T
.V
DSP
is the first voltage p
eak ind
u
ced
by line stray indu
ctan
ce [6]. Similar to the
turn-on
process, the
turn
-off lo
ss is e
x
presse
d
ap
proximately
as th
e li
nea
r functio
n
of
the
curre
n
t, be
ca
use
the
current an
d volta
ge
whi
c
h
are
influen
ce
d b
y
snu
bbe
r
ci
rcuit a
n
d
stray
indu
ctan
ce a
r
e not lin
ear [7], and the
turn-off time doe
s not
ch
ange
pro
porti
onally with t
he
curre
n
t. The
experim
ent in
[3] al
so
sh
o
w
s the
ap
pro
x
imate waveform i
s
corre
c
t. Assu
ming
that
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5154 – 51
62
5156
E
off
is
the turn-off loss
, i
L
is the ope
rati
ng cu
rrent, I
N
is the test current
provided by data sheet,
E
offN
is the co
rre
sp
ondi
ng turn
-off loss, the turn
-off
lo
ss un
der
different cu
rrent ca
n be exp
r
e
s
sed
as:
()
()
L
To
f
f
T
o
f
f
N
N
i
EE
I
(
3
)
2.3. The Rev
e
rse Recov
e
r
y
Process of Diode
In the diode
clamp th
ree
-
l
e
vel conve
r
te
r com
m
only
use
s
fast recovery diode
who
s
e
reverse
curre
n
t is minimal
whe
n
turnin
g-on, so t
he turn-on lo
ss is far less than t
u
rn
-off loss a
nd
can b
e
negl
e
c
ted. The dia
g
ram of turn-off proc
ess waveform of di
ode is
sho
w
n
in Figure 3.
Figure 3. Dia
g
ram of the Diode Tu
rn-off Tran
sie
n
t Wa
veform
So the diode
turn-off loss
can be expressed a
s
:
()
1
2
do
f
f
d
d
E
EE
2
22
2
0
0
1
(1
)
23
ds
d
D
rr
d
D
D
r
r
VI
di
d
i
K
tV
K
K
t
di
dt
d
t
dt
(
4
)
Whe
r
e, K
D
=1/(
1+
S
D
)
,
t
rra
=K
D
t
rr
, S
D
is the softne
s
s of di
ode [8], trr is
the reve
rse
recove
ry
time of diode.
3. Analy
s
is o
f
Three
-lev
el Conv
erter Work Pro
ces
s
Whe
n
the co
nverter work steadily, the cont
rol
sign
als for IGCT
on bridge a
r
ms a
r
e
sho
w
n in Ta
b
l
e 1.
Table 1. Co
ntrol Signal for
IGCT
Output
VT1
VT2
VT3
VT4
Denoted
as
+Ud/2
on on off off
+1
0
off on on off
0
-Ud/2
off off on on
-1
Assu
ming th
at the powe
r
factor a
n
g
l
e of receivi
ng end i
s
θ
, load cu
rrent is
approximatel
y sinu
soid
al, i
L
=I
m
sin(
ω
t), l
o
ad voltage
V=U
m
sin
(
ω
t+
θ
), the rel
a
tionship bet
wee
n
t
h
e
waveforms of
current an
d voltage an
d the power devi
c
e
s
ope
ration
status is
sho
w
n in Figu
re
4.
Six workin
g states
within
a perio
d are shown in Figu
re 5.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Lo
ss
Re
sea
r
ch on
IGCT-appli
e
d
NPC Th
ree
-
l
e
vel
Con
v
e
r
ter (Don
g Xu)
5157
si
n(
)
m
iI
t
si
n(
)
ao
m
UU
t
t
Figure 4. The
Relation
ship
betwe
en the
Load'
s
Voltag
e and Current
and the Devi
ce Op
eratio
n
Status
d
U
d
U
L
i
(a)State 1,i_L>
0
d
U
d
U
L
i
(b) State 0,i_
L>0
L
i
d
U
d
U
(c
) State -1,i_
L
>0
L
i
d
U
d
U
(d) State 1,i_
L<0
L
i
d
U
d
U
(e) State 0,i_
L<0
L
i
d
U
d
U
(f) State -1,i_
L
<0
Figure 5. The
Flow Path of the Load
Current unde
r Different Swit
ch
State
The cal
c
ul
ation of duty ratio of powe
r
device
s
: This articl
e ado
pts co
pha
sal
carrie
r
modulatio
n [9, 10] whi
c
h
mean
s the
carrie
rs
are
on top of e
a
ch
with the
same ph
ase. This
modulatio
n m
e
thod produ
ces a minim
u
m harmo
nic i
n
line voltage
output, as sh
own in Fig
u
re
6.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5154 – 51
62
5158
si
n(
)
mt
c
T
Figure 6. Cop
hasal Ca
rri
er
Modulatio
n PWM an
d Duty
Ratio
The cal
c
ul
ate
d
duty ratio using regul
ar
sampling m
e
th
od [11] is sh
o
w
n in Tabl
e 2
.
Table 2. Duty
Ratio of Switch Device
Phase voltage
Voltage level
Dut
y
ratio
Denoted as
>0
/2
d
U
msin
ω
t
θ
D1
0
1
m
s
i
n
ω
t
θ
D2
<0
0
1
m
s
i
n
ω
t
θ
D3
/2
d
U
m
sin
ω
t
θ
D4
4. The Model
of Three
-Le
v
e
l
Con
v
erte
r Loss
4.1. S
w
i
t
c
h
in
g Loss
Due to
different cu
rrent i
n
every IGCT sw
it
chin
g
pro
c
e
ss,
t
h
e
swit
chin
g lo
ss i
s
t
he
function of
I
T0
.The forward
voltage drop
is al
so differe
nt, but it cha
nge
s little an
d its ra
nge
h
a
s
little
effect on
the switchi
n
g
losse
s. The
r
efore it
can b
e
con
s
ide
r
ed
to be a fixed
value whi
c
h can
be con
s
ide
r
e
d
as th
e ave
r
age val
ue o
f
saturation v
o
ltage d
r
op
and
colle
ctor-emitter volta
g
e
unde
r rated current. Assu
ming that
I
k
I
sin
ω
t
, where tk is the
moment of every swit
ch,
so:
0
1
1
[(
(
)
)
]
n
swit
c
h
on
of
f
T
k
PE
E
I
k
T
(
5
)
But this
cal
c
ulation m
e
th
od i
s
ve
ry co
mplicate
d
, it
sho
u
ld
be
si
mplified
whi
c
h me
an
s
averagi
ng every swit
ching
loss on
the carrie
r’s
pe
ri
od, then
inte
grating
the
a
v
erage
lo
ss.
This
method
ca
n
determi
ne th
e co
nverte
r l
o
ss withi
n
th
e pe
rmitted t
o
lera
nce [12]
.Take VT
1 f
o
r
example:
()
(
)
,1
0
(s
i
n
(
)
)
1
2
To
n
T
o
f
f
m
sw
i
t
ch
VT
c
EE
I
t
Pd
t
T
(
6
)
Whe
r
e T i
s
t
he pe
riod
of
modulatin
g
wave, T
c
is
the ca
rri
er’
s
perio
d,
ω
is
angul
ar
velocity of modulation
wave
. In a the same way,
()
(
)
,2
(s
i
n
(
)
)
1
2
To
n
T
o
f
f
m
switc
h
V
T
c
EE
I
t
Pd
t
T
(
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Lo
ss
Re
sea
r
ch on
IGCT-appli
e
d
NPC Th
ree
-
l
e
vel
Con
v
e
r
ter (Don
g Xu)
5159
()
,3
/
4
(s
i
n
(
)
)
1
2
Do
f
f
m
swi
t
c
h
VD
VD
c
EI
t
Pd
t
T
(
8
)
()
,5
0
(s
i
n
(
)
)
1
2
Do
f
f
m
s
w
it
c
h
VD
c
EI
t
P
dt
T
(
9
)
Whe
r
e, the a
pplied voltag
e on every p
o
we
r device whe
n
turne
d
-off is U
d
/2.In a
three-
level conver
ter
,
the char
acter
i
s
t
ics of four
sw
itc
h
i
ng
d
e
vice
s o
n
eve
r
y bri
dge
a
r
e
almost
ide
n
tical
and th
e dio
d
e
s
also have
the
same
chara
c
te
risti
c
s. Assu
ming t
he loa
d
i
s
symmetrical th
ree-
pha
se
load,
so
sw
itch
,
VT
1
s
wi
tch
,
VT
4
PP
,
sw
itch
,
VT
2
s
wi
tch
,
VT
3
PP
,
s
w
itc
h
,
V
D
5
s
w
itc
h
,
V
D
6
PP
,
switch
,
VD3
/
VD4
s
w
it
c
h
,
V
D
1
/
VD2
PP
.
Therefore, th
e swit
chin
g lo
ss of three-
l
e
vel converte
r
can b
e
expre
s
sed a
s
:
,
1
,
2
,5
,3
/
4
3(
2
2
2
4
)
s
w
itc
h
s
w
itc
h
V
T
s
w
itc
h
V
T
s
w
itc
h
V
D
s
w
itc
h
V
D
V
D
PP
P
P
P
(
1
0
)
4.2. On-s
tate
loss
The stati
c
ch
ara
c
teri
stics
of
on-state po
wer
device
s
i
s
the ke
y to calcul
ating the
on-state
loss of three
-
level conve
r
t
e
r [13]. IGCT
s wo
rk on
sa
turation regio
n
whe
n
they
are on,
so i
t
s
static cha
r
act
e
risti
c
ca
n be
expresse
d a
s
:
0
VT
VT
c
T
VR
i
V
(
1
1
)
Whe
r
e R
VT
i
s
t
he
slop
e
re
sist
an
ce,
V
T0
is th
e
satu
ration
voltage drop
whi
c
h i
s
indep
ende
nt of the colle
ctor-emitter current.
In the same
way, the static ch
ara
c
te
rist
ics of dio
de c
an be expressed a
s
:
0
VD
VD
c
F
VR
i
V
(
1
2
)
Whe
r
e, R
VD
is the slope resistan
ce of dio
des, V
F0
is the threshold v
o
ltage of diod
es.
Takin
g
VT
1 f
o
r
example, t
he
cal
c
ulatio
n p
r
o
c
ess of
a po
we
r
device
of the
three-level
conve
r
ter lo
ss is explain
e
d
as follows. Within a
ca
rri
er’s p
e
rio
d
, the VT1 loss can b
e
expre
s
sed
as:
10
1
(s
i
n
(
)
)
s
i
n
(
)
VT
VT
m
T
m
c
ER
I
t
V
I
t
D
T
(
1
3
)
Acco
rdi
ng to
[
14-1
6
], (1
3) can b
e
tran
sfo
r
med
into
differential
forms. The
mea
n
p
o
we
r
of
VT1 within a
perio
d is th
e integral
of ene
rgy’s di
ffe
rent
ial within the
on-state pe
rio
d
, so the m
e
a
n
power lo
ss of
VT1 is:
11
0
1
0
11
(
s
i
n
()
)
s
i
n
()
()
2
V
T
VT
VT
m
T
m
Pd
E
R
I
t
V
I
t
D
d
t
T
(14
)
In the similar
way, the on-state loss of
V
T
2, VD3/VD4
,
VD5 unde
r PWM mod
u
la
tion is:
20
0
1
[
(
sin(
)
)
si
n(
)
1
(
)
2
VT
VT
m
T
m
P
RI
t
V
I
t
d
t
(
1
5
)
03
(
s
in(
)
)
s
in(
)
(
)
]
VT
m
T
m
RI
t
V
I
t
D
d
t
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5154 – 51
62
5160
3/
4
0
4
1
(
s
in
(
)
)
s
in
(
)
(
)
2
VD
VD
VD
m
F
m
P
RI
t
V
I
t
D
d
t
(
1
6
)
50
2
0
1
[(
s
i
n
(
)
)
s
i
n
(
)
(
)
2
VD
V
D
m
F
m
P
RI
t
V
I
t
D
d
t
03
1
(
s
i
n
()
)
s
i
n
()
()
]
2
VD
m
F
m
R
It
V
I
t
D
d
t
(
1
7
)
In a th
ree
-
le
vel co
nverte
r, four
switch
dev
ices an
d
diod
es in
e
v
ery bri
de
h
a
ve the
identical ch
aracteri
stics, so
P
VT
1
=P
VT
4
,P
VT
2
=P
VT
3
,P
VD5
=P
VD6
,P
VD3/V
D
4
=P
VD1/VD2
. Therefo
r
e, the total
on-state loss
is:
12
5
3
/
4
3(
2
2
2
4
)
o
n
VT
VT
VD
VD
V
D
PP
P
P
P
(
1
8
)
The exp
r
e
ssi
on of o
n
-stat
e
loss i
ndi
ca
tes
that the
on-state lo
ss is
related
to load
curre
n
t, static characte
ri
stics of po
we
r d
e
vice
s, modul
ation ratio (m
) and po
we
r factor a
ngle
(
θ
).
4.3. Compari
s
on
w
i
th the
Experimenta
l
Results
Comp
ared to
the exp
e
rim
ental results i
n
[3], the fitted value
is ve
ry clo
s
e
to th
em, a
s
sho
w
n i
n
Ta
b
l
e 3. All the t
o
lera
nces are
within
4%, so the lo
ss un
der
other current valu
es
can
be determine
d by the fitted
curve.
Table 3. The
Contrast bet
wee
n
Experi
m
ental Value
and Fitted Va
lue
Curre
nt(A)
500
1000
1500
2000
Experimental(
on;
J)
0.31
0.45
0.62
0.83
Fitted(on;J)
0.30
0.46
0.62
0.84
Experimental(
o
ff;
J)
3.2
5.6
7.4
9.2
Fitted(off;J) 3.3
5.6
7.3
9.2
5. Example of Loss
Calcu
l
ation and Analy
s
is
The IGCT
s u
s
ed in the lo
ss analy
s
is a
r
e
5SHX
26L4
5
03, its rated voltage an
d cu
rre
nt is
4500V/22
00A
and its off-st
ate re
si
stan
ce is 9
0
k
Ω
. Th
e anti-parallel
diode
s a
nd
clamping
diod
es
are
5SDF
2
8L45
20. Th
e
loss i
s
cal
c
ulated in
th
e
model
of ±200
kV thre
e-level flexible
DC
transmissio
n
system a
nd i
s
compa
r
e
d
to the lo
ss
of the co
rresp
ondin
g
sy
ste
m
whi
c
h a
d
o
p
ts
IGBT. This
a
r
ticle i
s
m
a
inl
y
con
c
e
r
ne
d
with the i
n
flu
ence of p
o
wer d
e
man
d
in
AC sy
stem
on
loss. Assu
mi
ng that every valve bank is
con
s
i
s
ted
of 50 IGCT
s in serie
s
, equali
z
i
ng re
sista
n
ce
is
9k
Ω
, the m
o
dulation
ratio
(
m) i
s
0. 95,
the load
cu
rrent rm
s is 1
4
00A (IG
C
T),
the AC po
we
r is
285MVA, the range of po
wer fa
ctor a
ngle is [0,
π
], the carri
er
freque
ncy (f
c
) is 800
Hz, the
con
s
e
que
nce
of (10) an
d (18) calculate
d
by MATLAB is sho
w
n in
Figure 7.
As sho
w
n
in Figure
6: (1
) The switchin
g
lo
ss
of IG
CT is far le
ss than it
s o
n
-st
a
te lo
ss,
becau
se it
s turn
-on
loss i
s
very small a
nd the
sw
itchi
ng fre
que
ncy
is lo
w. (2)
Th
e switching
a
n
d
on-state lo
ss increa
se
wit
h
the po
we
r f
a
ctor an
gle,
becau
se mo
re cu
rrent flo
w
s f
r
om th
e
anti-
parall
e
l diod
es when the
powe
r
facto
r
angle in
cre
a
se
s. Beca
u
s
e the curre
n
t of IGCT-type
conve
r
ter can
re
ach 2
k
A, h
i
gher rating f
a
st
re
cove
ry
diode
s
are
re
quire
d. Th
ese dio
d
e
s
’ lo
ss in
reverse reco
very pro
c
e
s
s and their sl
o
pe re
sista
n
ce
all exceed I
G
CT. The
s
e
are the different
from IGBT-type co
nverte
r. The loss of
IGBT-t
ype converte
r de
creases
with the increa
se
of
power fa
ctor
angle, be
ca
u
s
e the lo
ss o
f
fast re
covery diodes
use
d
in three
-
lev
e
l conve
r
ter i
s
lowe
r than IG
BT. (3)
Com
p
ared
with the
IGBT-ty
pe co
nverter
und
er the sa
me vol
t
age level, th
e
IGCT-type
co
nverter h
a
s a
notice
ably lower lo
ss.
The
loss rate of IGCT
-type co
nverter i
s
0.31%-
0.79%,and t
he corre
s
po
n
d
ing valu
e o
f
IGBT-t
ype
conve
r
ter i
s
1.23%-3.4
2% and th
e loa
d
curre
n
t is onl
y 1kA.The de
tailed co
ntra
st is sho
w
n in
Table 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Powe
r Lo
ss
Re
sea
r
ch on
IGCT-appli
e
d
NPC Th
ree
-
l
e
vel
Con
v
e
r
ter (Don
g Xu)
5161
Table 4. The
Relatio
n
ship betwe
en Power Lo
ss
Rate
of ±200
kV Th
ree
-
level Con
v
erter an
d the
θ
θ
0
°
45
°
90
°
135
°
180
°
IGCT
(
%
)
0.31 0.33 0.48
0.68
0.79
IGBT
(
%
)
3.42 2.98 1.61
1.43
1.23
(a) Swit
ching loss rate
(b) On-s
tate loss
rate
Figure 7. The
Relation
ship
betwe
en Power Lo
ss
Rate
and Power F
a
ctor An
gle
6. Conclusio
n
It is difficult to cal
c
ulate th
e loss pre
c
i
s
ely beca
u
se the switchi
ng
pro
c
e
ss o
n
ly lasts for
several mi
cro
s
e
c
on
ds. T
h
i
s
a
r
ticle
u
s
es
the IGCT
pa
rameters p
r
ovi
ded by th
e da
tashe
e
t to bui
ld
a mathe
m
atical mod
e
l of
switchi
ng lo
ss of IGCT
s
wit
h
current
cha
nge
s. Thi
s
m
e
thod p
r
ovid
es
the found
atio
n for the
cal
c
ulation of the
conve
r
te
r l
o
ss. T
hen, the
model of
swi
t
ching l
o
ss a
nd
on-state l
o
ss
of thre
e-level
co
nverte
r i
s
built ba
se
d o
n
the
analy
s
i
s
of
the th
ree
-
level
conve
r
t
e
r
workin
g prin
cipal. Finally,
the model of
total lo
ss is built. Using
this mathem
atical mod
e
l to
analyze the I
G
CT
-type fle
x
ible DC tran
smissio
n
sy
stem, this a
r
ticl
e obtain
s
n
e
w characte
ri
stic
that the loss
of IGCT-type
conve
r
ter i
s
far less
than t
he IGBT-type
converte
r. Therefo
r
e, IGCTs
are mo
re sui
t
able than IGBTs in large
-
cap
a
city hi
gh
-pressu
r
e sit
uation
s
su
ch
as flexible DC
transmissio
n. IGCT ha
s
a lowe
r
swit
chin
g loss a
nd on
-state l
o
ss than IG
BT with a la
rge
r
capacity, so i
t
further improves
the economics
of the flexible
DC t
r
ansmi
ssi
on.
IGCT
will has a
broa
d appli
c
a
t
ion pro
s
pe
ct
s in the future
.
Ackn
o
w
l
e
dg
ements
This work was su
ppo
rted
by the major proj
e
c
t of great po
wer g
r
id laun
ch
ed by the
State Grid Co
rpo
r
ation of China(S
G
CC-MPLG01
9
-2
0
12).
Referen
ces
[1]
Li Ha
i-sha
n
. R
e
searc
h
on P
W
M
T
e
chniqu
e
and Sn
ub
ber
Circuit for Me
d
i
um Volta
ge
L
a
rge C
a
p
a
cit
y
T
h
ree-Level N
P
C Inverter
w
i
t
h
IGC
T
Device
. Graduat
e sch
ool of Ch
in
ese
acad
em
y
of sciences, 20
05.
[2]
Yuan L
i
-qi
a
n
g
, Z
hao Z
heng-
ming, Bai H
u
a
,
et al.
T
he Functio
nal Mo
d
e
l of IGCT
s
for the Circui
t
Simulati
on of H
i
gh-V
o
ltag
e Co
nverters.
Proce
edi
ngs of the C
SEE. 2004; 24(
6).
[3]
F
ilsecker F
,
Alvarez R, Bern
et S. Compari
s
on of 4.5-kV Press-Pack IGBT
s
and IGC
T
s
for Medium-
Voltag
e Co
nve
r
ters.
T
r
ansactions on In
dustri
a
l Electro
n
ics
. 201
3; 60(2).
[4]
Raja
paks
e
AD
, Gole AM, W
ilson
PL. Elec
tromagn
etic transi
ents simu
l
a
tion m
ode
ls for accur
a
t
e
repres
entati
on
of s
w
itch
ing
l
o
sses a
n
d
ther
mal performa
n
c
e
i
n
po
w
e
r el
ectronic
s
y
ste
m
.
IEEE Trans
.
o
n
Po
we
r D
e
li
ve
ry
. 2005; 2
0
(1
): 319-32
7.
[5]
W
ang C
h
e
ng-
Shen
g, Li
Ch
ong-
jia
n, Li Y
ao-h
ua, et
al.
Anal
ys
is o
n
the Loss
of I
G
CT
.
Control
Engi
neer
in
g of Chin
a
. 20
09; 9
(
16).
[6]
Yi Ro
ng, Z
h
ao
Z
hen
g-min
g
.
Rese
arch
on t
he T
u
r
n
-off Ch
aracteristic
of IGCT
Influenc
e
d
by th
e Stra
y
Inductanc
e in
High P
o
w
e
r Inverters
. Procee
din
g
s of the C
SEE. 2007; 11(
31).
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 5154 – 51
62
5162
[7]
Pan H
o
n
g
-
w
e
i
. Larg
e
C
apac
i
t
y
T
h
ree-Lev
el
Rectifier
w
i
th
Integrate
d
Ga
te Commutate
d T
h
y
r
istors
.
Beiji
ng Ji
aoto
n
g
Univ
ersit
y
. 2
012.
[8]
Liu
Xi
n. Comp
uter Simul
a
tion
s Anal
ysis a
n
d
Stud
y
of the
D
y
namic B
eha
vior
of PIN Dio
de. Shen
ya
n
g
Univers
i
t
y
of
T
e
chn
o
lo
g
y
. 201
2; 4.
[9]
Jose
Rodr
ig
ue
z, Jih-Sh
eng
Lai, F
a
ng
Z
h
e
ng-p
eng.
Multi
l
evel
Inverters:
A Surv
e
y
of T
opolog
ies
,
Contro
ls and A
pplic
atio
ns.
IEEE Trans. on Industri
a
l Electr
onics.
20
02; 49
(4): 724-7
38.
[10]
Suroso,
Nog
u
chi
T
.
F
i
ve-Leve
l
C
o
mm
on-Em
itter Inverter Using Re
verse-Blocking IGBT
s
.
TELKOMNIKA.
2012; 1
0
(1): 2
5
~
32.
[11]
W
ang Z
h
ao-a
n
,
Liu J
i
n-j
un. P
o
w
e
r E
l
ectro
n
i
cs. Beiji
ng: M
e
chan
ical
Ind
u
strial P
ubl
ish
i
ng
Hous
e. 20
09;
5.
[12]
Che
n
Qu
an, W
ang
Qun-
jin
g,
Jian
g W
e
i-
do
n
g
, et
al. A
nal
ysis of S
w
i
t
chi
n
g L
o
sses
in
Di
ode-
Clam
p
e
d
T
h
ree-Level C
onverter.
T
r
ans
actions of Ch
in
a Electrotech
n
i
c
al Soci
ety
. 2008; 23(2).
[13]
Se
yezh
ai R. D
e
sig
n
, Simulati
on an
d Har
d
w
a
re
Implem
ent
ation of a Mult
i Device Inter
l
eave
d
Boost
Conv
erter for
F
uel C
e
ll
Ap
pli
c
ations.
Inter
n
ation
a
l J
ourn
a
l
of Pow
e
r El
e
c
tronics a
nd
D
r
ive Syste
m
s
.
201
4; 4(3).
[14]
W
ang Qu
n-ji
ng
, Che
n
Qu
an,
Jian
g W
e
i-
do
n
g
, et
al.
An
al
ysis
of Co
nducti
on Loss
e
s
i
n
Neutra
l-Poi
n
t
-
Clamp
ed T
h
ree-Lev
el Inverte
r
. T
r
ansactions
of China El
ectrotechn
ical So
ciety
. 2007; 2
2
(
3).
[15] Casa
nel
las
F
.
Losses in PWM inverters using IGBTs.
IEE
Proc. Elect. Pow
e
r App
l
., 199
4; 141(5): 2
35-
239.
[16]
W
ang Mao-
hai,
Liu Hui-
jin.
A Univers
a
l Defi
n
i
tion of Instanta
neo
us Pow
e
r and Broa
d-Sens
e Har
m
on
i
c
T
heory
. Proce
edi
ngs of CSE
E
. 2001; 21(
9).
Evaluation Warning : The document was created with Spire.PDF for Python.