TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 80
0
1
~ 800
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.67
30
8001
Re
cei
v
ed
Jun
e
28, 2014; Revi
sed Septe
m
ber
21, 201
4; Acce
pted
Octob
e
r 27, 2
014
Improvement of Transient Stability Performance of
Captive Power Plant during Islanding Condition
Utp
a
l Gos
w
a
m
i
1
*, Tapas Kumar Seng
upta
2
, Arabinda Das
3
1
Devel
opme
n
t Cons
ultants Pri
v
ate Li
mite
d, Kolkata – 7
00 0
91, India
2
Supreme Kn
o
w
l
e
d
ge F
o
u
n
d
a
tion Grou
p of
Institutions, Ma
nkun
du, Ho
ogh
l
y
, Ind
i
a
3
Electrical En
gi
neer
ing D
e
p
a
rtment, Jadavp
u
r
Universit
y
, Ko
lkata – 70
0 03
2, India
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: utpal.gos
w
a
mi@in.dc
lgro
u
p
.com
A
b
st
r
a
ct
T
h
is pap
er de
als w
i
th an i
d
e
a
to improv
e the trans
i
ent stabil
i
ty of captiv
e ge
nerator s
e
ts duri
n
g
islandi
ng c
o
ndi
t
ion. But
doi
ng so, the transi
ent stab
ility
of the generator
sets and the
pow
er system
is
severe
ly distur
bed i
n
case
of a faul
t in the
utility sid
e
. In case of f
ault, the ow
n ge
ner
ation is
isol
ate
d
,
synchro
ni
z
a
ti
o
n
is l
o
st and fi
n
a
lly th
e sets g
o
in isl
a
n
d
in
g
mode
of op
eratio
n. As such
sets
are of s
m
a
ll si
ze
(5-50 MW
s), to
tal loa
d
throw
-
off in utility sid
e
causes
dist
urbanc
e in the transi
ent form. If disturba
nces ar
e
not recov
e
re
d
immedi
ately
i
n
terms
of tur
b
in
e spe
ed, v
o
ltag
e vari
atio
n etc., the po
w
e
r supply w
i
l
l
b
e
unstab
l
e
an
d p
r
ocess suffers.
A re
me
dia
l
measur
e, for the
case c
onc
ern
ed, ca
n b
e
tak
en w
i
th th
e a
i
d
of
a
SVC durin
g the trippi
ng of
the ut
ility loa
d
, at the gen
erator bus
b
e
fore the frequ
ency an
d volt
ag
e
stabili
z
a
tio
n
. T
he an
alysis w
a
s done us
in
g ET
AP softw
a
re.
Ke
y
w
ords
: isl
and
ing, trans
ie
nt
stability, SVC, utility loa
d
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Powe
r refo
rms have b
e
c
ome
a glo
balised is
su
e
in modern
indu
strial a
s
well as
corpo
r
ate po
wer
se
ctors. This al
so can
be term
ed a
s
de-re
gula
r
ization [2] in power
system.
The
era of dereg
ulated ele
c
tri
c
indu
stry, compani
es
a
r
e permitted t
o
prod
uce a
nd sell ele
c
trical
power to po
wer gri
d
and th
e indu
stry ty
pe need n
o
t ne
ce
ssarily be a
generation company.
Deregul
ated
electri
c
al i
n
d
u
stry em
pha
size
s the
libe
r
al provi
s
ion i
n
the Act wit
h
re
spe
c
t
to setting up of captive po
wer pl
ant wit
h
a view
to not only secu
ri
ng relia
ble, q
uality and co
st
effective po
wer b
u
t also t
o
facilitate
o
pportu
nities
for
spe
edy an
d efficient
growth of In
du
stry.
Curre
n
t indu
stry pra
c
ti
ce
is to disco
nne
ct all distributed g
e
n
e
rato
rs imm
ediately after an
islan
d
ing o
ccurren
ce typically after 200
ms and
300
ms after the
loss
of main
supply [7] if the
system ha
s
not regai
ned
its st
ability.
Variou
s sche
mes have b
e
en utilized fo
r stabili
zation
of
captive
po
we
r pla
n
t un
de
r grid
di
sturba
nce
condi
tio
n
in terms of i
s
lan
d
ing
and
load
shadin
g
.
Such sch
e
m
e
involves the utilization rate
of chang
e of frequen
cy along with unde
r frequ
e
n
cy
relay [1]. Rea
l
time digital control ba
se
d
on
Fuzzy lo
gic on
a filtered programm
able gate
arra
y
chip [1
0] is
suitable fo
r m
anag
ement
o
f
captiv
e p
o
wer pl
ant in
a
u
tomatic
de
ci
sion
ma
king
for
load shed
din
g
duri
ng g
r
id
disturban
ce f
o
r sta
b
ilizi
ng
the system.
Predete
r
min
a
t
ion of islan
d
i
n
g
can
be
do
ne
with a
n
ai
d of
vecto
r
surge
rel
a
y, whi
c
h
is a
ppli
c
abl
e
for i
s
olating
t
he
system,
well
before
occu
rrence of the
severe di
stu
r
b
ance to retai
n
stability [7, 8]. When
a g
r
id failu
re o
ccurs
in captive g
e
nerato
r
syste
m
s,
they are usu
a
lly
isolat
ed
from
the
grid
a
cco
mpa
n
ying a
sudd
en
load th
ro
w of
f, resulting in
add
ed th
ermal st
re
sses on tu
rbin
e b
l
ade
s a
nd
bo
ilers conn
ect
e
d
there
w
ith. Th
e con
s
e
que
n
c
e of
thermal
stre
ss i
s
re
d
u
ction of
life
spa
n
of equi
pments
used
fo
r
system
ope
ra
tion [9]. SVC is suitable fo
r improv
in
g th
e syste
m
pe
rforman
c
e
wh
en a g
ene
rat
o
r
bus i
s
co
nne
cted to grid.
As grid
distu
r
ban
ce is
a m
a
jor i
s
sue no
wad
a
ys, therefore imp
r
ov
ement of the
transi
ent
stability performance,
duri
ng and a
fter islanding, i
n
much faster
way, is a
real challenge
for
power in
du
stry. Improveme
n
t of t
he tran
sient
stability of a sy
stem
after isl
andin
g
wa
s d
one,
by
controlling th
e govern
o
r
spe
ed alon
g
with cont
rolling the AVR of alterna
t
or [9]. Still
the
requi
rem
ent
of red
u
ci
ng t
he time
sp
an
of oscillation
of sp
eed, of
alternato
r
s, is a maj
o
r
co
ncern
of rec
e
nt times
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8001 – 80
07
8002
This paper presents a
unique
approach
for improving the tr
ansient
stability of a captive
power pl
ant
after isla
ndin
g
by co
nne
cting a SVC in
gene
rato
r cu
m load b
u
s
which
red
u
ces
the
time duratio
n of oscill
ation
of generator
spe
ed mu
ch faster, thu
s
im
proving the
stability of power
sy
st
em.
2. Profile of the Po
w
e
r Sy
stem
2.1. Descrip
tion
The po
wer
system con
s
id
ered in thi
s
pape
r is a p
r
ocess ind
u
stry having the co-
gene
ration fa
cility. Tail ga
se
s produ
ce
d
as a p
a
rt of
the pro
c
e
s
s i
s
u
s
ed to g
e
nerate
po
wer for
captive po
we
r plant. The plant has two indepe
nde
nt
process li
nes. Elect
r
ic
power supply
for
line1 suppli
e
s po
we
r with
the help of
11 kV/41
5
V distrib
u
tion transfo
r
me
r to
following 4
1
5
V
power a
nd m
o
tor
control centre
denote
d
as
4G1
1
Bu
A, 4G11BuB,
4G13B
UA, 4
G13BUB, 4
G
12
and 4
G
13B
UErm. 11
kV/4
15 V tran
sfo
r
mer i
s
suppli
e
d
by
11
kV swit
chg
ear d
enoted as 11
G1.
11
kV switch
gear is takin
g
su
pply from
17 M
W
g
ene
rator 1.
Line
2
su
pplie
s p
o
wer
with the
he
lp
of 11 kV/415
V distributio
n transfo
rme
r
for su
ppl
ying
power to follo
wing p
o
we
r a
n
d motor
cont
rol
centre de
note
d
as 4
G
21Bu
A
, 4G21BuB, 4G22B
UA, 4G22BUB, 4
G
22Bu an
d 4
G
23BUE
rm.
Line
2 is taki
ng
su
pply from
11
kV switchge
a
r
de
noted
a
s
11G2. 11 kV swit
chg
ear
is con
n
e
c
ted wi
th
17 MW
gene
rator
G2. On
e 415 V DG
set (DG1
) an
d one
HT die
s
el ge
ne
rator is install
ed
as
stand
by for e
m
erg
e
n
c
y co
ndition d
u
rin
g
total blac
k
o
u
t of the process pla
n
t [3]. Start-up
po
wer
of any of the gene
rato
rs i
s
gene
rally av
ailable from
the ele
c
tri
c
gri
d
. Alternativel
y, 11 kV die
s
el
gene
rato
r (DG2) is availa
ble to
provid
e
sta
r
t-up
po
wer
also.
Seco
nd tu
rbine
ge
nerato
r
(G
2)
also
can
m
anag
e
the
start-up
power f
r
om t
he first turb
in
e ge
nerator (G1), if
alre
ad
y starte
d o
r
v
i
ce-
versa. Ba
si
c power
syste
m
arrang
em
ent [3] of
all gene
rato
rs
along
with in
terco
nne
ction
is
sho
w
n in
key
single lin
e di
agra
m
sh
owi
ng all circuit
brea
ke
rs pre
p
are
d
for the
study. As per the
system
philo
sop
h
y for fe
eding th
e proce
s
s line
s
G1 an
d G2
are g
ene
rally
run in
pa
ral
l
el
contin
uou
sly. Ho
wever, i
n
ca
se o
ne g
e
n
e
rato
r is
out of
se
rvice an
other gene
r
at
or
i
s
capa
ble of
taking the
ent
ire pla
n
t load
for longe
r pe
riod of time.
The 11
kV, 1
7
MW g
ene
ra
ting unit will
be
connected to 11 kV
swit
chboar
d. Auxiliaries of this unit
will be fed from
a new 2.5
MVA
distrib
u
tion transfo
rme
r
co
nne
cted to the said
11
kV swit
chb
o
ard. 20 MVA gene
rator tra
n
sfo
r
mer
will be connected to 132
kV swit
chyard.
The 132
kV swit
chyard wi
ll
be connected
by a
si
ngl
e
circuit ove
r
he
ad tran
smi
s
si
on line fo
r ev
acu
a
ting p
o
wer to g
r
id. Upon a
n
eme
r
gen
c
y situati
on
such as failure of ge
nerators the DG2
will also be used to
suppl
y
the emergency load i
n
the
plant in
order to keep
the
plant
in
ope
ra
tion. The
abo
ve po
wer sy
stem arran
g
e
m
ent is sho
w
n in
the key si
ng
le line dia
g
ram meant f
o
r stu
d
y.
13
2 kV bu
se
s
and the pl
an
t 11 kV bu
ses,
gene
rato
rs, L
T
tran
sfo
r
me
rs
a
nd LT bu
ses with
l
u
mp
load
s
a
n
d
tie
inter con
n
e
c
tion requi
re
d
f
o
r
the study is
sho
w
n in the
said dia
g
ra
m. Purpo
s
e
of this key si
ngle line di
a
g
ram i
s
to id
entify
variou
s equi
p
m
ent and bu
ses with
respe
c
tive IDs u
s
e
d
in the study
.
Figure 1. Net
w
ork Di
ag
ra
m for System Study
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
provem
ent of Transient
Stability Perform
anc
e of Captive Power Pl
ant… (Utpal Goswam
i)
8003
2.2. Detailed
Single Line Diagram for Simulation
Block
Dia
g
ra
m of the po
wer sy
stem is
modelle
d in
ETAP 11 and
here
b
y attached
with
this
scope
of
wo
rk a
s
Net
w
ork Dia
g
ra
m for
syst
em
study
(Fig
ure 1
)
. Thi
s
h
a
s
b
een
stu
d
i
ed to
simulate the
different ca
se
s to meet our
obje
c
tives.
2.3. Net
w
o
r
k
Parameter
Consid
ered for Sy
stem Stud
y
Powe
r syste
m
study throu
gh ETAP software re
q
u
ires con
s
ide
r
abl
e
numbers of accurate
system data
and equi
pme
n
t data and their rel
a
ted in
fo
rmation. Su
ch data were
listed, discu
s
sed
with plant en
ginee
rs a
nd collecte
d
as fa
r as po
ss
ible
from the available do
cum
e
nt [5]. There are
numbe
r of re
quire
d data
whi
c
h
were
not available
but we
re a
s
sume
d from
referen
c
e
s
[3
-6].
Followi
ng ba
sic p
o
ints we
re co
nsi
dere
d
for reviewi
ng and finali
z
ing the input data req
u
ire
d
for
the study:
1)
Lump
l
oad
s as sh
own
in variou
s
b
u
se
s
a
r
e
avera
g
e
load
con
s
isting of moto
r
load;
static lo
ad
etc. fed fro
m
resp
ective
P
M
CCs co
nne
cted
to co
rre
s
po
ndin
g
swi
t
ch
boards
2)
Fault level of existing 41
5 V switch boa
rds is
con
s
id
ered as 5
0
kA.
3)
Except ge
ne
rator t
r
an
sformer, no
tole
ran
c
e of
im
peda
nces of
gene
rato
rs and
existing tran
sformers a
r
e consi
dered.
4)
Toleran
c
e of impeda
nces f
o
r 20 MVA G
T
is co
nsid
ered as p
e
r IEC standa
rd
s.
5)
Overhe
ad
13
2 kV
line i
s
consi
dered f
r
o
m
Station
swi
t
chyard
en
d t
o
the P
o
we
r
grid
end.
2.4. Data
Considered
for
Models used in ETAP Soft
w
a
re
Model used
Specifica
tio
n
s
S
y
nchrono
us ge
nerator
Impe
danc
e m
o
d
e
l
X
d
’’ = 12, X’’/R
a
= 48, R
a
% = 0.25
R
a
= 0.01423
5
Ω
X
2
= 12, X
2
/R
2
= 48,
R
2
% = 0.25
R
2
= 0.0142
35
Ω
X
0
= 12, X
0
/R
2
= 48,
R
0
% = 0.25
R
0
=0.01423
5
Ω
Subtra
nsien
t
m
odel
X
d
% = 110, X
q
%
= 108, T
d0
’
= 56
,
S
br
eak
= 0.8
X
d4
% = 11
6.93,
X
q4
% =11
4
.79,
T
d0
’’
= 0.
002 S
10
0
=1.07
X
d
’
% = 2
3
, X
q
’
%
= 15, T
q0
’
= 3.7, S
120
=
1
.
18
X
L
%=11, X
q
’
%=1
2
, T
q0
’’
=
0.0
2
Damping = 5, H
= 1.7
Ma
c
h
i
n
e
mo
de
l
Gene
rator t
y
pe =
Turbo
Rotor t
y
pe =
R
o
u
nd rotor
IEC Exciter t
y
pe
= 130% T
u
rbine
Exciter m
odel
Ex
citer t
y
p
e
: UDM - IEEE1,
Exciter model t
y
p
e
: ST1
Grid model
Nominal voltage = 132 kV
Fault level of 132 kV sw
itch
y
a
rd
Bus = 7201 MVA
X/R rati
o (3 p
h
) =
60,
X/R rati
o (1p
h
) =
60
Gene
rator t
r
ansf
o
rmer
Capacit
y
= 20 M
VA
Primar
y
voltage
= 11 kV
Secondar
y
volta
ge = 138 kV
Vector group =
Ynd 11
Neutral gr
oundin
g
= Solid
Impedance ( + S
eq)= 10%
Impedance (
- Se
q) = 10%, X/
R=1
8
.6
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8001 – 80
07
8004
2.5. Conside
r
ations in Ex
port Conditi
ons for the
Analy
s
is
Ca
se
- 1: F
o
r a fa
ult in
132
kV g
r
id
side, th
e uti
lity brea
ker t
r
ippe
d after
180
ms
(incl
udin
g
rel
a
y and
circuit
brea
ker op
erating time
p
l
us
20
ms time
d
e
l
a
y
)
,
the
r
eafte
r
tr
an
s
f
or
me
r
upstream b
r
e
a
ke
r ope
ned
with 30 ms ti
me delay.
Ca
se - 2: Fo
r a fault in 132 kV grid
sid
e
, the utility
brea
ke
r tripp
ed immedi
ate
l
y within
the critical
cl
e
a
ring
time of
160 m
s
(in
c
lu
ding
re
lay
an
d ci
rcuit b
r
ea
ker op
erating
time), thereaf
ter
transfo
rme
r
u
p
stre
am brea
ker o
pen
ed with 30 ms time delay.
Ca
se - 3: Fo
r a fault in 132 kV grid
sid
e
, the utility
brea
ke
r tripp
ed immedi
ate
l
y within
the critical
cl
e
a
ring
time of
160
ms
(in
c
lu
ding
relay
an
d ci
rcuit b
r
ea
ker op
erating
time), thereaf
ter
immediately
SVC is
conn
ected
with
1
1
kV
ge
nera
t
or b
u
s 11
G
1
an
d 1
1
G2.
T
hen
ge
nera
t
or
transfo
rme
r
u
p
stre
am brea
ker i
s
ope
ned
with 30 ms ti
me delay.
2.6. Ev
ent of Opera
t
ions
Consid
ered for the Analy
s
is
E
v
e
n
t
Tim
e
De
v
i
c
e
T
y
pe
De
v
i
ce
ID
A
c
ti
on
Case 1
T1
T2
T3
T4
2.0s
2.18s
2.48s
2.78s
3Ph F
a
ult on 132 kV bu
s
CB4
Open
CB9
Open
CB1
Open
Case 2
T1
T2
T3
T4
2.0s
2.16s
2.46s
2.76s
3Ph F
a
ult on 132 k V bu
s
CB4
Open
CB9
Open
CB1
Open
Case 3
T1
T2
T3
T4
T5
2.0s
2.16s
2.46s
2.76s
3.06s
3Ph F
a
ult on 132 kV bu
s
CB4
Open
SVC C
onnected
CB9
Open
CB1
Open
2.7. Graphs for Transien
t
Analy
s
is
Cas
e
1
Figure 2. Gen
e
rato
r sp
eed
(RPM
) vs. Time (sec.
)
Figure 3. Generato
r
a
c
tive powe
r
(M
W)
vs. Time (sec.)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
provem
ent of Transient
Stability Perform
anc
e of Captive Power Pl
ant… (Utpal Goswam
i)
8005
C
a
se
2
Figure 4. Gen
e
rato
r sp
eed
(RPM
) vs. Time (sec.
)
Figure 5. Generato
r
a
c
tive powe
r
(M
W)
vs. Time (sec.)
Figure 6. Generato
r
re
acti
ve powe
r
(M
VAR) vs. Tim
e
(se
c
.)
C
a
se
3
Figure 7. Generato
r
spee
d (RPM
) vs. Time (se
c
.)
Figure 8. Gen
e
rato
r active
power (M
W) vs. Time (sec.)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8001 – 80
07
8006
Figure 9. Gen
e
rato
r rea
c
tive power (MV
A
R) vs. Time
(se
c
.)
2.8. Analy
s
is
of the Gr
ap
hs
Ev
en
t
I
D
&
Referen
ce Grap
h
Num
b
er
Fault
clearing
time
Highe
st s
p
eed
attai
n
ed (rpm
)
Final s
t
abilize
d
speed of genera
tor
Time re
quire
d t
o
reach
stabilization
Case 1
Grap
h 1, 2
180ms 1690
rpm
O
scillates betw
e
en
1560-153
0 rpm
---
---
--
---
--
--
Case 2
Grap
h 3, 4, 5
160ms
1620 rpm
1530 rom
6 seconds
Case 3
Grap
h 6, 7, 8
160ms
1620 rpm
1530 rpm
2 seconds
Ev
en
t
ID
A
c
t
i
v
e
po
w
e
r
profile
(G1 a
nd
G2
)
Reacti
v
e
po
w
e
r
profile
(
G
1 an
d
G2)
Remarks
Case
1
Continuousl
y
oscillates
---
---
--
---
--
---
%v
ari
a
ti
on of s
p
e
ed 12%
active pow
er
prof
ile and speed
continuously
oscillates; sy
stem un
stable
Case
2
Before islanding
16MW, After islanding
8MW
Before islanding 9 MVAR, After 3.
7
MVAR
Speed variation
8% and b
e
come
s
stable after 6 seconds from islanding.
Reactive power
during fault condition
increases and becomes stable at lower
required value (
3
.7MVAR)
Case
3
Before islanding
16MW, After islanding
8MW
Before islanding 9 MVAR, After 3.
7
MVAR. After con
necting w
i
th SVC
it
oscillate and stable at 9 MVAR
Speed variation
8% and b
e
come
s
stable after 2 seconds from islanding.
Reactive power
during fault condition
increases and becomes stable at lower
required value
3. Conclusio
n
As p
e
r an
alysis it
wa
s o
b
s
erve
d th
at, if t
he
system
su
staine
d the
fault for 1
8
0
ms an
d
over, the
syst
em be
com
e
unsta
ble in te
rms
of
its
sp
eed a
nd a
c
tive po
wer deliv
ery. If a syst
em
lose
s full load
and remai
n
in servi
c
e carrying auxiliary
or just spinni
ng with no lo
ad, it will subject
to sudd
en, fairly large
cha
n
ge in tempe
r
ature at high
pre
s
sure whi
c
h re
sult
s in therm
a
l stre
sses
both in boiler
and turbi
ne. If the magnitude of the t
hermal stre
ss is very high the
n
it exceeds t
he
material yiel
d
stre
ngth
whi
c
h eve
n
tually
damag
es th
e
life of boiler a
nd turbine. In
ca
se of
captive
power plant,
the unit
MW value,
duri
n
g consider
ati
on, needs lo
ad throw-off
capability to
be
analyzed for tran
sient
stability. If the
export i
s
a
bove the ‘lo
ad-th
ro
w-of
-capability’ of
the
gene
rato
r, it is difficult to re
store
the sy
st
em f
r
om
com
p
let
e
sh
utdo
wn.
As such, i
t
is
recomme
nde
d that the
ge
n
e
rato
r
cap
a
cit
y
has to b
e
chosen to
com
p
ly with th
e transi
ent
stabili
ty
of the generator sets during load throw-off. By
adding SVC in the system, the magnitude of the
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Im
provem
ent of Transient
Stability Perform
anc
e of Captive Power Pl
ant… (Utpal Goswam
i)
8007
spe
ed of gen
erato
r
duri
n
g
load throw
off situati
on, remai
n
unalt
e
red, but the
time duratio
n o
f
oscillation reduced significantly
(4
se
c.
). The reduction in time of
oscill
ation result
s in reduction
of time du
rati
on of the
r
mal
stre
ss. Thi
s
i
n
crea
se
s the
life of the maj
o
r exp
e
n
s
ive
equipm
ent li
ke
boiler a
nd turbine.
Referen
ces
[1]
Rajam
a
n
i
K,
Hamb
arde
UK.
Island
in
g a
n
d
Loa
dsh
e
d
d
in
g
Scheme
for
Captiv
e Po
w
e
r
Plant P
o
w
e
r
Deliv
er
y
.
IEE
E
Transactio
n
s
, ISSN-0885-
897
7, INSPE Accession
No.-62
983
05,
Digita
l
ob
jec
t
ide
n
tifier-1
0.11
09/61.7
7
2
3
1
8
. 14(3): 80
5-8
0
9
.
[2
]
Mu
kh
op
a
dhy
ay S, Si
ng
h
B.
Distrib
uted
Generati
on
-
Basic
P
o
licy, Perspectiv
e
Pl
ann
ing, an
d
Achiev
e
m
ent.
India Po
w
e
r &
Ener
gy
Soc
i
et
y
General Me
eting, PES
'09. I
EEE, ISSN-1944-9925,
ISBN-978-
1-42
44-4
241-
6, INSPEC Acc
e
ssio
n
No.-
109
03
297.
Digita
l
o
b
j
e
c
t
identifi
e
r-
10.11
09/PES.2
009.5
2
7
574
1. 200
9.
[3]
IEEE Stand
ard
s
Associ
ation.
141-
199
3.
IEE
E
Rec
o
mmen
d
ed Pr
actice
for
Electric
Pow
e
r Distrib
utio
n
for Industrial Pl
ants (ANSI).
IE
EE Press; 199
4. D
OI:10.1109
/IEEES
T
D
.1994.121
64
2
[4]
IEEE Standard
s
Associatio
n. 242-
200
1.
IEEE Recomm
ended Practice for
Protection and
Coor
dination
of Industria
l
and
Co
mmerc
i
al P
o
w
e
r Syste
m
s
(ANSI).
IEEE Press; 2001.
DOI:
10.11
09/IEEE
ST
D.2001.933
69
[5]
NEMA Stan
dar
ds Pub
lic
ation
ICs 1-19
88, G
ener
al
Sta
n
d
a
rds for Ind
u
stria
l
Co
ntrol
and
S
y
stems; ICs
2-19
88, Industr
ial Co
ntrol D
e
vi
ces,
Control
l
er
s and Assemb
li
es; ICs 3-1988.
[6]
NEMA Standar
ds Publ
icatio
n.
ICs 1-1988.
Gener
al Stan
dar
ds for Industria
l Contro
l an
d Systems; IC
s
2-19
88, Industr
ial Co
ntrol D
e
vi
ces,
Control
l
er
s and Asse
mb
li
es; ICs 3-1988
.
[7]
Krishn
amurti P
.
Captive Po
w
e
r Plant Qualit
y.
Journa
l of T
C
E Limited
. 20
0
6
; 4(1):10-1
4
.
[8]
F
r
eitas W
,
Huang Z
,
Xu W
.
A practica
l Metho
d
of
assessi
ng
for the effectiveness of Vecto
r
Surge rel
a
y
F
o
r Distribute
d
Generat
io
n Ap
plicati
on.
IEEE
. 2005: 0
885-
89
77.
[9]
Giang L
N
, T
h
u
y
NT
D, Ngoat
T
T
. Assessment
stud
y
of
ST
AT
COM'
s
effectiveness i
n
improv
in
g
transie
nt stabili
t
y
for po
w
e
r s
y
stem.
TEL
K
O
M
NIKA
. 2013; 11(1
0
): 609
5 ~
610
4.
[10] Bind
on
RE.
E
m
er
ge
ncy o
per
ation
of l
a
rge
s
t
eam turb
ine
g
ener
ator.
Sout
h Easter
n El
ec
tric Exc
h
a
nge.
Atlanta, Georg
i
a.
1966; 2(
1):1
0-14.
[11]
Sing
h S, Saini
JS.
F
u
zz
y F
P
GA based cap
t
ive pow
er ma
nag
e
m
ent
. Po
w
e
r India C
onf
erenc
e. Ne
w
Delh
i, Del
h
i. 20
06: 7.
Evaluation Warning : The document was created with Spire.PDF for Python.