TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.7, July 201
4, pp
. 4924 ~ 49
2
7
DOI: 10.115
9
1
/telkomni
ka.
v
12i7.582
7
4924
Re
cei
v
ed
Jan
uary 12, 201
4
;
Revi
sed Fe
br
ua
ry 23, 20
14; Accepted
March 7, 201
4
Modeling of Tunnel Junction (GaAs) in the Cascade
Solar Cell
Denn
ai Ben
m
oussa*, Be
nslimane H, Helmaoui A,
Hemmani A
Lab
orator
y of
Semico
nductor
s
Devices Ph
ysics, Ph
y
s
ics D
epartme
n
t, Uni
v
ersit
y
of Bec
h
ar, Algeri
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: deennai_
b
e
n
mou
s
sa
@ya
hoo.com
A
b
st
r
a
ct
In this pap
er d
e
scrib
es a si
mple
mo
del for t
unn
el
ju
nctio
n
(GaAs) betw
een the top cel
l
(GaAs) an
d
botto
m cell (Ge) of cascade
solar cel
l
s.
W
e
theoretica
lly studi
ed
the el
ectrical char
acteri
stics (IV) of Ga
A
s
tunne
l di
od
e w
i
th the acco
unti
ng pr
ogra
m
M
A
T
L
AB for dop
i
ng co
ncentrati
on of the j
uncti
on after Usi
ng
thi
s
mo
de
l betw
e
e
n
tw
o cascade
d solar ce
ll (GaAs / Ge) and
w
e
calculate t
he el
ectrical c
haracter
i
stics an
d
perfor
m
a
n
ce
u
s
ing AMPS-
1D
softw
are. T
he cond
uctio
n
pr
operti
es of this
tunne
l d
i
od
e s
how
go
od o
h
m
ic
beh
avior a
nd l
o
w
contact resistance.
Key
w
ords
:
tu
nne
l juncti
on, c
a
scad
e
sol
a
r cell, cu
rre
nt–volt
age (I–V), mod
e
lin
g, AMPS-1
D
.
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Multijunctio
n
sola
r
cell
s offer hi
ghe
r effi
cien
cie
s
tha
n
those
of
sing
le-jun
ction
so
lar
cell
s
at the cost of
a more com
p
lex device
structu
r
e.
To
act as a
sing
le power- pro
duci
ng unit, the
comp
one
nt subcells mu
st be intercon
ne
cted to form two-te
rmin
al u
n
its whi
c
h p
r
odu
ce a si
ngl
e
curre
n
t at a single voltage.
The in
dividua
l sub
cells
of a multijun
c
ti
on cell a
r
e i
n
ter-con
n
e
c
ted
via Esa
k
i int
e
rba
nd
tunnel diod
es [1]. They feature
both low
electri
c
al
resi
stivity and high
optical
transmissivity.These
are th
e key issue
s
fo
r co
nne
cting
the cells
monolithically [2-3].
The tunnel di
ode ha
s bee
n applied as an intercon
necto
r in mo
nolithic d
e
vices such
as t
ande
m
sola
r
cell
s
which
have
a
predi
cted
co
nversi
on
efficiency
of ab
o
u
t 35%.
On
e of
the major problem
s in achievin
g high-efficie
n
cy
and stable tandem solar cells is thermal
degradatio
n of the tunnel
junction int
e
rconn
ectio
n
durin
g fabri
c
ation. Thi
s
degradatio
n is
cau
s
e
d
by the impu
rity diffusion fro
m
highl
y do
ped tunn
el junctio
n
s a
n
d
results in
a
decrea
s
e in
the tunnel peak curre
n
t. Thus, high dopin
g
for obtainin
g
a large pe
ak
curre
n
t den
sity is ineffective for G
a
As
tunn
el
diode
s when
they are a
nneal
ed ab
o
v
e
about 600"
C.
For the interconn
ectio
n
of a
tandem sola
r cell, the thickne
s
s of the tunnel
junctio
n
shou
ld be l
e
ss th
an 1
00 n
m
in order to
minimize opti
c
al lo
ss; the
pea
k
cu
rre
nt
den
sity after
anne
aling
at
700'
C
shoul
d b
e
g
r
e
a
te
r than
the
short-circuit
d
ensity in
o
r
d
e
r
to minimiz
e
elec
tric
al loss
.
In this articl
e
,
we evaluat
e the effect
of doping in
the tunnel junctio
n
and
we are
simulate
d cascad
e sol
a
r cell (GaA
s/Ge
) by using AMPS-1D software
,
includin
g
I-V
cha
r
a
c
teri
stic, conversion
efficien
cy:
2. Tunnel Ju
nction Mod
e
l
The g
r
o
w
th
con
d
ition
of tunnel
jun
c
tion i
s
a
key pa
ramete
r
for tand
em
solar
cel
l
and
a
poo
r
d
e
sig
n
of tu
nn
el jun
c
tion
wil
l
rem
a
rkably
decrea
s
e
efficien
cy . of
so
lar
cell. T
he I
-
V
cha
r
a
c
teri
stic of tunn
el di
ode i
s
the
su
m of
the
th
re
e
current co
mpone
nts Ta
bles and
Fig
u
re
s
are p
r
e
s
ente
d
cente
r
, as
shown belo
w
a
nd
cited in th
e manu
script
[4] (Figure 1).
J =
J
t +
J
x +
J
th
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g of Tunnel
Jun
c
tio
n
(GaA
s) in t
he Ca
scad
e Solar Cell (Dennai Benm
o
u
ssa)
4925
1
(2)
The tunnelin
g current’
s
contributio
n to
the total current is sig
n
ificant for
V
V
,
the
ex
ce
ss cu
rre
nt
’s
co
nt
rib
u
tion is
significant for
V
V
and contributio
n of
the thermal
curre
n
t is
signifi
cant for
V
V
.
In Equation
(2), Jp is th
e
pea
k curr
ent
den
sity of the tunnel
cu
rre
nt and
J
V
is t
he valley
curre
n
t den
sity of the tunnel current. Since the tandem
sola
r cell i
s
in
serie
s
conn
e
c
tion, the total
output cu
rren
t must be limi
t
ed the
minim
u
m cu
rrent prese
n
ted by so
me sub
c
ell. Therefore, if J
SC
is lower than
J
V
(J
SC
<
J
V
).
Figure 1. Current Co
mpo
n
ents in a Tun
nel Ju
nctio
n
3. Optimal Dev
i
ce Structure
The majo
r objective
s of numeri
c
al mo
deling an
d si
mulation in solar cell re
se
arch are
testing the validity of proposed phy
sical stru
ctur
es, ge
ometry on ce
ll perform
an
ce and fitting of
modelin
g o
u
tput to expe
ri
mental
re
sult
s. Any
nu
me
rical
p
r
og
ram
ca
pable
of
solving the
ba
sic
semi
con
d
u
c
tor
equatio
ns co
uld
be
used fo
r mo
del
ing thin
film
sola
r
cell
s. T
he fun
dame
n
t
al
equatio
ns for
su
ch num
eri
c
al prog
ram
s
are (i
) Pois
so
n’s eq
uation for the dist
ribu
tions of ele
c
tric
field (
φ
) i
n
si
d
e
the devi
c
e
and
(ii) the
e
quation
of co
ntinuity for conservation
o
f
electron
s a
nd
hole
s
cu
rrent
s [5].
The AMPS-1
D
pro
g
ram h
a
s be
en dev
elope
d for pragmatically simulate the e
l
ectri
c
al
cha
r
a
c
teri
stics of multi-Ju
ncti
on
sola
r
cell
s. It has
been p
r
ove
n
to be a very powe
r
ful tool in
unde
rsta
ndin
g
device o
p
e
ration
an
d
physi
cs fo
r
single
cry
s
tal, poly-crystal
and
amo
r
p
hou
s
stru
ctures. T
o
date, more than
2
00 gro
ups
wo
rld
w
id
e
have
be
en usin
g
AMPS-1D
fo
r sol
a
r cell
desi
gn [6]. O
ne-di
men
s
ion
a
l AMPS-1D simulato
r h
a
s b
een u
s
e
d
to investig
ate the effect of
different top cell layers. The stru
ctu
r
e of convent
ional GaAs/Ge
solar cell is shown in Figure 2.
The tunn
el junction
GaAs laye
rs ele
c
tro
n
dopin
g
co
n
c
entration
wa
s varied
from
10
t
o
10
cm
and the ch
an
ge of perfo
rm
ance paramet
ers a
r
e o
b
served.
Figure 2. Ca
scad
e Solar
Cell GaAs/G
e Structu
r
e u
s
e
d
for the Mod
e
ling
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 7, July 201
4: 4924 – 49
27
4926
The ba
se p
a
ram
e
ters u
s
ed for diffe
rent structu
r
es ado
pted
from som
e
stand
ard
referen
c
e
s
are sho
w
n in T
able 1:
Table 1. AMPS-1D Parameters
GaAs
/Ge Solar Cell
La
y
e
rs
Parameters
n/
G
a
As
P/
G
a
As
P
G
a
A
s
N
G
a
A
s
p/Ge
n/Ge
T
h
ickness (
μ
m) 0.1
3.5
0.020
0.05
0.5-5
0-0.3
Dielectric consta
nt,
ε
12.90
12.90
12.90
12.90
16.2
16.2
Electr
on mobility
μ
(cm²/Vs)
8500
8500
8500
8500
4000
4000
Hole mobility
μ
(c
m²/Vs
)
1900
1900
1900
1900
1200
1200
Carrier densit
y
,
n
or
p
cm
N:1E18
P:8E16
P:1E19
N:1E18-1E20
p:1E17
n:5E16
Optical band gap
,
E
(eV)
1.42 1.42
1.42
1.42
0.66
0.66
Effective density
,
N
cm
4.7E17
4.7E17
4.7E17
4.7E17
1E19
1E19
Effective density
,
N
cm
9.0E018
9.0E018
9.0E018
9.0E018
5E18
5E18
Electron affinity,
χ
(eV)
4.07
4.07
4.07
4.07
4
4
4. Results a
nd Analy
s
is
For that pre
s
ented sim
u
lat
i
on, we have cho
s
e
n
a ran
ge of electro
n
doping con
c
entration
betwe
en
51
0
to
51
0
cm
for tunnel ju
n
c
tion N+ laye
r. The Figu
re
3 sch
ematizes the
illuminated characteristi
c
s J-V
of
GaA
s
tunnel
junction
and
the Figure 4
schemati
z
es
the
illuminated characteristi
c
s
J-V ca
scade
sol
a
r cell GaAS/Ge.
Accord
i
ng to t
hese result
s, we
notice
a m
a
ximal de
nsity o
f
cu
rre
nt (30.
52mA/cm
2
)
a
nd a
maximal
voltage
(1.1
04V) fo
r a
val
ue
of the doping
of the tunnel junctio
n
layer
N+
5
1
0
cm
.
0
,
00
,
2
0
,
40
,
6
0
,
81
,
0
1
,
21
,
4
1
,
6
0
1
2
3
4
5
6
Current
D
ensi
t
y (mA/
cm²)
vol
t
ag
e(
V
)
N
d
=5
*
1
0e
+18
N
d
=1
*
1
0e
+19
N
d
=5
*
1
0e
+19
0,
0
0
,
2
0,
4
0
,
6
0
,
8
1
,
0
1
,
2
0
5
10
15
20
25
30
35
Current
D
ensi
t
y (mA/
cm²)
vol
t
a
ge(
V
)
wi
h
t
o
u
t
T
j
N
d
=5*
1
0e
+1
8
N
d
=1*
1
0e
+1
9
N
d
=5*
1
0e
+1
9
Figure 3. J-V
Cha
r
a
c
teri
s
t
ics
with Different
Dopi
ng Concentration of G
a
As
Figure 4. The
Effect of Doping of the Tun
nel
Jun
c
tion in
Cascad
e Solar
Cell on the
C
h
ar
ac
te
r
i
s
t
ics
J-
V
The effe
ct of
the dopi
ng tu
nnel ju
nctio
n
N+ layer on
cell pe
rform
a
n
c
e
su
ch
as ef
fect on
gene
ral pe
rfo
r
man
c
e p
a
ra
meters, quan
tum efficiency (QE), shu
n
t and seri
es
resi
stan
ce, li
ght
and d
a
rk I-V
cha
r
a
c
teri
stics. Ch
ar
acte
ri
stics of e
a
ch
cell
with tu
nn
el jun
c
tion
N+ laye
r a d
o
p
i
ng
are sho
w
n in
the Table 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Modelin
g of Tunnel
Jun
c
tio
n
(GaA
s) in t
he Ca
scad
e Solar Cell (Dennai Benm
o
u
ssa)
4927
Table 2. Ch
aracteri
st
ics of
each Cell
Ca
scade
doping of T j N
+
lay
e
r
J
mA
c
m
²
⁄
V
V
E
%
Without T J
28.84
1.00
25.20
Na=5*10e+18
29.84
1.03
27.37
Na=1e+19
30.49
1.11
30.21
Na=5e+19
30.52
1.13
31.03
5. Conclusio
n
We
used
AM
PS-1D to inv
e
stigate
the
d
epen
den
ce
of
el
ectron
do
ping
co
ncentration of
junctio
n
tunn
el GaA
s
for
GaAs/G
e cascad
e sola
r ce
lls. We
dem
o
n
strate
d the
effect of d
o
p
i
ng
in tunnel ju
n
c
tion
N+ l
a
yer on the
para
m
eters of
sol
a
r cells
as
o
pen-ci
rcuit voltage (Vo
c
), t
h
e
sho
r
t-circuit
current d
ensit
y (Jsc
), the
conversion
the
qua
ntum e
ffi
cien
cy
(QE). The conve
r
si
on
efficien
cy increased until el
ectro
n
do
ping
con
c
ent
ratio
n
of tunnel ju
nction G
a
As
reache
s aroun
d
51
0
cm
Furthe
r in
crease of dopi
ng sho
w
s n
o
impr
ovem
en
t in efficien
cy. Similarly QE
respon
sei
s
al
most overla
p
p
ing after the
51
0
cm
toping layer N+ tunnel ju
nction. The
s
e
observation
s
led to the co
nclu
sio
n
that for the
optim
al perfo
rman
ce of the sol
a
r cell device
the
electron do
pi
ng co
ncentrat
i
on of layer pl
ays a role.
Ackn
o
w
l
e
dg
ements
We
woul
d li
ke to a
c
kno
w
l
edge th
e u
s
e
of AMPS-1D
prog
ram
that
wa
s devel
ope
d by Dr.
Fona
sh’
s
gro
up at Pennsyl
vani
a State University (PS
U
).
Referen
ces
[1]
L Esaki. Ne
w
p
hen
omen
on i
n
narro
w
germa
n
i
um p-n j
unctio
n
.
Phys. Rev.,
195
8; 109
9(2): 603
–6
04.
[2]
T
T
a
kamoto, A
T
a
kaaki, K Kamimura, M
Kanei
w
a
, M Imaizumi, S Matsuda, Y Masafumi.
Multiju
nctio
n
solar c
e
ll t
e
chn
o
lo
gies -
Hi
gh
efficiency, ra
di
at
ion r
e
sista
n
c
e
an
d co
nce
n
trator ap
pl
icatio
ns.
Pro
c
. 3rd
W
o
rld Co
nf. PV Energ
y
Co
nv
ers.
Osaka, Japan. 20
03; 58
1
–58
6.
[3]
W. Guter, F Di
mro
th, M Meusel, AW Bett.
T
unnel diodes f
o
r III–V m
u
lti-junction solar cells.
Proc. 20t
h
Eur. Photovolt
a
ic Solar Ener
gy
Con
f., Barcelona, Spain.
2005: 515–518.
[4]
SM Sze. P
y
s
i
c
s
of Semico
nd
uctor Dev
i
ces,
2nd
ed
ition.
Ne
w
Y
ork: W
ill
e
y
, C
h
a
p
. 9 M
.
Burgelm
an,
John Versc
h
ra
ege
n, Stefaan
Degr
ave an
d P
e
ter Nol
l
et. 198
1.
[5]
M Burge
l
ma
n, John
Verschr
a
ege
n, Stefaa
n
Degr
ave, Pete
r Nol
l
et, Prog.
Photovo
l
t: Res
.
and A
p
p
l
.
200
4; 12: 143.
[6]
Hon
g
Z
hu, Ali Kaan Ka
lka
n
, Jing
ya
Hou, St
e
phe
n J F
onash
.
AIP Conf. Pro
c
., Osaka, Japan. 199
9.
Evaluation Warning : The document was created with Spire.PDF for Python.