TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 82
5
2
~ 825
6
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.65
20
8252
Re
cei
v
ed
Jul
y
25, 201
5; Revi
sed Septe
m
ber
14, 201
4; Acce
pted
Octob
e
r 8, 20
14
Ultra-Wideband Patch Antenna for K-Band Applications
Um
air Ra
fiq
u
e
*,
Sy
ed
Ahsan Ali
Dep
a
rtment of Electron
ic Engi
neer
i
ng, Mo
ha
mmad Ali Ji
nn
ah Un
iversit
y
,
Islamab
ad E
x
p
r
ess
w
a
y
, Ne
ar Kaakp
u
l, Z
one
V, Sihala, Isla
mmaba
d, 440
0
0
, Pakistan
*Corres
p
onding author, e-mail
: umair-rafique@hotmail.com
A
b
st
r
a
ct
An u
l
tra-w
i
de
b
and
p
a
tch
ant
enn
a is
pr
ese
n
t
ed for
K-b
a
nd c
o
mmun
ic
ation. T
h
e
ant
enn
a is
desi
gne
d by e
m
p
l
oyi
ng stack
ed ge
o
m
etry a
nd ap
ertu
re-co
upl
ed techn
i
q
u
e
. T
he rectang
ular p
a
tch sha
p
e
and
coax
ial
fed
confi
gurati
on
i
s
use
d
for p
a
rti
c
ular
des
ign. T
he
ultra-w
i
de
b
and
char
acteri
stics are
achi
e
v
ed
by ap
ply
i
ng
a
specific s
u
rfac
e resista
n
ce
of
75
Ω
/sq
uare
to the
up
per r
e
ctangu
la
r
patc
h
an
d it
is exc
i
ted
throug
h a rect
ang
ular sl
ot made o
n
the lo
w
e
r pat
ch ele
m
e
n
t (ma
de o
f
copper). T
h
e
propos
ed p
a
tc
h
anten
na
is
abl
e to
oper
ate i
n
the
frequ
enc
y rang
e
of
12-
27.3 GH
z
w
h
ic
h is
use
d
i
n
r
adar
an
d sat
e
l
lit
e
communic
a
tio
n
,
commo
n
ly n
a
med
as K-ba
nd. By e
m
pl
o
y
ing a tec
h
n
i
q
ue of thick
e
r substrate a
n
d
b
y
app
lyin
g a sp
e
c
ific surface re
sistance to the
upper
patch e
l
e
m
e
n
t, an i
m
p
eda
nce b
a
n
d
w
i
dth of 77.8
%
i
s
achi
eved
hav
i
ng VSW
R
≤
2
.
It is noted th
at the g
a
in
of
prop
os
ed
ant
e
nna
is li
ne
arly
incre
a
sed
in t
h
e
freque
ncy r
ang
e of
12-
26 GH
z
a
n
d
after th
at the
ga
in
is
decre
ased
u
p
to 6
dBi. S
i
mu
latio
n
res
u
lts
a
r
e
prese
n
ted to d
e
monstrate th
e
performanc
e o
f
pr
opose
d
ultr
a-w
i
deb
an
d mi
crostrip patch
anten
na.
Ke
y
w
ords
:
ultr
a-w
i
deb
an
d, aperture-c
oup
le
d, K-Band,
surface resista
n
ce,
thicker substra
t
e
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Since many years, micro
s
trip
pat
ch ant
enna
s
are
po
pular be
ca
use of thei
r
sm
all an
d
c
o
mpac
t
s
i
ze, low profile, light weight, cos
t
effec
t
iv
en
ess, ea
sy to fabri
c
ate a
nd
easy to in
stall
in
many porta
bl
e device
s
[1]. These
small
miniature
dev
ice
s
are in
cre
a
sin
g
ly beco
m
ing pop
ular
for
a numb
e
r
of medical ap
plicatio
ns. T
hey ca
n be
use
d
in d
e
vice
s to monit
o
r patie
nt he
alth
remotely a
nd
provide
them
help in
the
e
m
erg
e
n
c
y
sit
uation
s
. The
r
efore, the
re
search i
n
smal
ler
size p
a
tch
a
n
tenna
s
with
high
ba
nd
wi
dth an
d g
o
o
d
efficie
n
cy
has gai
ned
a lot of i
n
terest.
Ho
wever,
red
u
cin
g
the
si
ze of pat
ch a
n
tenna
ha
s l
o
ts of
chall
e
n
ges. F
o
r
exa
m
ple, on
e m
a
jor
limitation of simple structu
r
ed patch ant
enna i
s
t
hat it provide
s
na
rrow
band
widt
h and lo
w gai
n
.
This
re
stri
cts the u
s
e
of patch ante
nna
s in
ma
ny intere
stin
g appli
c
atio
n
s
. Mo
st of t
he
comm
uni
cati
on system
s requi
re
the antenn
as
wh
ic
h
are
smal
l in
size an
d
provid
e la
rg
est
band
width. Both of these d
e
sig
n
req
u
ire
m
ents, in
mo
st of the case
s, are
contrad
i
cting. Ho
wev
e
r,
wide
band
an
d ultra
-
wide
b
and
(UWB)
communi
catio
n
sy
stem
s a
r
e be
comi
ng
popul
ar fo
r
short
rang
e and hi
gh ban
dwidt
h
(
≥
50%
) appl
ication
s
, the use of pat
ch
antenna
s is
also in
crea
si
ng
day-by-day.
Many researche
r
s p
r
e
s
en
ted an
d p
r
o
p
o
se
d diffe
ren
t
types
of pa
tch a
n
tenn
as for
high ba
ndwi
d
th.
In [2], a
microstrip p
a
tch a
n
tenna which
fed
through
a microstri
p
line wa
s pre
s
e
n
ted for
ultra-wid
eban
d comm
uni
cation. The a
u
thors
used
modified ground pl
ane
whi
c
h tend
s to
radiatio
n loss which is not
useful for th
e perfo
rman
ce of patch a
n
tenna. Also,
such kin
d
o
f
config
uratio
n
is related
to
monop
ole
an
tenna
de
sign.
Abolfazl
Aza
r
i p
r
op
osed
a
fra
c
tal
shap
e
microstri
p
ant
enna for
wid
eban
d appli
c
ations [3].
An iterative octagon
shap
e wa
s de
signe
d to
achi
eve a large ban
dwi
d
th
. According t
o
the re
su
lts
and 8 dB ba
n
d
width
crite
r
i
a
, the pre
s
en
ted
desi
gn was
a
b
le to ope
rat
e
in the freq
u
ency rang
e o
f
10-50
GHz.
But 8 dB ba
ndwi
d
th criteria
lead to
a po
wer lo
ss g
r
eate
r
than
10%.
Also, the g
a
in
of an a
n
tenn
a is l
e
ss tha
n
5 dBi at hi
gh
er
freque
nci
e
s.
In [4, 5],
an ult
r
a-wid
eban
d a
n
ten
na d
e
si
gn
s
were
pre
s
e
n
t
ed for wi
rel
e
ss
comm
uni
cati
ons. An
ave
r
age im
ped
an
ce
ban
dwidth
of 98%
wa
s
achi
eved th
ro
ugh th
e de
sig
n
s.
But, these
de
sign
s
suffer f
r
om difficult fa
bricati
on
by the u
s
e
of sh
orting
wall
s a
nd folde
d
p
a
tch
feed.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ultra
-Wi
deb
a
nd Patch Ant
enna for K-B
and Appli
c
ati
ons (Um
a
ir Rafique)
8253
Figure 1. (a)
Geomet
ry of the pro
p
o
s
ed
ul
tra-wid
eban
d microst
r
ip p
a
tch ante
nna;
(b)
Dimen
s
io
ns o
f
the lower pa
tch and
recta
ngula
r
slot
A micro
s
trip
patch
ante
n
n
a
which
wa
s mad
e
by
u
s
ing
inve
rted
L-slot
edg
e
(ILSE)
stru
cture was pre
s
ente
d
fo
r wi
rele
ss co
mmuni
cation
[6]. The main
advantag
e o
f
the antenn
a
wa
s, with th
e
increa
se i
n
f
r
equ
en
cy, the gain
of
an
antenn
a is lin
early in
crea
sed which i
s
very
useful
at hi
g
her
micro
w
av
e freq
uen
cie
s
. In [7
], a reconfigurable
microstri
p
p
a
tch
anten
na
wa
s
pre
s
ente
d
for wideb
and a
pplication
s
. The anten
na
wa
s de
sign
e
d
by using P
I
N diode
s wh
ich
wa
s u
s
eful fo
r re
co
nfigura
b
le appli
c
atio
ns. T
he
pre
s
ented ante
n
n
a
wa
s abl
e to ope
rate in
two
freque
ncy ba
nds, i.e., 7.5-12 GHz an
d 9-15 G
H
z, re
spe
c
tively.
In this pape
r, we pre
s
e
n
t an ultra-wide
band mi
cro
s
tri
p
patch antenna f
o
r K-ba
nd
appli
c
ation
s
. The center freque
ncy (
f
0
)
of the prop
osed anten
na i
s
16 G
H
z. A modificatio
n
is
made to
the
previously
pre
s
ente
d
d
e
s
ign
[8].
The
propo
sed
d
e
sig
n
con
s
i
s
ts of
a
stacked
geomet
ry an
d slot-co
uple
d
feed.
The
resi
stive mat
e
rial
whi
c
h is made of
co
pper i
s
u
s
e
d
to
increa
se the
band
width of prop
osed ant
enna.
Also
we have used optimize
d
values of
h
1
an
d
h
2
to broad
en the band
widt
h of the pro
posed de
sig
n
. Recently, resi
stive mat
e
rial
s are u
s
ed to
desi
gn F
r
e
q
u
ency Sel
e
ctiv
e Surfa
c
e
(F
SS) ab
so
rbe
r
s fo
r
WLAN
se
curity a
ppli
c
ation
s
[9,
1
0
].
The resi
stive
material
allo
ws th
e move
ment of ele
c
tric
cha
r
g
e
on
con
d
u
c
ting
surfa
c
e. So,
by
applying
a
spe
c
ific surf
ace
resi
stan
ce to
the
rectan
gula
r
p
a
tch
elem
ent
, an im
ped
a
n
ce
band
width
of 77.8% i
s
a
c
hieved in
the
frequ
en
cy
range
of 12
-2
7.3 G
H
z. T
h
i
s
b
and
width
is
greate
r
than
the previou
s
ly pre
s
ente
d
data in
[8], therefore,
we u
s
ed a
particula
r su
rface
resi
stan
ce
fo
r the
p
r
opo
sed d
e
si
gn. A
l
so, it i
s
note
d
that th
e g
a
i
n of
pro
p
o
s
ed a
n
tenn
a
has
linearly in
cre
a
se
d in the
whol
e ban
d
of intere
st. This ma
ke
s o
u
r p
r
opo
se
d
desi
gn furth
e
r
use
able in m
any appli
c
atio
ns.
The re
st of
the pape
r
is organi
zed
as follo
ws.
Section II pre
s
ent
s de
sign and
configuration of the proposed
ultra-wideband pat
ch antenna.
Se
ction III presents
simul
a
ted
results an
d di
scussio
n
on the re
sults.
Fi
nally, Section
IV conclud
e
s the paper.
2. Design an
d Config
uration of Patch
Antenna
The de
sig
n
and
configu
r
ation of prop
ose
d
pat
ch a
n
tenna i
s
sh
own in
Figu
re 1. The
antenn
a g
e
o
m
etry con
s
ist
s
of
two
diel
ectri
c
l
a
yers, two
pat
ch
el
ements a
nd
a coaxial
pro
be
whi
c
h is
con
necte
d to the lower p
a
tch
element to provide excitati
on as
sho
w
n
in Figure 1
(
a).
The lo
we
r
substrate h
a
ving dim
e
n
s
io
ns
50
_
50
mm
2
con
s
ist
s
of
a re
ctang
ular patch whose
d
i
me
ns
io
ns
ar
e
38
_
34
mm
2
and a
re
cta
ngula
r
sl
ot is etche
d
fr
om
it which i
s
shown in Fi
gu
re
1(b
)
. The di
m
ensi
o
n
s
of th
e slot a
r
e
=
18 mm (alon
g
y-axis) an
d
= 2 mm
(al
ong x-axi
s
),
respe
c
tively. The di
ele
c
tric used fo
r the
lower
patch
desi
gn i
s
Ro
gers
RT/du
r
o
i
d 58
70 h
a
ving
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8252 – 82
56
8254
relative p
e
rm
ittivity
2.33
and
thickn
e
s
s
1.57 m
m
. The
upp
er
patch
with same
dimen
s
ion
s
i
s
pla
c
ed o
n
the uppe
r su
bstrate
whi
c
h
has a
spe
c
i
f
ic su
rface resi
stan
ce. T
h
e
sub
s
trate u
s
e
d
for the upp
er patch de
sign is FR-4 ha
ving relative permittivity
and thickne
s
s
0.8 mm. This desi
gn conf
iguratio
n follo
ws t
he p
r
inci
ple of apertu
re/slot-cou
p
le
d techniq
ue
[1]. By using resi
stive material an
d slot-cou
pl
ed tech
nique, one
ca
n obtain ultra
-
wid
e
ban
dwi
d
th
and hi
gh gai
n of patch a
n
tenna. Th
e
dimen
s
ion
s
o
f
rectan
gula
r
patch
ca
n b
e
cal
c
ul
ated
by
usin
g the de
sign equ
ation
s
given in [1].
Figure 2. Ret
u
rn lo
ss of UWB patch ant
enna fo
r diffe
rent value
s
of surfa
c
e resi
stance
One thing is t
o
be noted th
at the relative permittivity
and thickne
s
s (
h
1
) is u
s
ed
for
the desi
gn p
u
r
po
se. Th
e propo
sed p
a
tch
antenna i
s
fe
d throu
gh a
coaxial probe.
The po
sition
of
the pro
be i
s
maintaine
d
at
X
f
= 8 m
m
a
nd
Y
f
= 0 to
get maximum
impeda
nce
matchin
g
, i.e., to
match the inp
u
t impedan
ce
(
Z
in
) to the chara
c
te
risti
c
s impedan
ce
(
Z
o
) and it ca
n
be cal
c
ulate
d
by using the
desi
gn eq
uati
ons give
n in [1, 8].
3. Results a
nd Discu
ssi
on
This se
ct
ion
des
cri
b
e
s
t
h
e
simul
a
t
i
on r
e
sult
s
of
the
prop
osed pat
ch antenn
a. Firstly,
a
para
m
etri
c
study is ta
ke
n
from th
e de
sign
by
chan
ging the
surf
ace
re
si
stan
ce of the
upp
er
patch. Fi
gure
2 sho
w
s th
e
input return
l
o
ss results
fo
r differe
nt val
ues
of surfa
c
e re
si
stan
ce.
It is
noted that fo
r lowe
r value
s
of su
rface re
sista
n
ce, i.e., 25
Ω
/squa
re, 50
Ω
/squa
re a
nd 75
Ω
/sq
uare
the propo
se
d de
sign
gives la
rg
est b
and
width.
As the surfa
c
e
re
sista
n
ce i
n
crea
sed, th
e
band
width of
the antenn
a
grad
ually de
crea
se
s. This i
s
be
cau
s
e
of the fact that most of the in
put
sign
al is
refle
c
ted b
a
ck
at the input te
rminals incre
a
s
ing th
e po
wer lo
ss. Thi
s
is not
a de
sired
ca
se
as in m
o
st of th
e a
p
p
licatio
ns,
on
e likes
to tra
n
s
mit the
maxi
mum am
ount
of the
power in
the de
sired
di
rectio
n. F
r
om
Figu
re
2, an
optimi
z
ed
va
lue of
su
rfa
c
e
re
si
stan
ce i
s
ch
osen
whi
c
h
gives hig
h
ba
ndwi
d
th and
gain, i.e., 75
Ω
/squ
are. Th
e study de
mo
nstr
ate
d
that
the band
widt
h of
an anten
na can be maximi
zed by u
s
ing l
o
we
r value
s
of surfa
c
e resistan
ce.
Figure 3
sho
w
s inp
u
t retu
rn l
o
ss
of the
propo
sed
UWB p
a
tch
an
tenna. An
im
peda
nce
band
width
of
77.8% i
s
ob
tained i
n
the
freq
uen
cy ra
nge of
1
1
.96
-
27.3
G
H
z. F
our
re
so
nan
ces
occurre
d
in the whole b
and
at 12.5 GHz,
16.3
GHz, 2
0
-22 G
H
z an
d 25 GHz, re
spe
c
tively. From
Figure 3, it is clear evid
ent
that
the use of resi
stive material
shoul
d
incre
a
se the band
width of a
patch a
n
tenn
a. The band
width of the antenna i
s
cal
c
ul
ated as:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Ultra
-Wi
deb
a
nd Patch Ant
enna for K-B
and Appli
c
ati
ons (Um
a
ir Rafique)
8255
Figure 3. Input return lo
ss of
the propo
sed UWB patch antenn
a.
(
1
)
Whe
r
e,
and
are the hig
h
e
s
t and lo
we
st freque
nci
e
s o
f
the band. It is esse
ntial to kno
w
the
VSWR of an
antenn
a so th
at an optimized input po
wer loss can b
e
achi
eved. The VSWR
ca
n be
cal
c
ulate
d
as
follows:
(
2
)
Whe
r
e,
is th
e ab
solute va
lue of reflecti
on coefficie
n
t at the input t
e
rmin
als. It is evident that
the ideal p
a
tch with no
refl
ection
s at the
input
provid
es maxim
u
m
power transf
e
r whi
c
h
ca
n be
use
d
in many
important ap
plicatio
ns. Ho
wever, in
p
r
a
c
tical d
e
si
gns there is al
wa
ys some p
o
wer
loss at
the i
n
put termi
nal
s of the
pa
ct
antenn
a.
Th
e
po
we
r lo
ss
at the in
put t
e
rmin
als can
be
cal
c
ulate
d
as:
(
3
)
In patch ante
nna de
sign,
VSWR is co
nsid
ere
d
ba
sed on two cri
t
erion
s
of ba
ndwi
d
th
.
Acco
rdi
ng to
10 dB ba
nd
width
crite
r
ia,
the VSWR i
s
le
ss th
an
2 whi
c
h m
e
a
n
s a
10% in
put
power l
o
ss. If
we
want le
ss in
put p
o
wer loss,
we
hav
e to
cal
c
ulate
the b
and
widt
h a
c
cordi
ng t
o
15 dB ban
dwidth crite
r
ia.
The VSWR a
c
cordi
ng
to the 15 dB b
a
ndwi
d
th criteria must be
≥
1.5.
But, if we want larg
est
b
and
width, so
we h
a
ve to
make
a tra
d
e
-off bet
wee
n
po
wer l
o
ss and
band
width. Al
so, the p
o
wer loss can be
altered
or
m
a
i
n
tained by
ap
plying
a
hig
h
power sign
al a
t
the input port.
Figure 4. Gai
n
of the prop
ose
d
UWB patch ante
nna
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8252 – 82
56
8256
Figure 4
sho
w
s th
e
simul
a
ted results f
o
r t
he
gain
of the propo
se
d anten
na. It is note
d
that the
gain
l
i
nearly i
n
cre
a
s
e
s
from
11.9
6
-27.3
G
H
z
a
nd afte
r that t
he g
a
in i
s
slig
htly decre
ase
d
up to 6 dBi. Also, the min
i
mum gain n
o
ted fo
r the
prop
osed ant
enna i
s
4 dBi
in the freque
ncy
rang
e of 1
2
-14 G
H
z. It is clea
r fro
m
F
i
gure
4
that t
he gai
n of th
e propo
sed
p
a
tch a
n
tenn
a
is
related to th
e
input retu
rn l
o
ss. It is also
con
c
lu
ded from this
re
sult that
the gain
of the anten
na
is inversely prop
ortio
nal to the input return
lo
ss a
nd su
rface resi
stan
ce of the antenn
a. As
surfa
c
e
re
si
stance in
crea
ses the
gai
n
decrea
s
e
s
b
u
t the ba
nd
width incre
a
se
s. So the
r
e i
s
a
trade
-off between the in
cre
a
se
d ban
dwi
d
th and the a
c
hieve
d
gain.
4. Conclusio
n
An ultra-wid
e
band mi
cro
s
trip pat
ch a
n
tenna i
s
d
e
si
gned
and
prese
n
ted for
K-ban
d
comm
uni
cati
ons. A simpl
e
and novel
desi
gn is m
a
de to enha
nce the band
wi
dth of a microstrip
patch
anten
n
a
. By the use
of slot-co
upl
ed tec
hniq
u
e
and
by appl
ying the
surf
ace
re
si
stan
ce to
the patch el
e
m
ent, an im
p
edan
ce
ban
d
w
idth of
77.
8
%
(11.96
-2
7.3 GHz) is a
c
hieved at
10
d
B
return lo
ss
with a VSWR l
e
ss than
2. The gai
n
of the ante
nna i
s
line
a
rly in
creased a
nd it is
noted th
at, at high
er K
-
band
freq
ue
ncie
s, the
a
v
erage
gai
n
is 8
dBi. Also, the d
e
si
g
n
is
demon
strated
that the
use
of sta
c
ked
patch
configu
r
ation with re
si
stive m
a
teri
al is u
s
eful t
o
increa
se th
e
band
width
an
d gain
of pat
ch a
n
t
enn
a.
Presented
re
sults dem
on
strated that th
e
proposed design is suitable for r
adar and satellite com
m
unication.
Referen
ces
[1]
CA Bala
nis. An
tenna T
heor
y a
nd Des
i
gn, 3
rd
Editio
n.
[2]
AA Eldek,
Ultr
a
w
i
d
e
b
a
n
d
d
o
ubl
e rh
ombus
anten
na
w
i
th
stable r
a
d
i
atio
n patter
n
s for
phas
ed
arra
y
app
licati
on,
IEEE Transactio
n
s on Ante
nna
s and Prop
ag
ation
. 20
07; 55(
1
)
: 84-91.
[3]
A
Azari.
A ne
w
sup
e
r
w
i
d
e
ban
d
fractal
microstrip ante
nna.
IEEE Transactions on
Antennas
and
Propa
gati
o
n
. 2
011; 59(
5): 172
4-17
27.
[4]
MT
Islam, et a
l
. Compact p
a
tch ante
nna
w
i
t
h
folde
d
fee
d
for ultra
w
i
d
e
b
a
nd ap
pl
icatio
n.
Asia Pacif
i
c
Microw
ave Co
nferenc
e
. 200
8
;
1-4.
[5]
MT
Islam, et al. Design of compact ultr
a
w
i
d
eba
nd p
a
tch a
n
tenn
a for
w
i
r
e
less commu
nic
a
tions.
IE
EE
Internatio
na
l W
o
rksho
p
on Ant
enn
a T
e
chn
o
lo
gy
. 2009; 1-
4.
[6]
F
C
Ren, et a
l
. Comp
act taper
ed sl
ot ante
n
n
a
for
w
i
deb
an
d
app
licati
ons.
2
011 IEEE ICE
Internatio
na
l
Confer
ence on
Radar
. 20
11;
116
1-11
63.
[7]
BZ
W
ang, et al. Reconfig
ura
b
l
e
patch-a
nten
n
a
desi
gn for
w
i
deb
an
d
w
i
re
les
s
communic
a
ti
on s
y
stems,”
IET
Micow
a
ve, Antennas
and
Propa
gati
o
n
. 2
007; 1(2): 4
14-
419.
[8]
U Rafiq
ue, e
t
al. A
w
i
d
e
ban
d slot-co
u
p
le
d inv
e
rted
microstrip p
a
tch ante
n
n
a
for
w
i
rel
e
s
s
communications. 8
th IEEE Internationa
l Conferenc
e on E
m
erging technologies
. 20
12; 1-4
.
[9]
GI Kiani, et a
l
. Obliq
ue i
n
ci
de
nce p
e
rforma
n
c
e
of a n
o
ve
l frequ
enc
y s
e
lect
ive surfac
e a
b
s
orber.
IEEE
T
r
ansactio
n
s o
n
Antenn
as an
d Propa
gati
o
n
. 200
7; 55(1
0
): 2931-
293
4.
[10]
U Rafiq
ue, et al. F
r
eque
nc
y
selectiv
e surfa
c
e absor
ber fo
r W
L
AN securi
t
y
. 5
th Euro
pe
an Co
nfere
n
ce
on Anten
nas a
nd Prop
ag
ation
. 2011; 87
2-87
5.
Evaluation Warning : The document was created with Spire.PDF for Python.