Indonesi
an
Journa
l
of El
ect
ri
cal Engineer
ing
an
d
Comp
ut
er
Scie
nce
Vo
l.
9
, No
.
3
,
Ma
rch
201
8
,
pp.
680
~
684
IS
S
N:
25
02
-
4752
,
DOI: 10
.11
591/
ijeecs
.
v9.i
3
.
pp
680
-
684
680
Journ
al h
om
e
page
:
http:
//
ia
es
core.c
om/j
ourn
als/i
ndex.
ph
p/ij
eecs
Bandp
ass filter
B
ased on
Ring Re
sonator
at RF F
requ
ency
above 20
GHz
No
r
fish
ah
Ab.
Waha
b
1
, A.
A
mi
ruddin
2
, R
oskha
tij
ah
R
adz
ua
n
3
, Z
uha
il
a Mat
Y
as
in
4
, N.
A. S
alim
5
,
N.
A. R
ah
m
at
6
, N
.
F.
A.
Az
i
z
7
1
,2,3,4,5
Facul
t
y
of
El
e
ct
ri
ca
l
Eng
in
ee
ring
,
Univ
ersiti
T
ec
hnolog
i
M
ARA
,
40450
Shah
Alam,
Mal
a
ysia
6,7
Instit
ute of
Po
wer
Engi
n
ee
r
ing
,
E
lectr
i
ca
l
Pow
e
r
Depa
rtmen
t, C
oll
eg
e
of
Engi
n
e
eri
ng,
Univer
si
ti
Te
nag
a
Nasion
al,
Malay
s
ia
Art
ic
le
In
f
o
ABSTR
A
CT
Art
ic
le
history:
Re
cei
ved
Sep
2
4
, 201
7
Re
vised
Dec
2
7
, 2
01
7
Accepte
d
Ja
n
1
6
, 2
01
8
Thi
s
pape
r
p
re
s
ent
s
two
dual
-
m
ode
re
c
ta
ngu
la
r
ring
re
sonators
,
designe
d
a
t
RF
fre
quency
a
bove
20
GH
z
for
bandpa
ss
f
i
lt
er
applic
at
ions
.
Th
e
f
irst
re
sonator
is
desi
gned
at
20
GH
z
using
single
lay
e
r
m
ic
rostrip
te
ch
nolog
y
,
on
Rogers
Duroid
TMM10
subs
tra
te
with
the
fol
lo
wing
cha
r
ac
t
eri
s
ti
cs;
r
elati
v
e
die
l
ec
tr
ic
constant
(εr)
=
9.
2,
subs
tra
te
thickness
(h)
=
1.
270
mm,
die
le
c
tri
c
loss ta
ngen
t
(t
an δ)
=
0.
Th
e
sec
o
nd
re
sonator
is
b
ui
lt
using
m
ult
i
l
a
y
er
CMO
S
te
chno
log
y
at
7
5
GH
z.
The
r
esona
tor
is
sim
ulated
using
fluorinate
d
sil
ic
o
n
gla
ss
(FS
G)
and
sili
cone
ri
ch
oxide
(SRO
)
with
re
lative
di
elec
tr
i
c
consta
nt
(εr)
equa
ls
to
3.
7
and
4.
2
re
spec
tivel
y
.
Both
f
il
t
er
designs
are
built
using
ful
l
-
wave
el
e
ct
rom
a
gnet
i
c
sim
ula
ti
o
n
tool
.
For
fil
te
r
design
using
m
ic
rostrip
te
chno
log
y
,
the
re
turn
loss
is
fo
und
at
9.
999
dB
and
the
insert
io
n
loss
is
at
3.
108
dB
whi
le
for
filter
design
using
CMO
S
technolog
y
,
the
re
turn
loss
is
found
at
11.
299
dB
and
the
i
nserti
on
loss
at
0.
335
dB.
Both
re
sults
had
show
n
good
passband
per
form
a
nce
wi
th
high
r
ej
e
ct
ion
le
v
el
at
the
out
-
of
band.
Ke
yw
or
d
s
:
Du
al
-
m
od
e b
a
ndpass
f
il
te
r
CM
OS
tech
nolog
y
Mi
cro
strip
tech
no
l
og
y
Ri
ng
res
on
at
or
Copyright
©
201
8
Instit
ut
e
o
f Ad
vanc
ed
Engi
n
ee
r
ing
and
S
cienc
e
.
Al
l
rights re
serv
ed
.
Corres
pond
in
g
Aut
h
or
:
Norf
is
ha
h Ab.
Wah
a
b
,
Faculty
of Elec
tric
al
Engineer
ing
,
Un
i
ver
sit
i Tec
hnologi M
ARA,
40450 S
hah A
l
a
m
, Mal
ay
sia
.
Em
a
il
:
fishah@sala
m
.u
itm
.e
du.m
y
1.
INTROD
U
CTION
Ba
ndpass
filt
er
is
well
kn
own
as
on
e
of
the
essenti
al
com
po
ne
nt
at
the
fron
t
-
en
d
syst
em
in
wireless
com
m
un
ic
at
ion
an
d
RF
syst
e
m
.
A
m
on
gst
the
popula
r
re
so
na
tor
s
us
e
d
in
RF
m
ic
ro
w
ave
ap
plica
ti
on
are
coax
ia
l
res
on
a
tors,
diele
ct
ric
res
on
at
or
s;
surface
aco
us
ti
c
wav
e
(
SAW)
,
yt
triu
m
iron
ga
rn
et
(YI
G)
cr
yst
al
resonato
rs
a
nd
ceram
ic
resonato
rs.
U
nd
e
rs
ta
nd
in
g
eac
h
c
har
act
erist
ic
of
di
ff
e
ren
t
res
on
at
or
s
is
a
m
us
t
in
order
to
desig
n
good
filt
ers.
Advan
ci
ng
th
rou
gh
the
di
gital
wo
rld
,
ther
e
are
a
lot
of
ob
sta
cl
es
nee
d
to
be
consi
der
e
d
as
the
trend
now
adays
are
towa
rd
s
the
5
G
te
chnolo
gy.
H
ence,
the
exist
ing
te
ch
niques
and
topolo
gies
m
a
y
be
fu
rt
her
e
xp
l
or
e
d
to
fit
into
the
5
G
ne
twork
syst
em
[1
-
3].
In
te
rm
s
of
topol
og
ie
s
,
ring
resonato
r
ca
n
be
ex
plo
it
ed
due
to
t
heir
l
ow
l
oss,
c
om
pact
siz
e,
hi
gh
f
re
qu
e
nc
y
sel
ect
ivit
y
and
hi
gh q
ualit
y
(
Q)
factor pe
rfo
rm
ance
wh
ic
h
a
re
v
it
al
in
t
he
e
voluti
on
of futu
r
e w
irel
ess
co
m
m
un
ic
at
ion
syst
e
m
[
3].
An
or
igi
nal
re
search
propos
ed
on
du
al
-
m
od
e
rin
g
res
on
a
tor
was
fam
il
i
arized
first
by
Wo
lf
f
a
nd
Kno
pp
i
k
f
or
m
ic
rowav
e
s
ubst
rate
m
easur
e
m
ent
[
4].
More
researc
h
on
du
al
-
m
od
e
band
pa
ss
filt
er
ha
ve
been
pr
ese
nted
sinc
e
then
s
uch
as
re
ported
i
n
[
5
-
8]
that
al
lo
wed
f
or
va
rio
us
par
am
et
ers
to
be
in
vestiga
te
d
a
nd
der
i
ved,
inclu
di
ng
th
e
tran
sm
issi
on
po
le
s
,
tr
ansm
issi
on
zer
o
an
d
t
he
res
onance
f
reque
nc
ie
s.
In
the
ca
se
of
couplin
g
co
ns
t
ant,
the
e
ve
n/odd
res
on
a
nce
f
reque
ncy
locat
ion
s
a
re
util
iz
ed
us
i
ng
lum
ped
capaci
t
or
s
[9
-
10]
.
Be
sides
this
,
t
her
e
are
se
ver
a
l
ap
proach
pro
po
s
ed
to
desi
gn
a
com
pact
dual
-
m
od
e
band
pas
s
filt
er
us
in
g
high
-
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Ba
ndpass fi
lt
er Ba
se
d o
n
Ri
ng Reson
ato
r
a
t
RF Fre
qu
e
ncy
above
20
GHz
(
Norfi
sh
ah A
b. Wa
hab
)
681
per
m
it
t
ivit
y
m
at
erial
s
an
d
va
riat
ion
of
t
he
rectan
gula
r
ri
ng
la
yo
ut
[
11
-
13]
.
T
he
ada
ptati
on
of
c
ou
pling
capaci
ta
nce
a
nd
f
reque
ncie
s
filt
erin
g
ca
n
al
s
o
deliver
va
ried
a
ppli
cat
ion
s
i
n
m
icr
owa
ve
ci
rc
uits
ove
r
al
te
rati
on
s
in
e
le
ct
rical
le
ng
th
by
m
eans
of
ty
pical
du
al
-
m
od
e
do
ub
le
ri
ng
filt
er
desig
n
wh
e
re
by
the
fi
lt
er
is
dev
el
op
e
d fro
m
sing
le
r
ing c
onfig
ur
at
io
ns t
o dou
ble r
i
ng s
tructu
res [1
0],
[14].
Hav
i
ng
sai
d
th
ese,
it
m
a
y
be
us
ef
ul
to
al
so
exp
l
or
e
in
the
fiel
d
of
IC
ci
rcu
it
s,
w
her
e
by
cost
o
f
filt
er
and
the
occupi
ed
volum
e
can
be
reduce
d
further.
Com
plem
entary
m
et
a
l
ox
i
de
sem
ic
on
du
ct
or
(CM
OS)
has
a
gr
eat
integ
rati
on
prof
ic
ie
ncy
towards
inc
orporati
ng
both
m
illim
e
te
r
wav
e
as
well
as
dig
it
al
ci
rcu
it
s
i
nto
on
e
sing
le
c
hip
in
order
to
achie
ve
lo
w
c
os
t
for
the
m
ass
m
anufacture
as
well
as
pro
du
ct
io
n
[14
-
16]
.
In
te
r
m
s
of
band
pass
filt
er
desi
gn,
it
en
ha
nced
the
pro
duct
ion
of
a
m
i
l
lim
e
te
r
wa
ve
wh
ic
h
is
e
xten
sively
us
e
d
in
wireles
s
com
m
un
ic
at
ion
syst
em
s.
Fo
r
instance
,
a
m
i
ll
i
m
et
er
-
wa
ve
CM
OS
on
-
chi
p
passi
ve
filt
er
was
discu
ssed
in
[
15]
and
m
il
l
i
m
e
te
r
-
wa
ve
CM
OS
-
base
d
ba
ndpas
s
filt
ers
by
m
e
ans
of
sm
all
i
ns
erti
on
-
loss
wer
e
propose
d
in
[5
]
,
[17].
Eve
n
though
desi
gn
i
ng
on
m
ic
ro
strip
is
m
uch
easi
er
as
the
m
at
erial
are
easi
ly
ob
ta
in
wh
il
e,
desi
gn
i
ng
on
CM
OS
te
c
hn
ology
m
igh
t
be
a
bit
hustl
e
as
few
i
ns
ti
tuti
ons
has
t
he
capab
il
it
y
on
handlin
g
the
m
at
eria
l
it
sel
f.
How
e
ve
r,
on the
brig
ht side, C
MOS
c
an be
pro
du
ce
d i
n
m
ass p
r
oduc
ti
on
at a
lo
we
r
c
os
t.
The
c
oncer
n
he
re
is
t
hat
the
r
e
has
ye
t
existe
nce
of
a
filt
er
desig
n,
e
xplo
re
d
a
nd
im
ple
m
e
nted
both
on
m
ic
ro
strip
a
nd
CM
OS
te
ch
nolo
gy.
I
n
t
his
pa
per
,
we
pr
esent
the
desi
gn
an
d
a
naly
sis
of
a
dual
m
od
e
rectan
gu
la
r
rin
g
res
onat
or
t
ha
t
us
ed
the
to
po
log
y
in
[
18]
.
In
this
work,
the
topolo
gy
is
ex
plored
for
m
ic
r
os
trip
and
CM
OS
te
c
hn
ology
for
m
uch
hi
gher
fre
qu
e
ncy
t
hat
is
app
li
cable
f
or
5
G
netw
ork
s
yst
e
m
.
The
res
on
a
nce
fr
e
qu
e
ncies
of
these
filt
ers
ar
e
ch
os
e
n
at
20
G
Hz
a
nd
75
GH
z
.
At
20
GH
z
,
the
filt
er
is
desi
gned
on
si
ng
le
la
ye
r
m
ic
ro
strip
te
chnolo
gy
wh
il
e
at
75
G
Hz,
the
filt
er
is
p
r
opos
e
d
on
m
ul
ti
la
ye
r
C
MOS
te
chnolo
gy.
Bot
h
desig
ns
are
si
m
ula
te
d
us
in
g
fu
ll
wa
ve
sim
ulator
an
d
res
ults
had
s
how
n
good
perform
ance
in
te
rm
s
of
return
loss a
nd inse
rtion l
os
s
w
it
h hi
gh freq
ue
ncy s
el
ect
ivit
y.
2.
RESEA
R
CH MET
HO
D
Ex
plainin
g
r
es
earch
ch
ron
olog
ic
al
,
incl
ud
i
ng
r
esearc
h
des
ign
,
resea
rc
h
proce
dure
(in
the
f
or
m
of
al
gorithm
s,
Ps
eudoc
od
e
or
ot
her),
ho
w
to
te
st
and
data
acq
uisit
ion
[
1],
[3]
.
The
descr
i
ption
of
the
co
urse
of
researc
h
s
houl
d
be
s
upporte
d
ref
e
re
nces,
so
the
e
xp
la
natio
n
ca
n
be
acce
pted
sc
ie
ntific
al
ly
[2
]
,
[
4]
.
V
ario
us
researc
h
an
d
s
tud
ie
s
ha
d
be
en
co
nducted
to
gain
neces
s
ary
insigh
t
an
d
inf
or
m
at
ion
sp
eci
fical
ly
on
the
te
chnolo
gies
use
d,
tra
ns
m
issio
n
li
ne
,
re
sona
nce
f
reque
ncy
and
t
he
te
ch
ni
qu
e
s
im
ple
m
entat
ion
.
Ty
pical
ly
,
the
com
m
on
par
a
m
et
e
rs
inv
ol
ve
d
w
he
n
desi
gning
band
pass
f
il
te
r
are
insert
ion
lo
ss,
ret
urn
loss
,
tran
sm
issi
on
zero,
tran
sm
iss
ion
po
le
s
,
f
racti
on
al
ba
ndwi
dth
an
d
c
ouplin
g.
In
t
his
w
ork,
two
ty
pes
of
ba
ndpass
filt
ers
with
diff
e
re
nt r
es
on
ance
fr
e
qu
e
ncy
are pr
opose
d h
ere.
The
fir
st
desi
gn
is
propose
d
on
R
ogers
D
uroid
TMM
10
usi
ng
m
ic
ro
strip
te
chnolo
gy
with
relat
ive
diele
ct
ric
con
st
ant
(εr)
=
9.2,
su
bst
rate
thick
ness
(
h
)
=
1.2
70
m
m
,
diele
ct
ri
c
loss
ta
ng
e
nt
(
ta
n
δ)
=
0.0
023
an
d
op
e
rati
ng
f
requen
cy
at
20
G
Hz.
T
he
sec
ond
desi
gn
is
pe
r
f
orm
ed
on
CM
OS
te
ch
nolo
gy.
The
m
at
erial
s
us
e
d
are
flu
or
i
nated
sil
ic
on
e
glass
(F
S
G)
with
rel
at
ive
diele
ct
ric
con
sta
nt
(εr)
=
3.7
an
d
sil
ic
on
e
rich
ox
i
de
(S
RO
)
with
relat
ive
di
el
ect
ric
con
sta
nt
(ε
r)
=
4.2.
These
m
at
erials
was
ob
ta
ine
d
from
the
CM
OS18
FS
G
sta
n
da
r
d
process
t
hat
of
fer
s
a
sin
gle
poly
with
th
ree
la
ye
rs
m
e
ta
l
(3
LM)
,
f
our
la
ye
r
m
e
ta
l
(4
L
M),
fi
ve
la
ye
r
m
eta
l
(5
LM
) or si
x
la
ye
r
m
et
a
l (6
L
M).
Bot
h fil
te
rs
are
desi
gn to m
eet
sp
eci
ficat
ion
s
as s
how
n
i
n
Ta
ble I.
Table
1.
Desig
n
S
pecifica
ti
on
s for
Ba
ndpa
ss
filt
er
Para
m
eter
Sp
ecif
icatio
n
Retu
rn Los
s, S
11
<
1
0
dB
Ins
ertion
L
o
ss
,
S
12
>
3
dB
Figure
1
.
(a
)
I
de
al
circuit o
f
t
he
dual
-
m
od
e r
e
ct
a
ngular rin
g band
pass fil
te
r t
opology,
(
b)
Ba
ndpas
s fi
lt
er d
esi
gne
d usin
g
m
ulti
layer
CM
OS Tec
hnol
og
y
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vol
.
9
,
No.
3
,
Ma
rc
h
201
8
:
680
–
684
682
Figure
1(
a
)
s
hows
the
to
po
l
ogy
of
t
he
2
nd
orde
r
band
pass
filt
ers
us
i
ng
two
ri
ng
s
res
on
at
or
.
F
ig
ure
1(b)
in
dicat
es
the
first
la
ye
r
of
the
two
recta
ngular
ri
ngs
wi
th
CM
OS
te
ch
no
l
og
y.
T
he
gr
ound
pa
nel
is
fo
rm
ed
by con
necti
ng
M1 a
nd M2
t
oget
he
r wh
il
e th
e top m
et
al
, M
6
is
where t
he desig
ne
d
str
uct
ur
e
is p
la
ce
d.
3.
RES
ULT
S
A
N
D ANAL
YS
IS
Figure
2(
a
)
di
sp
la
ys
the
si
m
ula
te
d
res
pons
e
on
dual
m
od
e
band
pas
s
filt
er
us
i
ng
m
ic
ro
strip
te
chnolo
gy
at
20
G
Hz.
Ba
se
d
on
the
sim
u
la
te
d
res
pons
e
,
it
show
n
res
onance
f
re
qu
e
nc
ie
s
are
obta
in
ed
at
19.34
G
Hz
a
nd
20.
95
G
Hz.
At
20
G
Hz,
th
e
center
f
reque
ncy
of
S
11
is
9.999
dB
a
nd
t
he
insertio
n
loss
,
S
12
is
3.108
dB.
T
he
re
are
t
w
o
tra
ns
m
issi
on
zer
oe
s
ex
ist
at
the
fr
e
quencies
of
18.
74
GH
z
a
nd
21.
79
G
Hz
.
Th
e
transm
issi
on
zero
at
18.74
G
Hz
is
25.
546
dB
wh
il
e
at
21.
79
G
Hz
the
tra
ns
m
issi
on
zero
is
23
.
603
dB.
On
t
he
oth
e
r
ha
nd,
the
re
al
so
exist
tw
o
res
on
a
nce
f
r
equ
e
ncies
at
19.
61
GH
z
a
nd
20.50
G
Hz.
T
he
at
te
nu
at
ion
l
evel
of
the
res
on
a
nce
fr
e
qu
e
ncies
ar
e
14.51
5
dB
a
nd
14.
649
dB
resp
ect
ively
.
T
he
filt
er
desi
gn
gi
ves
a
f
racti
on
a
l
band
width o
f 8
.05%.
Figure
2
.
(a
)
Si
m
ula
te
d
res
ponse
of
2
nd
or
der
band
pass fil
te
r usin
g
t
wo r
in
gs o
n
m
ic
ro
strip
te
chnolo
gy at
20
GH
z
, (b
)
Lay
out de
sig
n
f
or
dual
m
od
e recta
ngular
r
in
g
at
20 GHz
The
ideal
to
po
log
y
of
the
ring
ci
r
cuit
is
transfo
rm
ed
into
distri
bu
te
d
e
lem
ent
and
fi
na
l
la
yout
is
disp
la
ye
d
in
Figure
2(b
).
T
he
la
yout
cl
early
sh
ows
tw
o
rect
angular
rin
gs
with
50Ω
tra
nsm
issi
on
fee
d
li
ne
a
nd
al
so
couplin
g
li
ne.
This
filt
er
desig
n
is
pro
po
s
ed
on
m
ic
r
os
trip
te
ch
nolo
gy,
us
in
g
Ro
ge
rs
Du
r
oid
T
MM1
0
su
bst
rate
s
pecifica
ll
y
bu
il
t
to
be
us
e
d
in
RF
app
li
cat
io
ns
sy
stem
s
with
the
f
ollow
i
ng
cha
racteri
sti
cs;
relat
iv
e
diel
ect
ric
con
st
ant
(ε
r
)
=
9.2,
s
ub
st
rate
thickne
ss
(
h)
=
1.
270
m
m
,
diele
ct
ric
loss
ta
ng
e
nt
(tan
δ)
=
0.0
023
and
op
e
rati
ng fre
quency at
20 G
H
z.
Table
2.
Fil
te
r’s Param
et
ers
on
Mi
cr
os
trip
T
echnolo
gy at
20
GH
z
Para
m
eters
Di
m
en
sio
n
s (u
m
)
W0
434
WC
467
LC
6440
S2
350
W1
436
L1
4466
L1a
6440
L0
3680
W2
436
L2
4466
L2a
6440
Ba
sed
on
the
dim
ension
s
in
T
able
2,
le
ng
t
h
of
c
ouplin
g
li
ne
s,
top
rin
gs
as
well
as
the
bo
tt
o
m
ring
s
need
t
o
be
the
sam
e
in
or
de
r
for
the
rin
g
to
be
in
a
sym
m
e
tric
al
sh
ape.
L
1a
in
dicat
e
le
ngth
of
the
to
p
rin
gs
,
L2
a
ind
ic
at
e
th
e
bo
tt
om
ring
s an
d
LC
in
dicat
e
the
couplin
g
le
ng
th w
hic
h
a
ll
m
easur
e
as
64
40
um
with
the
gap
couplin
g,
S2
of
350um
.
Para
m
et
ers
L1
an
d
L2
both
s
ho
w
the
le
ngth
of
th
e
rin
g
si
de
w
hich
is
4466
um
resp
ect
ively
.
T
he
le
ng
t
hs
of
t
he
si
de
al
s
o
ne
ed
t
o
ta
ke
int
o
acc
ount
a
s
t
o
m
ai
ntain
the
rectan
gula
r
s
hap
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Ba
ndpass fi
lt
er Ba
se
d o
n
Ri
ng Reson
ato
r
a
t
RF Fre
qu
e
ncy
above
20
GHz
(
Norfi
sh
ah A
b. Wa
hab
)
683
W
i
dths
of
the
rin
gs
are
al
l
design
at
e
d
by
w
.
The
seco
nd
design
of
ba
ndpa
ss
filt
er
is
pro
po
se
d
at
75
GH
z
.
Figure
3(a)
s
hows
t
he
sim
ula
te
d
res
pons
e
on
dual
m
od
e
ba
ndpas
s
filt
er
us
in
g
CM
OS
t
echnolo
gy
at
75
G
Hz
on
a w
ide
r
ra
nge
in w
hic
h
th
e
nex
t
fi
gure wi
ll
sh
ow
the
e
nhance
d
respo
nse
on
m
or
e
s
pe
ci
fic
fr
e
qu
e
ncy
range.
Tw
o
r
eso
na
nc
e
freq
ue
ncies
are
fou
nd
at
71
GH
z
a
nd
79
G
Hz
with
38.
397
dB
a
nd
27.
191
dB
res
pe
ct
ively
.
The
at
t
en
uatio
n
le
vel
of
t
he
i
ns
erti
on
l
os
s
at
75
G
Hz
is
fou
nd
at
0.3
35
dB
.
The
tran
sm
iss
ion
ze
ro
f
reque
ncies
are
obta
ine
d
at
56
G
Hz
a
nd
100
G
Hz
re
s
pecti
vely
.
The
m
ark
ers
at
m4
an
d
m5
sig
ni
fy
the
le
vels
of
bo
t
h
transm
issi
on
z
ero
es
of
a
f
or
e
m
entioned
f
re
qu
e
ncies
at
45
.906
dB
an
d
8.4
71
dB
res
pe
ct
ively
.
The
f
r
act
ion
al
band
width
of
this
filt
er
is
ar
ound
24%
sli
gh
tl
y
hig
her
t
ha
n
that
of
t
he
fi
rs
t
filt
er.
The
la
youts
al
on
g
wi
th
the
dim
ension
s of ev
ery el
em
ent
of
the
band
pas
s f
il
te
r
are d
isp
la
ye
d
on
Fig
ur
e 3
(
b)
and Ta
bl
e
3
resp
ect
ivel
y.
The
le
ng
th
s, widt
hs an
d gap o
f
t
he
seco
nd f
il
te
r f
ollow t
he sa
m
e
labels
with the
f
irst
filt
er as
i
n
Fi
gure
2(b
).
Figure
3
.
(a
)
E
nh
a
nce
sim
ulated
respo
ns
e
of
the 2
nd
orde
r b
andpass
f
il
te
r u
sing t
w
o
ri
ngs
on CM
OS
te
chnolo
gy at
75 GHz,
(b) La
yout
desig
n for
dual m
od
e rec
ta
ngular rin
g
at
75 GHz
Table
3
. Fi
lt
er’s Dim
ensio
ns
on CM
OS Tec
hnology at
75
GH
z
Para
m
eters
Di
m
en
sio
n
s (u
m
)
W0
80
WC
80
LC
650
S2
35
W1
80
L1
730
L1a
650
L0
650
W2
80
L2
730
L2a
650
Table
4.
Su
m
m
arized Meas
ur
e
d
Re
s
pons
e
of
the Dual M
od
e
ba
ndpass
f
il
te
r
Re
ct
angular
Ri
ng
Usi
ng
Mi
cro
strip
and
CM
OS
T
ech
nolo
gies
Para
m
eters
2
-
ring
s u
sin
g
m
ic
r
o
strip
techn
o
lo
g
y
(a)
2
-
ring
s u
sin
g
CMOS
tech
n
o
lo
g
y
(b)
Cen
tre
Frequ
en
cy
,
f
o
2
0
GHz
7
5
GHz
Retu
rn lo
ss
(
S
11
)
Ins
ertion
los
s
(S
12
)
9
.99
9
dB
3
.10
8
dB
1
1
.29
9
dB
0
.33
5
dB
Fraction
al Ban
d
wi
d
th
(
FBW)
FB
W
=
(
f
L
–
f
U
)/
f
0
FBW=
(19
.34
GH
z
-
2
0
.95
GHz)
/2
0
GHz=
8
.05
%
FBW=
(68
GHz
-
8
6
GHz)
/7
5
GHz=
2
4
%
Tr
an
s
m
iss
io
n
ze
ros
(
d
B)
Lower
f
requ
en
cy
Hig
h
er
trans
m
iss
io
n
f
requ
en
cy
f
1
8
.
7
4
GHz
= 25
.54
6
f
2
1
.
7
9
GHz
= 2
3
.60
3
f
5
6
GHz
= 45
.90
6
f
1
0
0
GHz
= 8.4
7
1
Table
4
s
umm
arized
the
s
i
m
ulate
d
respon
s
es
an
d
pe
r
form
ances
of
the
rin
g
res
on
at
or
s
us
in
g
m
ic
ro
strip
a
nd
CM
OS
te
c
hnologies
re
sp
ect
ively
.
Ba
sed
on
the
res
ults
obta
ined
,
bo
t
h
r
eso
nators
ha
d
sh
ow
n
acce
ptable
pe
r
form
ance
fo
r
band
pass
filt
er
app
li
cat
ion
s
.
The
re
s
on
at
ors
achieve
d
good
sel
ect
ivit
y
with
transm
issi
on
zero
es
at
the
stopba
nd
a
nd
tw
o
transm
issi
on
po
le
s
in
the
pa
ssb
a
nd
re
gion
.
The
re
j
ect
ion
le
vels
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vol
.
9
,
No.
3
,
Ma
rc
h
201
8
:
680
–
684
684
for
the
re
sonat
or
s
e
xcee
ding
20
dB
w
hich
i
nd
ic
at
e
go
od
r
ejecti
on
le
vel.
In
te
rm
s
of
bandw
i
dth
,
t
he
res
on
at
or
s
are s
uitable
to
be use
d
f
or
narrowba
nd a
ppli
cat
ion
si
nce the
f
racti
onal
ba
ndwidt
hs
a
re le
ss tha
n 30%.
4.
C
ONCL
US
IO
N
In
a
nutshell
,
two
band
pass
f
il
te
rs
wer
e
pr
e
sented
usi
ng
dual
-
m
or
e
rectangula
r
res
onat
or
as
a
base
cel
l.
The
first
filt
er
was
desig
ned
at
20
GH
z
us
ing
sin
gle
la
ye
r
m
ic
ro
strip
te
chn
ol
og
y
w
hile
the
second
filt
er
was
desi
gn
e
d
at
75
G
Hz
us
i
ng
m
ulti
la
ye
r
CM
OS
te
chnol
og
y.
B
oth
filt
ers
we
re
su
cces
sfu
ll
y
si
m
ulated
wit
h
acce
ptable
res
pons
es
in
te
r
m
s
of
insertio
n
loss
an
d
ret
urn
loss.
In
vi
ew
of
t
he
e
xperim
ental
resul
ts,
this
arr
a
ng
em
ent
s
chem
e
reali
zed
a
filt
er
no
t
on
ly
with
high
sel
ect
ivit
y
an
d
s
harp
sk
irt
but
al
so
com
pact
siz
e,
good
perform
a
nce a
nd sim
ple
d
esi
gn and t
he
refor
e
is possi
bl
e to b
e
appli
ed
at high
fr
e
que
ncy ab
ove
20
GH
z
.
ACKN
OWLE
D
GE
MENTS
This
wor
k
wa
s
sup
ported
by
Faculty
of
Ele
ct
rical
En
gine
erin
g,
U
niv
e
r
sit
i
Teknolo
gi
MARA
a
nd
In
sti
tute
of
Re
search
Ma
nag
e
m
ent
and
I
nnovat
ion
(I
RM
I
)
of
Un
i
ver
sit
i
Tek
no
l
og
i
MA
RA
(Gra
nt
no:
600
-
RM
I/DANA 5/
3/LEST
ARI
(7
2/2015
).
REFERE
NCE
S
[1]
El
ah
e
Moham
m
adi
,
H
abi
b
Gho
rba
ninejad,
“
Novel
Resonan
t
S
truc
tur
e
to
Co
m
pac
t
Partial
H
-
Plane
Band
-
P
ass
W
ave
guide
Filt
e
r,
”
Inte
rnat
ional
Journal
of
El
ec
t
rical
and
Comp
ute
r
Engi
nee
rin
g
(
IJ
ECE
)
,
Feb
2017,
vol.
7,
no.
1,
pp.
266
-
270
.
[2]
Zha
ng,
Pingju
a
n,
and
Minqua
n
Li
,
"
A
Nov
el
Compact
Mic
ros
trip
Low
pas
s
Fi
lter
wit
h
Sharp
Tr
an
siti
on
and
Impr
ove
d
Stopb
and,
"
Indon
esian
Journal
o
f El
e
ct
rical E
ng
ineering
and
Compute
r Sc
ie
n
ce
,
13
.
1
(
2015):
pp
85
-
90
.
[3]
K.
Chang
and
L. H.
Hs
ie
h
,
Mi
cro
strip
Ring
Circ
u
i
ts
and
R
elate
d
St
ruc
ture
s.
New
Y
ork:
W
il
e
y
,
2004
.
[4]
I.
W
olff
and
N.
Knoppik,
“
Microstri
p
ring
re
so
nat
or
and
d
isper
sion
m
ea
surem
ent
on
m
ic
rostrip
li
nes,”
Elec
tron
.
Lett
.
,
De
c
1971
,
vol.
7
,
no
.
26
,
pp
.
779
781.
[5]
A.
C.
Kunda
and
I.
Aw
ai,
“
Contr
ol
of
at
t
enua
t
ion
pole
fre
quen
c
y
of
a
du
al
-
m
ode
m
ic
rostrip
ring
-
r
esona
tor
b
andpas
s
fil
ter,”
IE
EE Tr
ans.
Mic
row
.
The
ory
Tech
.
,
Jun
2
001,
ol. 49, no. 6, pp. 1113
–
1117.
[6]
M.
Matsuo,
H.
Yabuki,
and
M.
Makimoto,
“
Dual
-
m
ode
stepped
impedanc
e
r
i
ng
re
sonators
f
or
bandpa
ss
fil
t
er
appl
i
ca
t
ions,”
IE
EE
2001
.
Tr
ans. Mic
row.
Theory
Tech.
,
Jul 20
01
,
vol.
49
,
no
.
7
,
pp
.
1235
–
1240
.
[7]
B.
T.
Ta
n
,
S.
T
.
Chew,
M.
S.
Le
ong,
and
B.
L.
Ooi,
“
A
dua
l
-
m
ode
bandpa
s
s
fil
te
r
wi
th
en
hanc
ed
ca
p
ac
i
tive
per
turbation,”
I
E
EE
Tr
ans.
Mi
cro
w.
Theory
Tech
.
,
Aug.
2003
,
vo
l.
51,
no
.
8
,
pp
.
19
06
–
1910.
[8]
M.
-
F.
Lei
and
H.Wang,
“
An
ana
l
y
s
is
of
m
ini
a
turi
z
ed
dual
-
m
o
de
bandpa
ss
fi
lter
struct
ur
e
usin
g
shunt
-
ca
pa
cita
nce
per
turbation,”
IEE
E
Tr
ans.
Mic
row.
Theor
y
Tech.
,
Mar.
2005,
vol.
53,
no.
3,
pp.
861
–
8
67.
[9]
Kai
Chang
,
”
Mi
cro
wave
Ring
C
i
rc
uit
s
and
Ant
en
nas”
,
J
.
W
ile
y
&
Sons
,
1996.
[10]
L.
-
H.
Hs
ie
h
and
K.
Chang,
“
Dual
-
Mode
quasi
-
el
liptic
-
fun
ct
ion
ba
ndpass fi
lt
ers
using r
ing
re
sonators
with
enha
nce
d
-
coupl
ing
tuni
ng
stubs,
“
IEEE
Tr
ans.
Mic
rowav
e T
heory
Tech
.
,
Ma
y
2002,
vol
.
50
,
pp.
1340
-
1345.
[11]
Michi
aki
Ma
tsuo,
Hiro
y
uk
i
Ya
buki,
and
Mitsu
o
Makimoto,
“
Dual
-
m
ode
Steppe
d
-
Im
peda
nc
e
Ring
Resonat
or
for
Bandpa
ss
fil
t
er
Applic
a
ti
ons“
IEE
E
Tr
ansacti
o
ns
on
Mic
rowav
e
Theory
And
Techni
qu
es
,
Jul
y
2001,
vol
.
49,
no
.
7
,
pp1235
-
1240.
[12]
Man
-
Long
Her,
Quei
-
Min
Li
n
,
Kun
-
Ying
Li
n,
Ying
-
De
W
u,
an
d
Y
u
-
Li
n
W
ang,
Dual
-
m
ode
and
thre
e
-
tra
nsm
ission
-
ze
ro
bandstop
filter
with
cl
osed
-
l
oop
ring
re
sonators,
Mic
rowave
and
Optic
al
Tec
hnology
Lett
ers
,
2005,
vol.
44,
No.
2,
pp
.
114
-
118
.
[13]
Si
-
W
eng
Fok,
P
edr
o
Cheong,
K
am
-
W
eng
Ta
m
,
and
Rui
P
Marti
ns,
A
novel
m
ic
rostrip
squar
e
-
loop
dua
l
-
m
ode
bandpa
ss
fil
te
r
with
sim
ult
ane
o
us
size
re
ducti
on
and
spurious
re
spons
e
sup
pre
ss
ion,
IEEE
Tr
ansacti
ons
on
Mic
rowave
Theo
ry
and
Tech
nolo
gy
,
2006
,
vo
l. 54
,
No.
5,
pp.
2033
-
2041.
[14]
S.
Sun,
J.
Shi,
L
.
Zhu,
S.
Rust
agi
,
and
K.
Moutha
a
n,
“
Mill
imeter
-
wave
bandp
ass
fil
t
ers
b
y
st
anda
rd
0.
18
-
m
m
CMOS
te
chno
log
y
,
”
IE
EE
El
e
ct
ron De
v
ic
e
Lett
.
,
Mar. 2
007,
vol
.
28
,
no
.
3,
pp
.
220
–
222
.
[15]
C.
H.
Doan
,
S.
E
m
ami,
A.
M.
Ni
knej
ad
,
and
R.
W
.
Broder
sen,
“
Design
of
CMO
S
for 60
-
GH
z appl
ic
at
ions
,
”
in
Pr
oc.
IEE
E
Solid
-
Sta
t
e
Cir
cui
ts
Conf
.
,
2004,
pp.
440
–
4
41.
[16]
M.
Miao
and
C.
Ngu
y
en,
“
A
novel
m
ult
i
layer
ape
r
ture
-
cou
ple
d
c
avi
t
y
re
s
onat
or
for
m
il
l
i
m
et
er
-
wave
CM
OS
RF
ICs,”
IEEE
T
rans
.
Mic
row.
Theory
Tech
.
,
Apr
.
2007
,
vol
.
55
,
n
o.
4
,
pp
.
783
–
78
7
.
[17]
Tua
n
Anh
Vu
,
Minoru
Fujish
ima
,
A
300
GH
z
CMO
S
Trans
m
it
te
r
Front
-
End
for
Ul
tra
h
i
gh
-
Speed
W
irel
es
s
Com
m
unic
at
ions,
Inte
rnational
Journal
of
El
ect
rical
and
Computer
Engi
ne
erin
g
(
IJ
ECE
)
,
Aug.
2017,
v
ol.
7,
No.
4,
pp.
2278
–
2286
.
[18]
N.
Ab.
W
aha
b,
N.
Hida
y
at
,
Z.
I
sm
ai
l
Khan,
Z.
Mat
Yass
in,
N.
A.
Sali
m
,
Noriz
a
Othm
an,
M.
K.
M.
Sall
eh
,
“
Two
Para
llel
-
coup
le
d
Rings
for
Narr
ow
Bandpa
ss
filter
Appli
ca
t
ion,”
Journal
of
Te
le
communic
a
ti
o
n,
Elec
troni
c
an
d
Computer
Engi
n
ee
ring
,
2017,
vo
l.
8
,
no
.
373
.
Evaluation Warning : The document was created with Spire.PDF for Python.