TELKOM
NIKA
, Vol.11, No
.3, March 2
0
1
3
, pp. 1639 ~ 1645
ISSN: 2302-4
046
1639
Re
cei
v
ed O
c
t
ober 2
9
, 201
2; Revi
se
d Ja
nuar
y 25, 20
1
3
; Acce
pted
February 7, 2
013
EIT Based on Virtual Instrument
Ma Jun*
1,2
, Wang
Wen
g
long
1,3
, Zhang Jianguo
1,3
1
Ke
y
L
ab of Ad
vance
d
T
r
ansducers an
d Intell
ig
e
n
t Control S
y
stem, Ministr
y
of Educatio
n
2
Colle
ge of Ph
ysics a
nd Opto
electro
n
ics,T
a
iyu
an U
n
ivers
i
ty of T
e
chnolo
g
y
3
T
a
i
y
u
an U
n
ive
r
sit
y
of T
e
chnol
og
y, T
he M
easurin
g and C
ont
rolli
ng T
e
chnol
og
y Institute,
T
a
iyua
n 03
002
4, Chin
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: z
y
maj
un@
12
6.
com, lao
x
i
n
i
@
12
6.com, iki
ng7
9@1
63.co
m
A
b
st
r
a
ct
Design of a electrical im
ped
ance tom
ogr
aphy system
based on
virtual instrument, the author
firstly introduc
ed the v
i
rtual
instru
me
nt into
the el
ectrical
imped
anc
e
i
m
a
g
i
ng fro
m
the p
e
rspectiv
e
o
f
hardware and software.
The system
use DAQ of NI to sim
p
lify
the
har
dware structur
e and im
pr
ove the
stability. Softw
are of syste
m
co
mbi
nes th
e
adva
n
tag
e
s o
f
LABVIEW and MATLAB,
and v
e
rify so
me
alg
o
rith
ms. Usi
ng NI virtual in
strume
nt, the system
has stro
ng exp
ansi
on
and d
o
go
od b
a
sis for enh
an
cin
g
the perfor
m
anc
e
of electrical im
pedance imaging system
.
Ke
y
w
ords
: virtual i
n
stru
ment,
electrical i
m
p
eda
nce to
mo
gr
aphy, MATLAB, LABVIEW
Copy
right
©
2013 Un
ive
r
sita
s Ah
mad
Dah
l
an
. All rig
h
t
s r
ese
rved
.
1. Introduc
tion
With the rapi
d developme
n
t of scien
ce
and
techn
o
l
ogy, two-ph
a
s
e syste
m
(li
quid,
gas-solid, liq
uid-solid, liqu
i
d-liqui
d, etc.) becom
e
s
more a
nd m
o
re imp
o
rtan
t in the national
eco
nomy and
human life. In many case
s, the
detecti
on techni
que
s of two-ph
a
s
e have be
e
n
a
con
s
trai
ning
factor of stu
d
ying two-ph
ase.
Th
e proce
s
s tomog
r
aphy a
s
a
new two-p
h
a
s
e
detecte
d tech
nique ha
s be
en increa
sing
emphasi
s
by domestic an
d foreign re
searche
r
s [1-2
].
As a p
r
o
c
e
s
s tomography,
EIT were t
r
a
n
spl
anted in i
ndu
strial in th
e late 19
80s.
Becau
s
e it i
s
a
visual, non
-i
nvasive, low-co
st, no radi
ation-lin
e inspectio
n
tech
nology, it is attended by the
worke
r
in the
two-p
h
a
s
e / multipha
se
flow testin
g an
d medical testing [3].
In 1986, Nati
onal Instrum
ents (Nation
a
l
Inst
rume
nts USA) first p
r
opo
se
d a "virtual
instru
ment"
(Virtual In
strumentation
)
co
n
c
e
p
t a
nd g
r
adu
ally cha
nge th
e app
roa
c
h
of
measurement
and automat
ion of engine
ers a
nd scien
t
ists. It consi
s
ts of three p
a
rts: co
mpute
r
,
instru
ment ha
rdware, appli
c
ation
softwa
r
e. Beca
us
e of its flexible, easy to build
, and use
r
s
can
define their o
w
n spe
c
ial in
strum
ent syst
em, so
it is widely ap
plie
d in resea
r
ch
, developme
n
t,
measurement
, testing, mea
s
ureme
n
t, m
onitoring a
nd control an
d so
on.
In the current
electri
c
al im
peda
nce tomogr
a
phy syst
em, the ent
ire system is
based
on DSP and FPGA or CPLD to collecti
on and pro
c
e
ssi
ng of data, then s
end the processe
d data
to a PC for image di
splay
.
Howeve
r the authors
co
mbined the a
d
vantage
s of virtual instru
ments
and MATLA
B
to design a digital electri
c
al
impe
dan
ce imagi
ng system
based on virtual
instru
ment.
2. The Desig
n
of Har
d
w
a
r
e
Sy
stem
2.1. Sy
stem
Structure
As sh
own in
Figure 1, The
system i
s
co
nsti
tute with t
he excitation
sou
r
ce, drive
n
and
measurement
channel, signal processing, LABVI
EW
data processi
ng and image reconst
r
uction.
System use
s
the cu
rrent d
r
ive - voltag
e
measurement
pattern, the
driving frequ
e
n
cy
for the si
ngle
freque
ncy i
s
10KHz. Firstly, The
voltage-controlled current
source
gene
rated th
e
curre
n
t signal
(sinu
s
oid
a
l).
T
he cu
rre
nt signal throu
g
h
the driving chann
el with constitute of the
multi-chan
nel
switch and CPLD, rea
c
h the imagin
g
objective
s su
rround
ed by electro
de. The
two
measured voltage sign
al which is extra
c
ted by
the channel array throu
gh the band-pa
ss filter
enter i
n
to the
front differen
t
ial amplifier.
Then th
e
si
g
nal which is
differential a
m
plifier o
u
tpu
t
is
re-amplified
by the PGA.
The ba
nd-pa
ss filter f
ilters out interferin
g sign
als.PXI-625
1'
s anal
o
g
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
EIT based o
n
virtual in
stru
m
ent (Ma Jun
)
1640
input ch
ang
e
the analo
g
signal
s into di
gital sign
als,
the digital si
g
nals a
r
e tran
smissio
n
to the
host co
mput
er. lastly, the host com
puter
re
prod
uce the go
a
l
image thro
ugh the ima
g
e
r
e
co
ns
tr
uc
tion
a
l
g
o
r
ithms
.
Figure 1. System stru
cture
2.2. Excitatio
n
Source
As LABVIEW generated high preci
s
i
on
and less interference signal, LABVIEW
gene
rate a freque
ncy of 10KHz, amplit
ude of 1.5V
the sinu
soi
dal
voltage sign
al in the system.
Then voltage
-co
n
troll
ed cu
rre
nt sou
r
ce cha
nge the voltage sig
nal into current signal. Voltag
e-
controlled
cu
rrent so
urce
ci
rcuit
sho
w
n in
Figure 2[4
-
5]
.
Figure 2. Voltage-co
ntrolle
d curre
n
t sou
r
ce
2.3. Driv
en a
nd Measu
re
ment Ch
ann
e
l
Senso
r
ele
c
trode array is the media of bu
ilding and
acce
ssing to
market sen
s
itive
informatio
n. Therefore, it is ve
ry impo
rtant to sele
ct the app
rop
r
ia
te electrode.
The sele
cting
of
electrode
mai
n
ly take
s into
accou
n
t the
material,
sha
pe an
d si
ze.
Relative to th
e point el
ectrode,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
Vol. 11, No
. 3, March 20
13 : 1639 – 1
645
1641
a re
ctang
ula
r
electrode
ca
n sig
n
ifica
n
tly improve th
e
uniformity of
curre
n
t den
sit
y
distributio
n
[6
-
7]. So the system use
s
a recta
ngul
ar electro
de. Accordi
ng to the si
ze of the experim
ent
al
device, the
electrode
si
ze is 15
mm
width an
d 3
2
mm length.
The sch
e
m
a
tic diag
ram
of
experim
ental
appa
ratu
s an
d electrode a
r
ray are
sho
w
n in Figure 3.
Figure 3. Experime
n
tal app
aratu
s
and el
ectro
de a
rray
Multiplexers swit
ch and
cha
nnel arra
y are 16-to-1 analog m
u
ltiplexer swi
t
ching
device
s
.MAX306
whi
c
h M
AXIM produ
ced is
CM
OS1
6
ch
ann
el an
alog multipl
e
xer. Its maxi
mum
resi
stan
ce i
s
100 o
h
ms. T
he maximum
resi
stan
ce
m
a
tchin
g
erro
r
betwe
en
cha
nnel
s is
5 oh
ms,
the switchi
n
g
time is l
e
ss
than 40
0n
s,
and the
cro
s
stalk
betwee
n
ch
ann
els is less tha
n
-9
2
db.
To-g
rou
nd le
aka
ge cu
rren
t is less than
2.5nA, equi
valent capa
ci
tance to gro
und is less than
140pF[8
-9]. Its pe
rform
a
n
c
e meets
ou
r d
e
sig
n
re
qui
re
ments. CP
LD turn on
and t
u
rn off the d
r
i
v
e
and me
asure
m
ent chann
e
l
s. We
ch
oice EPM7128
SLC84
-
1
5
of
MAX7000S
seri
es
whi
c
h
is
introdu
ce
d by Altera Corpo
r
ation. The
co
ntrol se
que
nce sho
w
n in Fi
gure 4.
Figure 4. Con
ductio
n
timing control
2.4. Signal Proces
sing
Front differe
ntial amplifier shoul
d have
high inp
u
t impeda
nce a
nd co
mmon
mode
rejection ratio, low noise and drift. Select
ed chi
p
is AD620, its CM
RR is up to 100db.
Becau
s
e
of
different el
ectrode
have t
he di
st
inct
resi
stan
ce, th
e sig
nal h
a
ve big
diffence afte
r the liquid condu
ctivity.
Agilent's
L
C
R meter
me
asu
r
e the
re
sista
n
ce of the
electrode a
s
sho
w
ni
ng in Figure 5 and
Figure 6.
Figure 5 is an
empty field. Figure 6 is the
comp
ari
s
o
n
chart betwe
en the empty field and plac
i
n
g
objects. In order to improv
e the accu
ra
cy
of signal a
c
quisitio
n
, we
require the
use of a prog
ram
m
abl
e gain ampl
ifier for sign
al
amplificatio
n. TI's THS7
002
chip
s is
sele
cted for Programmabl
e gai
n amplifier.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
EIT based o
n
virtual in
stru
m
ent (Ma Jun
)
1642
Whe
n
the si
gnal tra
n
smi
ssi
on in the
liquid, due
to the asy
mmetric
ele
c
trode
electrolysi
s
, galvani
c acti
on and othe
r factor
s, the output voltage sig
nal may contain
DC
comp
one
nts.
At the same
time in the EIT meas
urem
ent system, the freq
uen
cy of noise
sig
nal
may not meet the sampling
theorem, so that follow-u
p
sampli
ng will sho
w
aliasi
ng
phenome
non
.
In orde
r to
prevent the i
n
terferen
ce
signal, this
sy
stem u
s
e
s
the ba
nd-pa
ss filter which
is
Maxim's MAX
263.
Figure 5. Empty field chart
Figure 6. Co
mpari
s
o
n
ch
a
r
t betwee
n
the empt
y field and pla
c
e
d
o
b
ject (Blu
e cu
rve is
empty field, Pink curve is pl
ace
d
obje
c
ts)
2.5. DAQ
The sy
stem will ch
oo
se th
e PXI-6251 m
odel of NI DA
Q.
NI M Series high-sp
eed
multifunction
data
acq
u
isiti
on (DAQ
) de
vices a
r
e opti
m
ized
for s
u
perior ac
curac
y
at fas
t
s
a
mpling
rates
.
Spec
ifications
are as
follows
:
Analog inp
u
t: Numbe
r
of chann
els:
8 differential
or 16 sin
g
le ende
d. ADC
resolution:1
6
bits. Sampling rate: 1.25 MS/s
si
ngle ch
ann
e
l
, 1.00 MS/s multi-chan
nel
(agg
re
gate). Input ran
ge±1
0
V, ±5 V, ±2
V, ±1 V, ±0.5 V, ±0.2 V,
±0.1 V
。
ab
so
lut
e
ac
cur
a
cy
at
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
Vol. 11, No
. 3, March 20
13 : 1639 – 1
645
1643
full scale
(
+-10V
)
:1.92m
V. Sensitivity (+
-10V
):0.11
2mV. absolut
e accu
ra
cy a
t
full scale
(
+-
0.1V
)
:52uV.
Sensitivity (+-0.1V):6uV.
Analog in
put
cha
nge a
nal
og sig
nal int
o
digital si
gn
al to provide
data for foll
ow-up
digital pro
c
e
s
sing. As the resolutio
n
of 16bits, the
voltage can
be bro
k
en d
o
wn into 655
36
copi
es
。
T
h
e
minimum voltage ca
n be
detected i
s
Vp-p/65
536V
variation. This will imp
r
ove
measurement
accura
cy. Finally, the accura
cy of
the imaging
syste
m
has be
en h
i
ghly improve
d
.
Analog O
u
tp
ut: Numbe
r
of chan
nel
s:2. DAC reso
lution:16 bits. Maximum update
rate: 1 chan
nel: 2.86 MS/s.2 chan
nel
s:2.00 MS/s.
Output ran
g
e
:
±10 V, ±5
V. Output current
drive:±5 mA.
The anal
og o
u
tput voltage signal
s is mainly cr
e
a
te sinu
soi
dal. The sign
al whi
c
h is
gene
rated by
DDS ha
s h
a
rmo
n
ic inte
rferen
ce. The
use of LAB
V
IEW and th
e ca
rd'
s
anal
og
output can ef
fectively redu
ce the inte
rfe
r
en
ce.
Th
ere
b
y redu
cin
g
interferen
ce from the si
gna
l
sou
r
ce ca
n in
dire
ctly impro
v
e
the accura
cy of the system.
Digital I/O
:
Numb
er of ch
annel
s
:
24 total. Maximum clock rate: 10MHz. Logi
c level:
TTL. Maximu
m input ran
g
e
0V-5V, the maximum outp
u
t range of 0
V
-5V.
Digital I / O is the com
m
u
n
icatio
n cha
n
nel betwe
en
host compute
r
and CPL
D
. As its
spe
ed ca
n re
ach 10
MHz, the host
co
m
puter can qui
ckly control
CPLD
。
CPL
D
can effici
e
n
t
control of different d
r
ive an
d
measureme
n
t chan
nel switching.
3. Labv
ie
w
3.1. Digital Phase
-Sensiti
v
e
Detec
t
ion
EIT demodu
lation metho
d
has thre
e princi
pal method
s, su
ch as switching
demod
ulation
,
multiplication demodul
ation and di
git
a
l demodul
ation. There is the inevitable
interferen
ce i
n
the pro
c
e
s
s of switchi
ng
amplifie
r for
switch d
e
mod
u
lation. As the accuracy a
nd
spe
ed, multiplication dem
o
dulator cann
ot meet
the
desi
gn req
u
irements
of the system[10
-
11].
Thus it a
dopt
s all-digital o
r
thogo
nal d
e
m
odulatio
n
to reali
z
e
digi
tal pha
se-se
n
sitive dete
c
t
i
on.
Digital dem
od
ulation algo
rit
h
m is shown in Figure 7.
Figure 7. Digi
tal phase-sen
s
itive detecto
r
The digital demodulation al
gorithm base
d on LABVIEW is shown i
n
Figure 8.
Input sig
nal
amplitude i
s
31, pha
se i
s
23 deg
re
es.
After demod
ulation am
plitude i
s
also
31,
Phase i
s
23.0
01 deg
ree
s
,
satisfy the accuracy requi
rements.
3.2. Image Recons
truc
tio
n
Algorithm
Image re
con
s
tru
c
tion ca
n
be divided into dynamic imaging an
d static imagin
g
[12].
Dynami
c
ima
g
ing in
clu
d
in
g ba
ck-p
roje
ction algo
rithm
.
Static imagi
ng in
clud
e Newton
-Raph
son
algorith
m
, qu
asi-Ne
wton
a
l
gorithm, the
gene
rali
z
ed i
n
verse matrix
algorith
m
, NOSRE meth
o
d
,
pertu
rbatio
n algorith
m
, ne
ural n
e
two
r
k method,
etc. The syste
m
first achie
v
e quasi
-
Ne
wton
algorith
m
by
MATLAB, then pa
ckage i
n
to a CO
M
co
mpone
nt. Fin
a
lly, call the
COM
com
p
o
nent
from the LABVIEW, to achi
eve image reconstruction.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
EIT based o
n
virtual in
stru
m
ent (Ma Jun
)
1644
Figure 8. Digi
tal demodul
ation algo
rithm
based on LA
BVIEW
4. Experimental Re
sults
This syste
m
is 16 electrode
s, each
electrode is
15mm width
and 32mm length.
Cylindri
c
al tank of
28cm di
ameter
and 40cm
high filled with
a cert
ain conductivity of
salt water.
We pla
c
e
d
pl
astic pl
ates i
n
anywh
ere
within t
he tan
k
. Figure 9 is the physical
location im
a
ge,
Figure 10 for the
target re
con
s
tru
c
ted i
m
age. As t
he poor cond
uctivity of plastic plates, so the
blue part of the image
(figu
r
e 10) is the plasti
c plates
。
Re
co
nstruction of the
target's po
sition
is
also
con
s
i
s
te
nt with the actual locatio
n
of the object.
Figure 9. Physical location
image
Figure 10. Ta
rget re
co
nstructed ima
g
e
5. Conclusio
n
The p
ape
r
firstly introd
uce vi
rtual
instru
ment i
n
to the el
e
c
tri
c
al imp
e
dan
ce
tomography f
r
om the p
e
rspective of the
hard
w
a
r
e
a
n
d
software. T
h
is
way sim
p
l
i
fy the hard
w
are
system an
d enha
nce system scal
abilit
y. DAQ
use
the NI PXI-
6251 bo
ards to improve the
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 2302-4
046
TELKOM
NIKA
Vol. 11, No
. 3, March 20
13 : 1639 – 1
645
1645
system accuracy. Integrati
on advantages of LABVIEW and MA
TLAB for processi
ng data can
enabl
e the system to handle large a
m
ounts of d
a
ta
in a timely manne
r. Excitation so
urce
generated by
the LABVIEW can eas
ily change the frequenc
y of excitation signal. So it becomes
easy to develop a multi-freque
ncy me
asu
r
em
ent
system. On this basi
s
, ada
ptive frequen
cy
system whi
c
h
automatic ch
oose
a
suitab
le frequ
en
cy according to t
he mea
s
u
r
e
d
obje
c
t ca
n b
e
desi
gne
d. Measu
r
ed o
b
je
ct in a different environ
m
ent (su
c
h a
s
temp
eratu
r
e, humi
d
ity, etc.) have
some differe
nce
s
in imp
edan
ce, so the sy
stem can add the monitori
ng of environme
n
tal
c
o
nditions
bas
ed on virtual ins
t
rument. Virtual
ins
t
rument platform developed by LABVIEW c
a
n
be remote co
ntrol via Internet, Thus virtual instrum
e
n
t
technology make
s the system conn
e
c
t
the Internet o
f
things in the
future. With t
he PC, se
micondu
ctor
and
softwa
r
e d
e
velopme
n
t in the
future, virtual
instrum
entat
ion syste
m
p
r
ovide
s
an e
x
cellent mod
e
l for de
signi
ng of elect
r
ical
impeda
nce tomography.
Referen
ces
[1]
Cui Ha
i-li. Par
a
meters Meas
uerme
nt of th
e Ga
s-Liqu
id
T
w
o-P
has
e F
l
o
w
B
a
sed o
n
the Eleetrie
a
l
Cap
a
citanc
e T
o
mogr
aPh
y
. Master thesis. Z
heji
a
n
g
Univ
er
sit
y
. 20
06.
[2]
Liu
ch
en
g,She
n
yong-m
i
n
g
,T
ang yo
ng-
jun. T
he
numer
ical
simulati
on of S
o
lid-
l
i
qui
d t
w
o
-
phas
e flo
w
i
n
horiz
ontal tu
be
.
Journal of Hy
drau
lic
. 200
7; 38(7): 76
7-7
7
2
.
[3]
Z
eng li-l
a
n
g
, Z
han
g
w
e
i-c
h
e
n
g
.T
he design o
f
EIT
.
Automati
on an
d instru
mentatio
n
. 200
4; (2): 35-36.
[4]
Yang F
u
-g
ua
n
g
, SHI
T
i
an-ming, W
U
Hua-t
uan, LI
T
ao, SUN Qian
g. A Method to Imp
r
ove the L
oad
Cap
a
cit
y
of ER
T
Current Sour
ce.
T
e
chniq
ues
of Automation
and Ap
plic
atio
ns
. 201
0; 29(1
1
): 88-91.(i
n
chin
ese)
[5]
Jian
g Aixia.Dri
v
e Rese
arch of Electrical Im
ped
ance T
o
mogra
p
h
y
. Na
njin
g: Nan
jin
g
universit
y o
f
scienc
e an
d techno
log
y
. 2
008
.
[6]
T
ang Rongfa
n
g
. T
he modula
r
desig
n of e
l
e
c
trical
imp
e
d
a
n
ce tomo
grap
h
y
h
a
rd
w
a
re s
ystem. Master
thesis. Guan
g
x
i Univers
i
t
y
. 2
0
05. (in chi
nes
e
)
[7]
W
ang M, Ma
YX, H
o
ll
ida
y
N
,
et a1. A hi
gh
—Performanc
e
EIT
Sy
st
em.
IEEE Sensors
Journal
. 2
005;
5(2): 289-
29
9.
[8]
W
ang Re
np
ing
.
Design
and
i
m
pleme
n
tatio
n
of thr
ee dim
e
nsio
nal
electric
al imp
eda
nce
tomogra
p
h
y
s
y
stem. Master
thesis. Hebe
i Univers
i
t
y
of
T
e
chn
o
lo
g
y
. 200
5.(in chi
nese)
[9]
Xu Gua
n
x
in, W
ang Ping, He W
e
i. A R
eal-tim
e El
ectrical Imped
anc
e
T
o
mograp
h
y
Sy
stem a
n
d
Exp
e
rim
ental S
t
ud
y
.
C
h
in
ese
Journ
a
l of Scie
ntific Instrumen
t
. 2005; 26(9):
886-
894.
[10]
Qu Z
h
iga
ng. B
i
olo
g
ic
al El
ectri
c
al Imped
anc
e
T
o
mograp
h
y
Digita
liz
ed S
y
s
t
em Desig
n
. Master thesis.
T
i
anjin Un
ivers
i
t
y
. 20
05.(in ch
i
nese)
[11]
Qu Zhigang, W
ang Hua
x
i
a
n
g
, Jin Shijiu. Digit
a
liz
ed Biol
ogic
a
l Electric
al Impeda
nce T
o
mograph
y
Sy
s
t
e
m
.
Jour
n
a
l of Electron
ic
Measure
m
ent and Instru
me
nt
. 2006; 20(
4): 10-14.
[12]
Z
hu Qing
yo
u. Rese
arch of
El
ectrical Impe
d
ance T
o
mogra
p
h
y
Alg
o
rithm
Based
on Virtu
a
l Instrument
.
Cho
ngq
in
g:Ch
ong
qin
g
Un
iver
sit
y
. 20
08.
Evaluation Warning : The document was created with Spire.PDF for Python.