TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 65
8
7
~ 659
3
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.507
4
6587
Re
cei
v
ed
No
vem
ber 7, 20
13; Re
vised
May 12, 20
14
; Accepte
d
Ju
ne 15, 201
4
Back-stepping Adaptive SVM Direct Torque Control of
SPMSM Drive system
Hua Sun
1
*, Xuan Cui
2
, Ch
uansh
e
ng T
a
ng
3
1,2
School of Mechan
ical En
gi
n
eeri
ng An
d Automatio
n
, Xi H
u
a Univ
ersit
y
,
Che
ngd
u 61
00
39, Chi
n
a
1,3
School of Mechatron
i
cs Eng
i
ne
erin
g, Univ
e
r
sit
y
of
Electro
n
ic Scie
nce a
n
d
T
e
chnolo
g
y
of Chin
a,
Che
ngd
u 61
17
31, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: 1061
91
627
@
qq.com
A
b
st
r
a
ct
A nove
l
back-
steppi
ng a
d
a
p
tive co
ntrol strategy is
prop
o
s
ed to d
i
rect torqu
e
contro
l
(DT
C
) o
f
surface p
e
r
m
a
nent
ma
gn
et synchro
nous
motor (SPMSM)
in or
der to s
o
lve s
o
me
pro
b
le
ms
existed
i
n
conve
n
tio
nal
D
T
C, such
as
hi
gh fl
ux , tor
q
u
e
an
d c
u
rr
ent
rip
p
le, v
a
ria
b
l
e
s
w
itching fre
q
u
e
n
cy, an
d
aco
u
s
t
ic
nois
e
s. PI speed reg
u
lat
o
r and tw
o hysteresis regul
at
ors i
n
the conve
n
ti
ona
l DT
C system ar
e substit
u
te
d
by the pro
pos
ed back-ste
p
p
i
ng ad
aptiv
e control
l
er resp
e
c
tively. T
he o
u
tput of the d
e
sig
ned c
ontro
ller
mak
e
s sp
ace v
e
ctor
mod
u
l
a
ti
on (SVM)
poss
i
ble, w
h
ic
h
furt
her e
n
sur
e
s th
e inv
e
rter sw
itchin
g freq
uency
to
be fix
ed. Th
e s
t
ability
of th
e c
ontrol
l
er
is v
e
ri
fied v
i
a
Lya
p
u
nov sta
b
l
e
th
e
o
ry.Simul
ation
results s
how
t
hat
the prese
n
ted
control strateg
y
can
solve th
ese pro
b
l
e
ms
effectively an
d
show
strong robust to exter
n
a
l
disturb
ance
an
d nois
e
.
Ke
y
w
ords
:
per
ma
nent
ma
gnet synchr
o
n
ous
motor, dir
e
ct to
rque co
ntrol, back-step
p
i
ng a
d
a
p
tive c
ontrol
,
space vector
modu
latio
n
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Perman
ent magnet syn
c
hron
ou
s
mot
o
r (PMS
M)
h
a
s
been
wi
d
e
ly use
d
em
ployed in
servo
ap
plica
t
ions
su
ch
a
s
rob
o
tics, chi
p
-mo
unt ma
chine
s
, NC m
a
chi
ne, a
nd
hard
di
sk d
r
i
v
es
becau
se it
s f
eature
s
of lo
w n
o
ise, lo
w
inertia,
hi
gh
efficien
ce, a
n
d
lo
w mai
n
te
nan
ce
co
st [1
, 2].
D
u
r
i
n
g
th
e pa
s
t
ye
ar
s
,
d
i
r
e
c
t
tor
q
ue
co
n
t
r
o
l
(DTC) schem
e for PMSM driv
es h
a
s re
cei
v
e
enormou
s
attention in in
d
u
strial m
o
tor driv
e appli
c
ation due to
its potential
advantage
s,
for
example, its
stru
cture is
si
mple be
cau
s
e all cal
c
ulati
ons a
r
e impl
e
m
ented in
sta
t
ionary; the field
-
wea
k
e
n
ing control be
com
e
s ea
sier
be
cause
the
st
at
or flux lin
ka
g
e
can
bee
n
controlle
d di
re
ctly
in the
DTC system; se
nso
r
less
co
ntrol
become
s
p
o
ssible
be
cau
s
e the meth
od
doe
s n
o
t ne
ed
accurate roto
r positio
n informatio
n [3].
In addition,
Compa
r
ed
with vector co
ntrol, DTC di
rectly
manipul
ates
the final output voltage vector
wi
thout
the need fo
r inne
r cu
rre
n
t loops, he
nce
eliminating th
e inherent del
ay cau
s
ed by
current
loo
p
s and featurin
g
a high dyna
mic re
sp
on
se
.
De
sipite th
e
merit
s
aforemention
ed,
co
nvertio
n
a
l
DT
C
empl
oys two
hystere
s
i
s
comp
arators
and a
he
uri
s
tic
swit
ching
ta
ble to o
b
tain
quick dyn
a
mi
c respon
se,
whi
c
h
will
ca
use
some
d
r
a
w
ba
cks, in
clu
d
ing
high
flux , to
rque
an
d
cu
rrent ri
pple,
variabl
e
swit
ching f
r
equ
en
cy,
high
sam
p
lin
g re
quireme
n
t
for digital i
m
pleme
n
tatio
n
, and
difficul
t
y to accurately cont
rol at
low
spe
ed
and
high f
r
eq
uen
cy noi
se
ca
use
d
by
hig
h
torque
ri
p
p
le [4]. In t
he p
a
st
de
cade
s,
nume
r
ou
s m
e
thod
s have
been
prese
n
ted to ad
dr
ess the
s
e p
r
oblem
s of
convention
a
l
DTC.
Many of them
[5-7] empl
oy spa
c
e ve
cto
r
modulat
io
n a
nd PI reg
u
lat
o
r to a
c
hieve
fixed swit
chin
g
freque
ncy a
n
d
low flux, to
rque
and
current rippl
e.
Ho
wever, thi
s
schem
e i
s
rel
a
tively noisy [8
].
Multilevel inverter i
s
intro
duced to obtain more
voltage vectors [9], but i
t
will increa
se
the
hard
w
a
r
e co
st and syste
m
complexity. In the li
terature [10, 11], more accu
rate and co
m
p
lex
swit
chin
g tabl
e is
con
s
tru
c
t
ed by dividin
g
one
sa
m
p
li
ng pe
riod i
n
to seve
ral inte
rvals, which can
achi
eve excellent pe
rformance,
but
they are
usually co
mplicated an
d rel
y
much
on
the
kno
w
le
dge
of
motor pa
ra
meters. T
w
o
PI regul
ators are u
s
e
d
to
improve
the
perfo
rman
ce
of a
DTC
system
in [12]. This method requi
res th
e co
nt
inuou
s inform
ation of the stator flux vector
positio
n; hen
ce, the d
r
iv
e pe
rform
a
n
c
e
relie
s h
e
a
vily on the
accu
ra
cy
of the stato
r
flux
estimation. M
o
reove
r
, PI controlle
r is sensitive
to chang
es in m
o
tor pa
ramet
e
rs a
nd exte
rnal
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
87 – 659
3
6588
load. Slidin
g
mode
vari
a
b
le
stru
cture
ba
sed
DT
C co
ntrol
sche
me is inve
stigated i
n
[13
-
15],
though thi
s
schem
e can redu
ce
s flux, torque
and
curr
ent rip
p
le
s significantly, it requires g
a
in
sched
uling a
nd is param
eter dep
end
ant. Moveov
er, slidin
g mode co
ntrol
has the inh
e
r
ent
chatteri
ng p
h
enome
non.
Rece
ntly, predi
ctive co
ntro
l
has
also be
e
n
introd
uced
to motor di
rv
es.
A predi
ctive control ba
sed
three-l
e
vel inverter-f
ed DTC metho
d
is pro
p
o
s
ed i
n
[16, 17], which
utilize
s
a p
r
edictive h
o
ri
zon g
r
eate
r
t
han o
ne
to
obtain
redu
ced switching
frequ
en
cy while
kee
p
ing flux, torque,
curre
n
t, and neutral point poten
ti
al within thei
r re
spe
c
tive h
y
stere
s
is b
a
n
d
s.
The ba
ck-ste
eping a
daptiv
e cont
rol is a
syst
emati
c
a
nd re
cu
rsive
desi
gn metho
dology
for nonli
nea
r
system [18].
In this meth
od, if
the con
t
rol input
s sel
e
cted
pro
perl
y
, the controll
ed
system
ca
n
be sta
b
ilized
quickly. In this p
ape
r, b
a
ck-steepi
ng
adaptive
co
ntrol i
s
u
s
ed
to
improve the p
e
rform
a
n
c
e o
f
DTC SPMSM drives.
Th
e
control voltages a
r
e
synth
e
si
zed by u
s
i
ng
SVM strategy
, which
ensure that
swit
chi
ng frequency
is
constant. The stability of the system
is
verified via Lyapun
ov stabl
e theory.
This
pape
r i
s
o
r
gani
ze
d
as follo
ws. Secti
on 2
introdu
ce
s
the dynamic mat
hematical
model
of SPMSM drive
system. The
n
, co
ntrolle
r i
s
desi
gne
d in
detail a
nd th
e sta
b
ility of
the
controlled
clo
s
ed
system
s is verified a
c
cording to
Ly
apun
ov stabil
i
ty theory. Se
ction 3 prese
n
ts
the simulatio
n
results to illustrate th
e effectivene
ss of the method.
Finally, Section 4 co
ncl
u
d
e
s.
2. Contr
o
ller Design fo
r SPMSM Driv
e Sy
stem
In this sectio
n, it is given
the dynami
c
model of th
e
SPMSM drive syste
m
an
d at the
same
time t
he
controlle
r is
de
signe
d
in d
e
ta
il. T
hen, Th
e
sta
b
ility of the
prop
osed
co
ntrol
scheme i
s
verified via Lyapunov sta
b
le
theory.
2.1. D
y
namic
Mathema
t
ic
al Model of the SPMSM Driv
e S
y
stem
A three-p
h
a
s
e SPMSM drive system ca
n be model
ed
in the
α
-
β
fra
m
e as:
()
/
()
/
[(
)
]
/
s
d
s
q
s
s
eL
n
iu
R
i
E
L
iu
R
i
E
L
uR
i
uR
i
wP
T
T
B
w
J
,
(1)
3
2
()
e
TP
i
i
,
(2)
22
,
(3)
Whe
r
e
i
,
i
,
u
,
u
,
,
,
E
, and
E
are th
e stator curre
n
ts, voltages,
flux linkage, and
electromotive
-
force (EMF
) resp
ectively,
d
L
, and
q
L
are
the inducta
nce
s
,
s
R
is the stator
resi
st
an
ce,
P
is the
numb
e
r of pole
s
,
e
T
and
L
T
is
ele
c
trom
agneti
c
torqu
e
and
load
to
rque,
w
is
the motor
sp
eed,
n
B
is the viscou
s fri
c
tion
coeffici
ent,
J
i
s
the
rotor in
ertia,
is the st
ator fulx
linka
ge n
o
rm,
and
sin
co
s
f
f
EP
w
EP
w
,
f
is the
perm
ane
nt m
agnet fulx lin
kag
e
,
is the
rotor
angle.
2.2. Contr
o
ller Desig
n
The
co
nfiguration of the
p
r
opo
se
d ba
cksteppi
ng ad
a
p
tive control scheme fo
r SPMSM
drive syste
m
is depi
cted i
n
Figur
e 1. It can be
see
n
from Figu
re 1 that the prop
osed co
ntrol
scheme i
s
co
mpri
sed of speed
cont
rol
and flux
and torque co
ntro
l.
The
output of backste
ppi
ng
spe
ed control
l
er is the
refe
ren
c
e el
ectro
m
agneti
c
torque
*
e
T
, and the output of flux and torqu
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Back-steppi
n
g
Adaptive S
V
M Dire
ct To
rque
Cont
rol
of SPMSM Drive system
(Hua Sun)
6589
controlle
r are
the refe
ren
c
e voltage
*
s
u
and
*
s
u
, then, the SPMSM-fe
d
is d
r
ived v
i
a SVM
techn
o
logy.
The co
ntrol o
b
jective is to desi
gn the ba
ck
step
ping a
daptive DT
C c
ontrolle
r so that the
motor spee
d can tra
c
k an
y desire
d
co
mmand
*
w
. The controll
er i
s
desi
gne
d ste
p
by step a
s
follows
.
*
w
w
*
e
T
*
*
u
*
u
b
i
c
i
ˆ
ˆ
Te
a
i
a
u
b
u
c
u
Figure 1. Block
Diag
ram o
f
the Propose
d
Back
step
pi
ng Adaptive DTC S
c
hem
e
for PMSM Drive
Sys
t
em
Step 1: Speed controlle
r d
e
sig
n
Define the foll
owin
g sp
eed
track erro
r:
*
w
ew
w
Then, the de
rivative of speed track e
rro
r can be
rep
r
e
s
ente
d
as:
)
[(
]
/
we
L
n
ew
p
T
T
B
w
J
.
(4)
Define the Ly
apun
ov functi
on:
2
1
1
2
w
Ve
Take th
e deri
v
ative of the
Lyapun
ov function
1
V
, and note (4), we
can
get:
1)
[(
]
/
ww
w
e
L
n
Ve
e
e
p
T
T
B
w
J
.
(5)
In orde
r to gu
arante
e
1
0
V
, we s
e
lec
t
the following c
o
ntrol input:
*
1
()
en
w
w
L
P
TB
w
k
J
e
T
,
0
w
k
(6)
Then,
2
1
0
ww
Vk
e
.
However, the load torq
ue
is unknow a
nd
it need to be estimate
d adaptively. Then, the
spe
ed control
l
er output be
comes:
*
1
ˆ
()
en
w
w
L
P
TB
w
k
J
e
T
,
0
w
k
(7)
Whe
r
e
ˆ
L
T
is the estimated lo
a
d
torque.
Substituting (7) into (4
), the spe
ed erro
r dynamics be
come
s:
[]
/
wL
w
w
eT
k
J
e
J
.
(8)
whe
r
e
ˆ
L
LL
TT
T
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
87 – 659
3
6590
Step 2: Flux
and torq
ue co
ntrolle
r de
sig
n
Define the flu
x
and torque
error a
s
follo
ws:
*
*
Te
e
e
eT
T
.
(9)
Note (1
)-
(3
), we
can get th
at:
2(
)
ss
eu
u
R
i
R
i
(10)
*
[(
)
]
nw
Te
e
e
L
n
Bk
J
eT
T
p
T
T
B
w
JP
3
2
[(
)
(
)
(
)
(
)
]
ss
dq
q
d
P
ui
u
i
R
i
E
R
i
E
LL
L
L
(
1
1
)
Define the Ly
apun
ov functi
on:
22
11
21
2
()
TL
VV
e
e
T
Take th
e de
ri
vative of the Lyapun
ov function
2
V
, and
note (5
), (8
),
(10
)
-(11
), we ca
n
get:
1
21
ˆ
TT
L
L
VV
e
e
e
e
T
T
()
2
(
)
w
Lw
w
s
s
e
Tk
J
e
e
u
u
R
i
R
i
J
3
2
[(
)
]
[
(
)
(
)
(
)
(
)
]
nw
Te
L
n
s
s
dq
q
d
Bk
J
ep
T
T
B
w
P
u
i
u
i
R
i
E
R
i
E
JP
L
L
L
L
1
ˆ
LL
TT
In orde
r to gu
arante
e
2
0
V
, we sele
ct the followin
g
co
ntrol
inputs:
2
*
2
*
2
()
(
)
3
2
()
(
)
3
es
s
qd
es
s
qd
uE
T
R
i
E
R
i
E
f
PL
L
uE
T
R
i
E
R
i
E
f
PL
L
.
(12)
Whe
r
e,
1
1
1
2
2
2
(
2
()
(
)
3
2
()
(
)
3
)
TT
s
s
q
TT
s
q
s
q
E
f
ke
i
R
i
R
i
k
e
PL
f
ke
i
R
i
R
i
k
e
P
ii
L
L
And the adap
tive update la
w is:
ˆ
(
wn
w
Te
B
k
J
J
,
0
k
,
0
T
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Back-steppi
n
g
Adaptive S
V
M Dire
ct To
rque
Cont
rol
of SPMSM Drive system
(Hua Sun)
6591
Then,
22
2
2
0
ww
T
T
Vk
e
k
e
k
e
.
Hen
c
e, a
c
co
rding to Lya
p
u
nov stability theory,
the
de
sign
ed
contro
ller i
s
a
s
ymptotically
stable.
3. Simulation Resul
t
s
To study
o
n
the
effectiven
es
s of
the
propo
sed
sch
e
m
e, sim
u
latio
n
s
of the
tra
d
itional
DTC-hy
stere
s
is-ba
s
e
d
(CDT
C) and
DTC-ba
ckstepping
-ba
s
e
d
(BPDT
C
) PMSM drive i
s
perfo
rmed
u
s
i
ng a M
a
tlab/
Simulink
pa
ckag
e. The
pa
ramete
rs for t
he PMSM d
r
i
v
e system
are as
sho
w
n in Ta
ble 1. Cho
s
e
n
algorithm o
de4 with fix
ed-ste
p
si
ze 1
e
-5 an
d give
n flux linkage
is
0.2
f
Wb
. In the
CDTC,
the
h
y
stere
s
is b
a
nd of
flux l
i
nka
ge
co
ntroller is sele
cted
0.
02
Wb
and
the hy
stere
s
i
s
b
a
n
d
of torque
controlle
r i
s
sele
cted
a
s
0.
4
e
TW
b
. All
results a
r
e
o
b
tained from
one o
pertati
on poi
nt
of 1000
r/min
wi
thout load, a
nd the lo
ad
is
cha
nge
d to 8N.m whe
n
t=0.03s.
The
control para
m
eters are sele
cted
as
follo
ws:
0.2
p
k
and
0.02
i
k
in CDTC;
500
0
w
k
,
60
0
k
and
2000
T
k
in BDDTC. The si
mu
lation re
sults
are sho
w
n in
Figure 2-3.
Table 1. Para
meters of SPMSM used in
this Pape
r
Stator resistance
s
R
2.875
d-axis inductance
d
L
8.5e-3 H
q-axis inductance
q
L
8.5e-3 H
Magnet flux linkage
f
0.2 Wb
Number of
pole p
a
irs P
2
Inertia J
8e-4 kg.m
^2
Friction factor
1e-4 N.m.s
It can be se
e
n
from Figu
re
2 that the flux
linkage respon
se are very
fast in both CDTC
and BPDT
C
, and it takes about 0.000
5s to rea
c
h it
s amplitud
e 0.2Wb. Th
en,
the flux linkage
kee
p
s con
s
ta
nt thro
ugh
out
the
run
n
ing.
But it i
s
o
b
v
ious th
at B
P
DTC ha
s smaller amplit
ude
fluctuation th
an CDT
C
. Th
e amplitud
e o
f
flux linkage
cha
nge
s from
0.196WB to
0.204
Wb u
s
i
n
g
BPDTC,but i
s
chan
ge
s fro
m
0.178
Wb to 0.224
Wb fo
r CDTC.
(a)
(b)
Figure 2. The
Stator Flux Linka
ge Waveform
s of the CDTC
(a)
and
BPDTC (b) fo
r SPMSM
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
87 – 659
3
6592
(a)
(b)
(c
)
(d)
Figure 3. Re
spon
se Curve
of CDT
C and
BPDTC
for S
P
MSM: a) sp
eed, b) ele
c
tromagn
etic
torque, c)
currents
of CDT
C
d) current
s of
BPDTC
Figure 3
sho
w
s th
e state
trajecto
rie
s
of sp
e
ed, el
ectro
m
ag
neti
c
torq
ue, an
d stator
curre
n
t for the mothod
s of
CDT
C and
BPDTC. We
can
see from
Figure 3
(
a
)
that the pre
s
e
n
ted
method h
a
s
better robu
st
ness than
CDTC. It ha
s
only a slig
ht pertu
rbatio
n and then
qui
ckly
resto
r
e
d
to
it
s referen
c
e speed
(ta
k
ing
about 0.
002
s.
but
CDTC h
a
s
abo
ut
40
r/
min spee
d error
and it
need
lo
ng time to
re
store
d
to it
s
referen
c
e
spe
ed. Figu
re
3(b)-(d
)
sho
w
t
hat the
pro
p
o
s
ed
method ha
s l
e
ss torqu
e
an
d curre
n
t pert
u
rbatio
ns tha
n
traditional o
nes (CDT
C).
Form obove
simulation results, it is
clea
rly sh
own th
at the pro
p
o
s
ed control
scheme i
s
sup
e
rio
r
than
traditional o
n
e
s.
4. Conclusio
n
We devel
op
a novel dire
ct
torque control schem
e th
at account
s for load
un
ce
rtainty in a
SPMSM drive system. Thi
s
controller i
s
des
i
gned based
on backstepping
adaptive theory. The
advantag
es o
f
the propo
se
d controlle
r are as follo
ws:
1) It has stron
g
robu
stne
ss for uncertai
n
load;
2) The flux lin
kag
e
, torque,
and current ri
pple
s
are
sig
n
ificantly red
u
ce
d.
3) SVM sche
me is u
s
ed to
get con
s
tant swit
chin
g freq
uen
cy.
Future
re
se
arch
sho
u
ld i
n
vestigate th
e i
m
pleme
n
tatio
n
of the
pro
p
o
se
d control
scheme
by using a
n
e
x
perime
n
tal setup.
Referen
ces
[1]
Song
X.
Desi
gn a
nd s
i
mul
a
tion of PMSM
f
eedb
ack l
i
ne
alin
ear
izatio
n
control s
y
stem
.
Te
lkom
n
i
ka
.
201
3; 11(3): 12
45-5
0
.
[2]
F
a
rzad T
,
Hamed N. Ma
xim
u
m torqu
e
per
amper
e c
ontro
l
of perman
ent
magn
et s
y
nchr
ono
us motor
usin
g g
e
n
e
tic
a
l
gorit
hm.
T
E
LK
OMNIKA T
e
lec
o
mmunic
a
tio
n
Co
mp
uting
El
e
c
tronics
an
d C
ontrol
. 20
11;
9(2): 237-
24
4.
0
0.
01
0.
02
0.
03
0.
04
0.
05
0.
06
0
20
0
40
0
60
0
80
0
100
0
120
0
t/
s
S
peed n
(r/
m
i
n)
CDT
C
BPD
T
C
RE
F
0.
025
0.
03
0.
0
3
5
900
950
1
000
1
050
0
0.
01
0.
02
0.
03
0.
04
0.
05
0.
0
6
-5
0
5
10
15
t/s
To
r
q
u
e
Te
(
N
.
m
)
CDT
C
BPD
T
C
0.
01
0.
0
2
0.
0
3
0.
0
4
0.
05
0.
06
-1
0
-5
0
5
10
t/
s
S
t
a
t
or
c
u
r
r
ent
I
(
A
)
is
a
is
b
is
c
0
0.
0
1
0.
02
0.
0
3
0.
0
4
0.
0
5
0.
0
6
-1
0
-5
0
5
10
t/s
S
t
at
o
r
c
u
rrent
I
(
A
)
is
a
is
b
is
c
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Back-steppi
n
g
Adaptive S
V
M Dire
ct To
rque
Cont
rol
of SPMSM Drive system
(Hua Sun)
6593
[3]
Hu Y. Dir
ect torqu
e
co
ntrol
s
y
stem
and s
ensor
le
ss tec
h
niq
ue of
perm
ane
nt mag
net
s
y
nc
hro
n
o
u
s
motor.
Chin
ese
Journa
l of Aeronactics
. 20
03;
16(2): 97-1
02.
[4]
Jidin A, Idris
NRN, Yatim A
H
M, Suikno T
,
Elbul
uk
ME. An optimiz
ed
s
w
itc
h
in
g strateg
y
for qu
ic
k
d
y
nam
ic torqu
e
control i
n
DT
C-H
y
steresis-
b
ased i
nducti
on
machi
nes.
IEEE Trans Ind Electron
. 201
1;
58(8): 33
91-
40
0.
[5]
T
ang L, Z
hon
g L, R
ahma
n
MF
, Hu Y. A
nove
l
d
i
re
ct to
rque c
ontro
l fo
r interi
or p
e
rm
ane
nt mag
net
s
y
nc
hro
nous
machi
ne
drive
s
y
stem
w
i
th
lo
w
r
i
p
p
le
in
flu
x
and
torq
ue
an
d fi
xed
s
w
itch
i
ng fre
que
nc
y.
IEEE Trans Power Electron
. 2004; 3(1
9
): 346
-54.
[6]
F
oo G, Rahma
n
MP. Sensorl
e
ss direct torq
ue an
d flu
x
-co
n
troll
ed IPM s
y
nchro
nous m
o
tor drive at ver
y
lo
w
sp
eed
w
i
t
h
out sign
al i
n
jec
t
ion.
IEEE Trans Ind Electron.
201
0; 57(1): 39
5-40
3.
[7]
Andressc
u GD, Pitic C, Blaa
bjer
g F
,
Bold
ea I. Com
b
in
ed flu
x
ob
server
w
i
th s
i
gna
l in
jectio
n
enh
anc
ement f
o
r
w
i
de sp
ee
d
rang
e se
nsorl
e
ss
dir
e
ct torq
ue co
ntrol
of IPMSM drives.
IEEE Trans
Energ C
onv
ers
. 2008; 23(
2): 393-4
02.
[8]
Buja GS, Kaz
m
ierko
w
sk
i M
P
. Direc
t torque control of P
W
M invert
er-fed AC motors-
a
survey
.
IEEE
T
r
ans Ind Elect
r
on
. 200
4; 8(51
): 744-57.
[9]
Kouro S, Ber
n
al R, Mira
nd
a
H,
Silva C, R
o
drig
uez J. Hi
g
h
-perfo
rm
ance
torque
an
d flux c
ontro
l for
multilev
e
l i
n
ver
t
er fed inducti
o
n
motors.
IEEE Trans Power Electron
. 20
07;
22(6): 211
6-2
3
.
[10]
Lee
KB, Son
g
JH, Cho
y
I, Y
o
o JY. T
o
rque ri
ppl
e re
ductio
n
in DT
C of i
n
d
u
c
tion mot
o
r dri
v
en
b
y
thre
e-
level i
n
verter
w
i
th lo
w
s
w
itc
h
in
g freque
nc
y
.
IE
EE T
r
ans Pow
e
r Electron.
20
02; 17(2): 2
55-
64.
[11]
Romera
l L, Ar
ias A, Ald
a
b
a
s
E, Ja
yne M.
Nove
l dir
e
ct torque c
ontro
l
(DT
C
) scheme
w
i
th fuzz
y
ada
ptive torq
u
e
-ripp
le re
ducti
on.
IEEE Trans Ind Electron
. 2
003; 50(
3): 487
-92.
[12]
Lascu C, Bo
ld
ea I, Blaab
jrg
F
.
A modified
direct to
rqu
e
c
ontrol for in
duc
tion motor se
n
s
orless dr
ive.
IEEE Trans Ind Appl.
200
0; 1(
36): 122-
30.
[13]
Lascu
C, Bo
ld
ea I, Bl
aab
jer
g
F
.
Vari
alb
e
-
s
tructure d
i
rect
torqu
e
co
ntrol
-
a class
of fas
t
and
rob
u
st
control
l
ers for i
nducti
on mac
h
i
ne driv
es.
IEEE Trans Ind Electron
. 200
4; 5
1
(4): 785-
92.
[14]
Jia H, S
un D,
He Y.
T
h
e
P
M
SM DT
C ba
sed o
n
vi
ab
le
structure sli
d
in
g
mod
e
. Proc
eed
ing
of t
h
e
CSEE. 2006; 2
6
(20): 13
4-8.
[15]
Sa
yeef S, F
o
o
G, Rahman
MF
. Rotor pos
ition
an
d
spe
e
d
estimati
on
of a vari
abl
e str
u
cture d
i
rect-
torque-c
ontrol
l
ed IPM s
y
nc
hr
ono
us motor dr
ive
at ver
y
lo
w
spee
ds incl
ud
i
ng standsti
ll.
IEEE Trans Ind
Electron
. 20
10;
57(11): 37
15-
23.
[16]
Ge
yer T
,
Papa
fotiou G, Mor
a
ri M. Mod
e
l
pr
edictiv
e d
i
rect
torque
contro
l
part
Ⅰ
:conc
ep
t, algorit
hm,
and a
n
a
l
ysis.
IEEE Trans Ind Electron.
20
09;
56(6): 189
4-9
05.
[17]
Ge
yer T
.
Mod
e
l pre
d
ictiv
e
di
rect torque c
o
ntrol: der
iv
atio
n an
d an
al
ysis
of
the state-fe
edb
ack contro
l
la
w
.
IEEE Trans Ind Appl.
20
1
3
; 49(5): 21
46-
57.
[18]
Lin FJ, Shieh
PH, Chou PH.
Robust
adaptiv
e backstepping mo
tion control of line
ar ultras
onic m
o
tor
s
usin
g fuzz
y
n
e
u
ral n
e
t
w
ork.
IEEE Trans Fu
z
z
y
Syst
. 2008;
16(3): 67
6-9
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.