TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol.12, No.5, May 2014, pp
. 3841 ~ 38
4
8
DOI: http://dx.doi.org/10.11591/telkomni
ka.v12i5.4473
3841
Re
cei
v
ed Se
ptem
ber 24, 2013; Revi
se
d Jan
uary 3, 2014; Accept
ed Ja
nua
ry 1
5
, 2014
Flexible Nanofabrication Equipment: E-beam
Lithography System Based on SEM
Shuhua Wei*, Lan Dai, Jing Zhang
Dep
a
rtment of Microel
ectron
ic
s, Colle
ge of In
fo
rmation En
gi
neer
ing, North
Chin
a Un
iversit
y
of
T
e
chnolog
y
,
N
o
.5 Jing
yu
a
n
zh
uan
g Ro
ad, Sh
ijin
gsh
an Distri
c
t, Beijing, Ch
i
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: jsl
w
sh@
hotm
a
il.com
A
b
st
r
a
ct
El
e
c
tro
n
b
eam
l
i
t
h
o
g
r
a
p
h
y
(EBL
) i
s
wi
de
l
y
use
d
in
na
no
scal
e
de
vi
ce fa
b
r
i
c
a
t
i
o
n
a
n
d
re
sea
r
ch
due
to high r
e
sol
u
t
i
on and exc
e
l
l
ent
flexibility. In this paper,
nanom
eter EB
L system
bas
ed on sc
anning
electro
n
micro
scope (SEM)
is intro
duce
d
.
Its
main c
o
mp
on
ents inc
l
ude
a
mod
i
fie
d
SEM, a la
ser
interfero
m
eter control
l
ed sta
g
e
, a
versatil
e h
i
gh sp
ee
d patt
e
rn ge
ner
ator, and a fu
lly fun
c
tiona
l an
d ea
sy-
oper
ation
a
l sof
t
w
a
re system. In order to exp
l
ain th
is EBL
s
ystem d
e
sig
n
princi
pl
e, reali
z
ation
meth
od, thi
s
pap
er mai
n
ly
introd
uces e
a
c
h co
mp
one
nt’
s
desi
gn
bas
is, ma
in struc
t
ures an
d fun
c
tions. Stitchi
n
g
exper
iments
o
v
erlay
exp
e
ri
ments a
n
d
arb
i
trary sh
ape
p
a
tterns expos
ure
exper
iments h
a
ve bee
n do
ne
on
this EBL syste
m
b
a
se
d on J
S
M-35CF SE
M. The litho
gr
aphy r
e
sults d
e
monstrate th
at the reso
luti
on o
f
electro
n
be
a
m
lithogr
ap
hy system ca
n ap
pr
oach n
a
n
o
m
et
er do
ma
in. Thi
s
kind of EBL
system b
a
se
d on
SEM can meet
the nee
d of mi
cro-na
nof
a
b
ric
a
tion res
earch
and d
e
si
gn acti
vities at flexib
ili
ty and low
pric
e.
Ke
y
w
ords
: nanofabr
ication, electr
on beam
lithography syst
em
, pattern generator
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Electro
n
be
a
m
lithograph
y (EBL) is
wi
dely used in
nano
scale
d
e
vice fab
r
ication an
d
resea
r
ch such a
s
na
noel
e
c
troni
cs, na
n
ophoto
n
ics, a
nd na
noel
ect
r
omechani
cal
system
s
(NE
M
S)
due to nano
scale resolutio
n
and excell
e
n
t flexibility
[1
, 2]. Given that the de Broglie wavele
ng
th
of an electro
n
accele
rated
to 25 keV is arou
nd 0.
00
8
n
m, the pract
i
cal re
sult
s of EBL techniq
ue
are not influe
nce
d
by diffraction effect
s and ultra hig
h
resolution p
a
tterns
can b
e
gene
rated [
3
].
Hen
c
e th
e EBL plays a
n
i
rre
pla
c
ea
ble
role in
nan
olithography e
s
peci
a
lly in ap
plicatio
ns
wh
ere
fast prototypi
ng and n
ano
meter resol
u
tion is re
qui
red
[4, 5].
The re
solutio
n
and throu
ghput of EBL depen
d la
rgely on the
perform
an
ce of the
electron be
a
m
lithograp
hy equipme
n
t. Since the
first electron b
e
a
m machine
wa
s develop
ed in
the late 1
960
s, vario
u
s
ele
c
tron
be
am li
t
hogra
phy
system
s have
alrea
d
y bee
n
develop
ed a
n
d
perfe
cted in the past years [6]. These inclu
de co
mm
erci
al beam
writing
syste
m
s, cu
stom built
electron
-opti
c
s
a
nd cont
rol system
s,
tun
neling mi
cro
s
cop
e
s,
and
el
ectro
n
mi
croscop
e
s that h
a
v
e
been
modifie
d
to allo
w th
e scan
ning
coils to b
e
co
ntrolled
by a
n
extern
al source [7]. Th
e
performance of commerc
ial
system
s in terms of resoluti
on,
stability, wr
iting speed
and
automation i
s
excellent [8]. Howeve
r, co
mmercia
l sy
stems are con
s
ide
r
ably mo
re expensive f
o
r
resea
r
ch labo
ratori
es
whi
c
h are ju
st inte
reste
d
in the
developm
ent
of technol
ogi
es for i
nnovat
ive
device
s
. So
a
high
pe
rform
ance, lo
w cost and flex
ible
operation EB
L sy
stem i
s
a
goo
d solutio
n
.
Referen
c
e [9]
pro
p
o
s
ed
a
simple
an
d g
eneral-
purpo
se EBL
syste
m
ba
sed
on
scan
ning
ele
c
tro
n
microsco
py (SEM). And th
ere a
r
e
som
e
comm
er
cial
SEM base
d
n
anolitho
gra
p
h
y
system
s [1
0].
In this pape
r, a new EBL system is introdu
ced,
whi
c
h is com
p
o
s
e
d
of a modified SEM to allow
external
sig
n
a
ls to
control
beam
po
sitio
n
, a la
se
r
i
n
te
rferom
eter co
ntrolled
sta
g
e
,
a versatile
h
i
gh
spe
ed pattern
ge
nerator, and a
fully
fu
nction
al
a
nd easy-ope
ratio
nal softwa
r
e system
[11-1
3
].
This EBL
sy
stem ba
sed
o
n
SEM is flexible a
nd lo
w
co
st. It has a
gre
a
t pote
n
tial to b
e
u
s
e
d
in
the nano
ele
c
troni
cs, na
noo
ptics a
nd mo
st other n
anof
abri
c
ation fiel
ds.
2. Exposure
Mecha
n
ism of EBL
Lithography
is the
p
r
o
c
e
s
s of
tran
sfe
rri
ng p
a
ttern
s f
r
om
one
me
dium to
an
other.
Th
e
EBL pro
c
ess
is a ch
emi
c
al
rea
c
tion on
a re
sist surfa
c
e gui
ded by
electro
n
bea
m scannin
g
a
nd
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3841 – 38
48
3842
etchin
g. It uses a finely focu
sed b
eam
of electr
o
n
s t
o
expose a radiati
on
sen
s
itive polymer on a
wafer
surfa
c
e by a
c
cu
rat
e
defle
ction
of the b
eam
over the
wafer
su
rf
ace, and
sele
ctively
remove
s eith
er exp
o
sed o
r
no
n-exp
o
se
d re
gion
s of
t
he resi
st to
create ve
ry small structu
r
e
s
in
the resi
st tha
t
can
sub
s
eq
uently be
tra
n
sferre
d
to
the sub
s
trate material. Re
sists suita
b
le
f
o
r
EBL are vario
u
s such as P
MMA, HSQ a
nd ZEP-52
0. These ele
c
tro
n
beam resi
st
s have differe
nt
perfo
rman
ce
to
be cho
s
en
in
differe
nt
ap
plicatio
ns. F
o
r exampl
e, PMMA
re
sist can
be used with
a 3nm 1
0
0
k
e
V
electron b
e
a
m to fabri
c
a
t
e 20nm
re
so
lution un
expo
sed
gap
s b
e
twee
n expo
se
d
lines [14]. HS
Q is a
ne
gative resi
st
that i
s
cap
able
of f
o
rmin
g
sub
-
3
0
nm
line
s
i
n
very thin l
a
ye
rs,
but is itself si
milar to porous, hydrogenated SiO2
. It may be used to etch
silicon but not
silicon
dioxide o
r
oth
e
r
similar diel
ectri
cs. ZEP
-
520 i
s
a p
opu
lar ele
c
tron b
eam resi
st, a
nd can fab
r
i
c
ate
a pitch
re
sol
u
tion limit of
60nm
stru
ct
ure i
ndep
end
ent of thickn
ess an
d be
a
m
ene
rgy [1
5].
Electro
n
s a
r
e focused
usin
g el
ectrostatic
o
r
magneto
s
tati
c le
nses.
T
he el
ect
r
on
s are
accele
rated a
t
voltages a
s
high a
s
100
keV. For th
is reason, the el
ectro
n
be
am diamete
r
is n
o
t
diffraction
limi
t
ed sin
c
e
the
wavele
ngth o
f
the ele
c
tron
s which a
r
e a
c
celerated
at voltages
of 3
0
–
100
keV i
s
on
the orde
r of fractio
n
s of an
ang
stro
m
[16
]. It can be
se
en that the
work pri
n
ci
ple
of
EBL tech
niqu
e is familia
r
with the
Scan
ning
ele
c
tron
microsco
pe (SEM).
So we
ca
n extend
t
h
e
SEM function
to lithograph
y while
ke
epi
ng the SEM’
s
o
r
igin
al sca
nning fu
nctio
n
intact to
form
the EBL system.
3. Main Componen
t
s of E
B
L Sy
stem
A typical sch
ematic of this EBL syste
m
bas
e
d
on SEM is sho
w
n in figure 1. System
element
s co
nsi
s
t of the
electron source or
cathod
e to generat
e electron b
eam; the be
am
blan
ker to
ke
ep the
el
ectro
n
be
am
away from
t
he
sa
m
p
le
su
rface
when th
e
stag
e
is moving;
t
h
e
apertu
re
s to further
confin
e the beam;
the magnet
i
c
defle
ctor t
o
deflect the
beam alo
n
g
a
pred
etermi
ne
d path on the
wafer
surfa
c
e; the mark
d
e
tection to de
tect se
con
d
a
r
y electron
s a
n
d
backscattere
d ele
c
tro
n
s; t
he em
bed
de
d preci
s
io
n
stage to
reali
z
e sca
nnin
g
fi
eld
stitchin
g;
the
nanom
eter p
a
ttern gen
era
t
or to transfe
r patterns
a
n
d
control b
eam
blanke
r
; and
the EBL control
softwa
r
e. Thi
s
ki
nd of EB
L syste
m
ba
sed on SEM
i
s
inexp
e
n
s
ive, easy to
op
erate, a
nd h
a
s a
good
pro
s
p
e
c
t in micro
-
n
anofab
ricatio
n
appli
c
ation
.
As follow,
some i
m
po
rtant com
pon
e
n
ts
whi
c
h are essential for this
ki
nd EBL sy
stem will be introduced.
Figure 1. The
Schemati
c
of EBL System
Based o
n
SEM
3.1. Thermal Field Emission SEM
The SEM i
s
employe
d
i
n
ele
c
tro
n
b
eam fo
cu
sin
g
, astig
m
atic co
rrectio
n
a
nd
setting
lithogra
phy field si
ze. The
electron
-opti
c
al perfo
rm
an
ce ha
s a di
re
ct effect on th
e re
solution a
nd
stability of the EBL
system, so the
suit
able SEM
must be chosen.
Lower
resolution sy
stems
can
use th
ermi
on
ic source
s,
which
are
u
s
u
a
lly form
ed f
r
om LaB6.
Howeve
r, sy
stems
with hi
g
her
resolution
req
u
irem
ents n
e
ed to use fiel
d electron
em
issi
on s
our
ce
s,
su
ch
a
s
he
ated W/ZrO2
for
lowe
r e
n
e
r
gy
sp
rea
d
a
nd
enha
nced
bri
ghtne
ss [13]. After an
alysi
s
a
nd
com
p
a
r
iso
n
, we fou
n
d
that the thermal field em
issi
on SEMs were p
r
ef
erred ove
r
col
d
field emi
s
sion source
s
fo
r
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Flexibl
e
Na
no
fabrication Eq
uipm
ent: E-beam
Li
thogra
phy System
Based o
n
SEM (Shuhu
a Wei)
3843
stabili
zing total electron b
eam cu
rrent, maximi
zing
prob
e cu
rrent
and red
u
ci
n
g
electron be
am
noise, a
s
we
ll as in
se
nsi
t
ivity to the environ
ment.
The
main
fu
nction
of SE
M is to
p
r
od
uce
electron b
e
a
m
, focus
on e
l
ectro
n
be
am
and
contro
l el
ectro
n
be
am
on and
off to reali
z
e el
ectron
beam sca
nni
ng.
3.2. Laser Interfer
ometer Con
t
rolled Stage
The
po
sitioni
ng a
c
curacy
of SEM sta
g
e
is
usually in
range
of 1
-
5
m
, and
mobile
ra
nge
is limited. Ho
wever,
writin
g t
he entire wafer
req
u
ire
s
a la
rge
n
u
m
ber of the
stage tran
slat
ions
that
incl
ude
s accele
ration, deceler
ation, settling ope
ra
tions.
So
it
ca
n’t meet the
requireme
nts
of
EBL scan
nin
g
field
stitching [17]. In
o
r
de
r to
a
c
hie
v
e high
a
c
cura
cy of fiel
d stitching,
th
e
pre
c
isi
on l
a
ser inte
rferom
eter
cont
roll
ed
stage
is nee
ded. It
is
comp
osed
of work
st
age
machi
n
e
r
y structure, laser
interferomete
r
me
a
s
u
r
eme
n
t system, XY positionin
g
control syste
m
,
CCD alig
nm
ent system
and auto
m
atic tran
sm
issi
on tabl
et control system. The
lase
r
interferomete
r
me
asureme
n
t syste
m
a
n
d
XY po
siti
on
ing cont
rol sy
stem co
nstitu
te
a clo
s
ed
lo
op
measurement
cont
rol
syste
m
, whi
c
h
can
locate
t
he
stage in th
e target location.
CCD ali
gnme
n
t
system
is u
s
e
d
to m
a
ke th
e
sili
con
wafer
in the
depth
o
f
focu
s
of ele
c
troni
c opti
c
al
syste
m
, to
g
e
t
the be
st exp
o
su
re effe
ct. Positionin
g
is cont
rolled
by a DM
C-184
2
motion control ca
rd. Spe
c
ial
control com
m
and
s a
r
e
download
ed
to flash
m
e
mory to i
m
prove th
e
stage
po
sitioning
perfo
rman
ce
in de
aling
wit
h
a
c
celeratio
n
an
d d
e
cele
ration. T
he
st
age i
s
de
sign
ed
comp
actly
to
fit in the small chamb
e
r of the SEM
.
3.3. Nanome
t
er Pattern
G
e
nera
tor
The p
a
ttern
gene
rato
r is
the key
com
pone
nt of m
a
kin
g
u
s
e of
SEM to asse
mble th
e
EBL system.
The main f
unctio
n
s of
pattern g
ene
rator a
r
e to
interp
ret dat
a pro
duced
by
a
softwa
r
e p
a
ckag
e and
co
ntrol be
am
deflectio
n an
d beam bl
an
king
coil
s of
SEM for high
resolution
lithogra
phy. Fig
u
re
2 sho
w
s
a blo
c
k di
ag
ram of the
hardwa
r
e
stru
ctu
r
e of the
patt
e
rn
gene
rato
r.
It con
s
i
s
ts of
o
peratio
n co
ntrol uni
t, digit
a
l-to-anal
og
conve
r
ter (DAC)
unit, im
age
acq
u
isitio
n un
it, blanking
co
ntrol unit, and
some othe
rs [11].
Figure 2. Block
Diag
ram o
f
the Pattern Gene
rato
r Ha
rdware Struct
ure
3.3.1. Opera
t
ion Contr
o
l Unit
The patte
rn
s to be expo
sed
are
bro
k
en do
wn int
o
a serie
s
o
f
exposu
r
e p
o
ints by
operation
con
t
rol unit. A growin
g num
be
r of impo
rt
ant
application
s
, su
ch a
s
opto
-
ele
c
tro
n
ic a
n
d
diffractive opt
ical devices,
requi
re smoo
th curved sh
ape
s. The pa
ttern gene
rat
o
r req
u
ires hi
gh
spe
ed a
nd
hi
gh a
c
curacy
in the transl
a
tion of patte
rn data to
sh
ot data. So t
he digital
si
g
n
a
l
pro
c
e
s
sor (DSP) is empl
o
y
ed in th
e o
p
e
ration
control unit. In
thi
s
system, th
e
TMS32
0
C67
1
3
200-MHz
DS
P is em
ploye
d
to interpret
circle
s,
ri
ngs and ot
her
complex
curve
d
sh
ape
s. Th
is
DSP ha
s
po
werful
comp
uting
cap
abili
ty, which
ca
n complete
32 float
of
multiplicatio
n
and
division ope
rations du
ring 80
cl
ock cycl
es.
Fig
u
re
3
shows the
con
f
iguration
of o
peratio
n
cont
rol
unit. It also con
s
i
s
ts of complex programmabl
e
log
i
c device (CPLD) to impl
ement extern
al
circuit, FLAS
H mem
o
ry t
o
sto
r
e p
r
o
c
edures,
syn
c
hron
ou
s dyn
a
mic
ran
dom
acce
ss
me
mory
(SDRAM) to store d
a
ta, universal se
ria
l
bus (U
SB
) interface, power su
pply and
other eleme
n
ts.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3841 – 38
48
3844
The USB2.0 i
n
terface is u
s
ed to re
solve
data tran
sfer
bottlene
cks, who
s
e
spe
e
d
of transfe
r d
a
ta
to compute
r
can b
e
up to 20 Mbp
s
. Th
erefo
r
e,
circle
s, ring
s and
other
compl
e
x curved
sha
pes
can b
e
interp
reted with a very high spee
d.
3.3.2. Scanning Unit
The
co
re
co
mpone
nt of
scan
ning
unit i
s
di
gital-to-an
a
log
conve
r
te
r (DACs). Th
e pattern
gene
rato
r se
nds a st
ream
of coordinate
s
to the DA
Cs, whi
c
h co
nverts patte
rn d
i
gital informat
ion
to voltage to drive the d
e
flection
coil
s a
nd cau
s
e the
beam to trace
a sh
ape. Me
anwhile, in o
r
der
to implem
ent
pattern
ove
r
lay and
field
s
stitchin
g, the g
a
in, offset, rotation
e
rro
rs of
scan
ning
field, and wo
rksta
ge po
sitio
n
errors ne
ed
to be
corre
c
t
ed. The sca
n
n
ing unit is
controlle
d by two
set of 16-bit DACs. Either set of DACs includ
es one main DA
C and three mult
iplicative DA
Cs.
The
main DAC
re
ceive
s
pattern coo
r
d
i
nates,
an
d three m
u
ltiplicative DACs receive the
g
a
in,
offset, rotatio
n
an
d
stage
positio
n
correction
s
. T
he
scanni
ng
unit
ca
n al
so
ge
nerate
bla
n
ki
ng
sign
als to
co
ntrol b
eam bl
anki
ng
coil
s. The mai
n
DA
C u
s
ed i
n
the
pattern
gen
e
r
ator i
s
A
D
66
9,
whi
c
h is hi
gh
resolution 1
6
-bit analog
-to-digital
co
nverter (A/D) a
nd
has 6
5
,536 bi
nary co
de
s. In
this system 6
4
,000 bina
ry cod
e
s form 0x2FF to
0xFCFF are use
d
. The satu
ra
ted mode of main
DAC can be
avoided through thi
s
me
thod. Furthe
rmore, the st
ep si
ze can
be minimi
zed
to
1.25nm, a
nd
highe
r patte
rn accu
ra
cy can be
achiev
ed. The
wo
rk state of mai
n
DA
C is volt
age
mode, wh
ose input is 16
-bit shift bin
a
ry co
d
e
s a
nd output is ±5v. When
output voltag
e is
cha
nge
d duri
ng full scale,
the establi
s
h
m
ent time of main DA
C is 6
μ
s, and the
freque
ncy can
rea
c
h 1M
Hz. This can
sufficiently me
et SEM
operating freq
uen
cy, and exp
o
su
re rate can
achi
eve the maximum.
3.3.3. Image Acquisi
tion Unit
In ord
e
r to
co
rre
ct
scannin
g
field di
storti
on,
sta
nda
rd i
m
age m
u
st fi
rstly be a
c
q
u
ired. The
function
of i
m
age
acqui
si
tion unit i
s
t
o
sca
n
ma
rks a
nd
stan
da
rd
che
s
s g
r
a
phics to
a
c
q
u
ire
image i
n
form
ation. The
m
a
in
comp
one
nt is
DAC.
I
n
this sy
ste
m
we
choo
se AD9
220
D/A
conve
r
ter. Acquire
d data a
ppea
rs o
n
the data bus a
fter four trigg
e
r clo
c
k, so the initially four
times data a
c
qui
sition h
a
s
no si
gnifica
nce a
nd do n
o
t need to b
e
saved. Fro
m
the fifth trigger
clo
ck, a
c
q
u
ired data
rep
r
ese
n
t the re
al image
inf
o
rmatio
n. Th
ese
data a
r
e
conve
r
ted from
analo
g
sign
al
of ima
ge i
n
fo
rmation
colle
cted
by
sen
s
or to
data
si
g
nal by
D/A
co
nverter.
They
are
transfe
rred to
compute
r
by USB2.0 interf
ace a
nd di
spl
a
yed on the scre
en.
3.4. Soft
w
a
r
e
Sy
stem
The EBL syst
em is so com
p
licate
d
and
sop
h
is
ti
cated,
which n
eed
s a fully functional and
easy-ope
ratio
nal
softwa
r
e
system
to e
n
s
ure it
ru
n correc
t
ly. The
main func
tions
of the
s
o
ftware
system
in
clud
e initiali
zing
the
system, g
enerating exp
o
su
re
data,
d
e
tecting
the
status of
sy
ste
m
comp
one
nts,
co
rrectin
g
t
he
scanni
ng
field,
tra
n
sf
erri
ng
expo
sure
data
an
d
pa
ramete
rs, and
controlling th
e exposure
pro
c
e
ss. Accordin
g to
the
s
e fun
c
tional
requi
reme
nt
s, the softwa
r
e
system ha
s been de
sign
ed
three
m
o
dule
s
:
expo
su
re l
a
yout p
r
oce
s
sing fu
n
c
tional
mod
u
l
e
,
alignme
n
t co
ntrol functio
n
a
l module, a
nd expos
ure
control fun
c
tional modul
e. The software
system i
s
dev
elope
d ba
sed
on Visual
C++6.0 devel
op
ment enviro
n
m
ent [12].
3.4.1. Expos
ure La
y
out Proces
sing M
odule
The m
a
in
pu
rpose of
expo
sure l
a
yout p
r
oc
essin
g
m
o
dule i
s
to
ge
nerate
expo
sure
data
format (E
DF
)
files. The E
D
F file is
one
o
f
our
cu
stom f
ile format
s
which i
s
easily
recogni
ze
d a
n
d
received. It stores
eno
ugh
information
for the
expo
sure of one
compl
e
te sh
ape. It conta
i
ns
scanni
ng field
information,
a control wo
rd whi
c
h sp
e
c
ifies the geom
etric cl
as
s of primitive sh
a
pe,
geomet
ry informatio
n of p
r
imitive sha
p
e
s (su
c
h
as
vertex
coo
r
di
nates hei
ght and width,
ce
nter
coo
r
din
a
tes a
nd
ra
diu
s
),
ex
posure do
se of
prim
itive shape
s [18]. EDF files
ca
n
be a
c
compli
shed
by two pro
c
e
s
ses, on
e of whi
c
h is exp
o
su
re
layout
desi
gn, and
anothe
r is format conve
r
si
on.
Variou
s layou
t
s includi
ng li
ne, polyline, rectan
gle,
circl
e
, ellipse, rin
g
, secto
r
and
polygon can
be
desi
gne
d di
re
ctly by drawi
ng an
d e
d
itin
g figures.
An
other
way of
cre
a
ting
expo
sure layo
ut is to
import co
mm
on indu
strial l
a
yout such a
s
Calte
c
h Inte
rmedi
ate Format (CIF) an
d Grap
hic De
sign
System II (G
DSII) form
at
file, whi
c
h
ca
n be
edite
d
conve
n
iently. The file
format is
pa
rse
d
by
recursive de
scent pa
rsi
ng method on b
a
si
s of BN
F (Backu
s-Na
ur Form) rule. This metho
d
is
comp
re
hen
si
ve and
preci
s
e
so
any
complex layo
u
t
can
be i
m
p
o
rted
and
di
splaye
d
correctly
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Flexibl
e
Na
no
fabrication Eq
uipm
ent: E-beam
Li
thogra
phy System
Based o
n
SEM (Shuhu
a Wei)
3845
(se
e
Figu
re 3
)
. Both layouts de
sign
ed di
rectly
and
co
mmon ind
u
st
rial layouts i
m
porte
d ca
n be
trans
ferred to EDF file.
Figure 3. CIF Format Expo
sure Layout
s Imported by the Software System
3.4.2. Alignment Co
ntro
l Module
The alignm
en
t control mod
u
le is to impl
ement scan
ni
ng field align
m
ent and co
ordin
a
tes
alignme
n
t. This
can
be i
m
pleme
n
ted
by scanni
ng
and a
c
q
u
irin
g stan
da
rd
chessb
oard i
m
age,
adju
s
ting ma
rks po
sition
s,
cal
c
ulating
corre
c
tion
pa
ramete
rs
an
d then tra
n
smitting them
to
pattern gen
e
r
ator. Then
pattern gen
e
r
ator
control
s
b
eam defl
e
ction
a
c
cording
to
the
s
e
corre
c
tion
pa
ramete
rs sca
nning
agai
n t
o
a
c
compli
sh
scan
ning fiel
d an
d
coo
r
di
nates align
m
ent.
Image processing te
chnol
o
g
ies
su
ch as
noise
red
u
cti
on and bo
rd
e
r
re
cog
n
ition have been u
s
ed
to implem
ent
automati
c
all
y
write
-
field
alignme
n
t. T
he
coo
r
din
a
te’s
alignm
en
t is to
dete
c
t
alignme
n
t ma
rks
of the
su
bstrate
in
a
c
corda
n
ce
with
a p
r
ed
etermi
ned
se
que
nce to
en
sure t
h
e
best overl
a
y accuracy.
3.4.3. Expos
ure Con
t
rol
Module
The expo
su
re co
ntrol m
o
dule i
s
to con
t
rol t
he whole
pro
c
e
ss
of e
x
posu
r
e, whi
c
h i
s
the
final procedu
re an
d al
so
integrate
d
o
p
e
r
ation of
m
any
pro
c
e
s
sed.
T
he exp
o
sure
para
m
eters
a
r
e
importa
nt to determi
ne th
e do
se of ex
posure,
wh
i
c
h is the d
e
scription of resi
st ab
sorbing
the
electroni
c en
ergy when e
x
pose layo
uts. Variou
s
g
r
aphi
cs h
a
ve different exp
o
su
re do
se [
12].
The EDF file acqui
red f
r
om the
exp
o
su
re l
a
yout
pro
c
e
s
sing
module
and
these
expo
sure
parameters
can be transf
erred
to pattern
generator, whi
c
h w
ill control
beam defl
e
ction
according
to layouts informatio
n stored in
EDF file
to exposure layouts.
4. Exposure
Experiments
Exposu
r
e exp
e
rime
nts hav
e been
done
on the el
e
c
tro
n
beam litho
g
r
aphy
system
base
d
on JSM
-
35
CF SEM. Expo
sure expe
rim
ents in
clud
e
stitchin
g exp
e
rime
nts, ove
r
lay experim
e
n
ts
and
p
a
ttern
s exposure.
Sti
t
ching and o
v
erlay
accu
ra
cy is a
n
imp
o
rtant evalu
a
t
ion indi
cator of
EBL equipme
n
t performan
ce.
4.1. Exposur
e Stitching E
x
periments
In orde
r to
ensure
stitchi
ng a
c
curacy,
it is
ne
ce
ssary to calib
ra
te the sca
nni
ng field.
The calib
rati
on can
be
realized by
u
s
e of
coo
r
di
nate
system
linea
r tran
sformatio
n
, an
d its
mathemati
c
al
expressio
n
is as follows:
dx
=
A
+
B x
+
Cy
(1)
dy = E
+ F
x
+
Gy
Whe
r
e,
dx
and
dy
are deviation of the actual po
sition
and the ideal
position;
x
an
d
y
are
the sample
stage p
o
sition
of the m
a
rk; A, E re
p
r
e
s
ent shift para
m
eters; B, F
rep
r
e
s
ent
g
a
in
para
m
eters; C, G represe
n
t rotation pa
ramete
rs. Fo
r solving the six coefficients, three marks in
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3841 – 38
48
3846
a scannin
g
field are n
eed
ed as sho
w
n
in Figure 4
(
a
)
. The pattern gene
rato
r co
ntrols the SE
M to
scan the th
re
e marks and
gain the a
c
tu
al positio
n
co
ordin
a
tes. T
h
e actu
al cali
b
r
ation p
r
o
c
e
s
s
can b
e
ca
rri
e
d
out by use
of che
s
sboa
rd image a
s
shown in Figu
re 4(b
)
.
Figure 4(a
)
. Princi
ple dia
g
ram of scanni
ng
positio
n
Figure 4(b
)
. T
he ch
essb
oard image an
d mark
field c
a
libration
Acco
rdi
ng to
the formul
a o
f
corre
c
tion a
l
gorit
hm
(4
), the imple
m
ent
ation form
ula
is a
s
follows
:
()
4
n
e
w
n
ew
ne
w
n
ew
S
x
M
L
T
x
RT
x
L
B
x
RBx
Cx
F
S
R
()
4
new
n
ew
new
n
ew
S
y
M
LT
y
R
Ty
LB
y
R
By
Cy
F
S
R
(2)
2
ne
w
n
e
w
ne
w
n
e
w
ol
d
o
l
d
ol
d
o
l
d
x
R
Tx
LTx
RBx
L
Bx
R
Tx
LTx
RBx
LBx
G
2
new
n
e
w
n
e
w
n
ew
ol
d
o
l
d
ol
d
o
l
d
y
LBy
L
Ty
RBy
RTy
L
B
y
L
Ty
RBy
R
Ty
G
(3)
11
tan
(
)
t
an
(
)
2
ne
w
n
e
w
n
e
w
n
e
w
ne
w
n
e
w
n
e
w
n
e
w
x
R
T
y
L
Ty
RB
y
L
By
RTx
L
Tx
RB
x
L
Bx
R
11
ta
n
(
)
t
a
n
(
)
2
ne
w
n
e
w
ne
w
n
e
w
ne
w
n
e
w
ne
w
n
e
w
y
LB
x
LTx
RBx
RTx
LB
y
LTy
RBy
RTy
R
(4)
Whe
r
e,
x
S
,
y
S
,
x
G
,
y
G
,
x
R
,
y
R
rep
r
esen
t shift param
eters,
gain
p
a
ram
e
ters a
n
d
rotation p
a
ra
meters. The
softwa
r
e
syst
em acqui
re
s these co
ordi
nates and ca
lculate
s
the six
equatio
ns to
get calibratio
n
coefficie
n
ts, then
se
n
d
t
hese p
a
ra
me
ters to
patte
rn ge
nerator.
The
scanni
ng unit
of pattern g
e
nerato
r
control beam
def
le
ction coils according
to
th
ese paramet
ers.
This process
will be execut
ed several times unt
il the
precise scanning field can be obtained.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Flexibl
e
Na
no
fabrication Eq
uipm
ent: E-beam
Li
thogra
phy System
Based o
n
SEM (Shuhu
a Wei)
3847
The stitching
test pattern i
s
de
sign
ed di
rectly
by the
softwa
r
e. It is a 6×6 a
r
ray of 100
m
size ve
rnie
r curso
r
field
s
. Acco
rdin
g to the error
calculation form
ul
a:
n
x
x
n
i
i
n
1
2
(5)
Whe
r
e,
n
is sample
size,
x
is sample
averag
e an
d
n
is sample
mean
-squa
re
deviation. Statistical
results show
that thi
s
exp
o
sure
t
e
st e
r
ror
x
is 3
1
.19
nm
and
y
is 2
6
.53
nm
.
4.2. Exposur
e Ov
erla
y
Ex
periments
Multilayer lithography is needed fo
r some
ME
MS structu
r
e and se
mi
con
d
u
c
tor
fabrication. I
n
this
pro
c
e
s
s, ea
ch l
a
yer patte
rn i
s
e
x
pose
d
an
d t
hen
remove
d
out to do
p
o
st-
treatment.
When thi
s
sili
con
chip
is ba
ck into th
e
work
stage, it
s rel
a
tive po
si
tion of the
work
stage i
s
cha
n
ged. So in o
r
der to g
u
a
r
an
tee overla
y a
c
cura
cy, it is
need
ed to ali
gnment m
a
rks of
chip, dete
r
mi
ne the po
sitio
n
and a
z
imut
h of chip.
Experiment o
peratio
n step
s are a
s
follo
ws: a.
Put the sampl
e
wit
h
marks into t
he stag
e,
and im
pleme
n
t the coordin
a
te syste
m
correctio
n
to
make
the
sta
ge coo
r
dinate
and
silicon
wafer
coo
r
din
a
te co
nsi
s
tently. b. Control the
stage to
exp
o
sure a
r
e
a
, and
impleme
n
t the scan
ning fi
eld
calib
ration, th
en the E
D
F file of ma
in verniers is exposure. c. Afte
r
the first laye
r
exposure, ta
ke
the silicon wafer out. d. Put the silico
n
wafer into
the stage a
g
a
in, and the
n
implement
the
coo
r
din
a
te
system
co
rrecti
on o
n
ce a
gai
n. e.
C
ontrol t
he
stage
to
e
x
posu
r
e
area
, and
implem
ent
the sca
nnin
g
field
calib
rat
i
on, then
the
EDF
file of
dep
uty vern
iers i
s
exp
o
sure. T
he
error
cal
c
ulatio
n fo
rmula
is th
e
same
with
th
e stitchi
ng
experim
ents. St
atistical
re
sult
s
sho
w
that t
h
is
exposure te
st erro
r
x
is 31.95
nm
and
y
is 33.38
nm
.
4.3. Exposur
e Patte
rns E
x
periments
Figure 5(a
)
. SEM micro
g
ra
ph of flower p
a
ttern
exposed in PMMA at 30kV
Figure 5(b
)
. SEM micro
g
ra
ph of line exp
o
se
d
in PMM at 5kV
Arbitra
r
y sh
a
pe patterns
e
x
posu
r
e exp
e
r
iment
s have
been d
one to
verify the re
solutio
n
and
accu
ra
cy of this EBL
system.
Fig
u
re
5(a)
sh
o
w
s the SEM
microg
rap
h
of flowe
r
p
a
ttern
exposed at t
he a
c
cele
rati
on voltage
of
30
kV. The
resi
st i
s
mo
n
o
layer PMMA
, and the
be
am
curre
n
t is 5p
A. The curve
of rings exp
o
se
d
app
ears to be smo
o
th, which d
e
mon
s
trate
s
the
stron
g
divisio
nal p
o
wer of t
he p
a
ttern
ge
nerato
r
.
T
he minimization of
line
width
achi
eved by
t
h
is
electron b
e
a
m
lithograph
y system is
21.4nm. Fi
g
u
r
e 5
(
b)
sh
ows the SEM
micrograph
o
f
this
experim
ental
result. The e
x
posu
r
e
wa
s
made at th
e
beam e
n
e
r
gy
of 5kV in P
MMA re
sist.
This
result d
e
mon
s
trate
s
th
at the
re
solution
of
ele
c
tron
beam
lithog
raphy
system
ca
n a
p
p
r
oa
ch
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 5, May 2014: 3841 – 38
48
3848
nanom
eter d
o
main.
5. Conclusio
n
The above experiments testif
y the feasi
b
ility of this EBL system
based on
a modified
SEM. It is equipp
ed with
a laser int
e
rferomete
r
stage whi
c
h
facilitates p
r
eci
s
e multil
evel
lithogra
phy
with automati
c
mark
re
cog
n
ition a
nd p
a
tterns to b
e
stitch
ed to
g
e
ther. T
h
is EBL
system
ca
n
be u
s
ed fo
r large
-
scale
micro-n
anof
a
b
rication a
n
d
function
al
MEMS or mi
cro
electri
c
al
pa
rt
s. Thi
s
EBL f
abri
c
ation
sy
stem ca
n
m
eet
most
lithog
ra
phy ap
plicatio
ns i
n
u
n
iversity
laboratori
e
s
with its po
we
rful fun
c
tion
s, friendly
man
i
pulation
and
low cost. It
has mad
e
ve
ry
importa
nt co
ntribution
s
in quantum effe
ct devic
e
s
, integrated o
p
tical device manufa
c
turin
g
an
d
nano
stru
ctu
r
e
manufactu
rin
g
.
Ackn
o
w
l
e
dg
ements
This work wa
s su
ppo
rted i
n
part by the National Natural Scie
nce Found
ation o
f
China
(No.6
100
105
2) and Beiji
ng
Natural S
c
ie
nce Fo
und
ation (41
230
96
).
Referen
ces
[1]
Pain
L, T
ede
sco S, C
onst
anci
a
s C.
Dir
ect
w
r
ite
lith
o
g
rap
h
y
:
the
g
l
oba
l so
luti
on
for R
&
D and
manufactur
i
ng.
Comptes Rendus Physique
. 200
6; 7(8): 910
-923.
[2]
Peter H, Olaf
F
.
‘50
ye
ars o
f
electron
be
a
m
litho
grap
h
y
:
Contri
buti
ons
from Jen
a
.
Microel
ectron
ic
Engi
neer
in
g
. 2009; 86(
4-6): 4
38-4
41.
[3]
Zárate JJ, Pastoriza H.
Co
rrection Alg
o
ri
thm for the Proxi
m
ity Effect in e-bea
m Lithogr
aphy.
Procee
din
g
s
o
f
the Arg
enti
n
e
Scho
ol
of Mic
r
o-Nan
o
e
l
ectro
n
ics
T
e
c
hno
lo
gy a
nd A
p
p
lic
ations
. 20
08;
38-4
2
.
[4]
Vieu C, C
a
rce
nac F
,
Pepi
n
A, et al. Electron
b
eam l
i
tho
g
rap
h
y
: r
e
sol
u
tion l
i
mits an
d
app
licati
ons
.
Appl
ied S
u
rfac
e Scienc
e.
200
0; 164(1-
4): 11
1-11
7.
[5]
T
s
eng AA, Ch
en K, et a
l
. Ele
c
tron Beam
Lit
hogr
aph
y in N
anosc
a
le
F
abri
c
ati
on: R
e
ce
nt Devel
opm
ent.
IEEE on Electronics Pack
agi
n
g
Manufactur
i
n
g
. 2003; 2
6
: 14
1-14
9.
[6]
Rai-C
h
o
udh
ur
y P. Hand
b
ook of Micr
olith
ogra
p
h
y
,
Micromach
i
nin
g
an
d Microfabric
atio
n.
Microlith
ogr
ap
hy.
1997; 1.
[7]
Nabit
y
JC, W
y
bour
ne M
N
. A
versatil
e p
a
ttern g
ener
ator for
hi
gh-res
o
luti
o
n
e
l
ectron-
be
a
m
litho
gra
p
h
y
.
Review
of Scie
ntific Instrumen
t
s.
1989; 60(1):
27-32.
[8]
Penn
ell
i
G, Angel
o F
D
, Piotto M, et al. A lo
w
co
st high res
o
lutio
n
pattern g
ener
ator for el
ectron-b
eam
litho
grap
h
y
.
R
e
view
of Scientific Instrume
nts.
200
3; 74(7): 35
79-3
582.
[9
]
Møl
h
a
v
e
K, Ma
d
s
en
D
N
,
Bøg
g
i
l
P. A si
mp
l
e
el
e
c
tron
-be
a
m
l
i
t
ho
g
r
aphy
sy
ste
m
.
Ult
ramicroscopy.
200
5; 102(
3): 215-2
19.
[10]
T
ennant DM, Blei
er AR. Han
dbo
ok of Nan
o
f
abric
ati
on, 1st
ed., edited b
y
Gar
y
P. W
i
ede
rrecht, Chap.
201
0; 4: 121-1
48.
[11]
W
e
i SH, Li
u W
,
Han
L.
A new
versatil
e hi
gh s
pee
d p
a
ttern g
ener
ator for n
a
nolit
hogr
ap
hy.
Procee
din
g
s
of the IEEE IN
EC. 2008; 8
24-
828.
[12]
W
e
i SH, Z
han
g JZ
, Han L.
Desig
n
a
nd I
m
ple
m
entatio
n o
f
Softw
are System of E-
bea
m Litho
g
rap
h
y
Based on SEM
.
Proceedi
ngs
of the IEEE NEMS. 2009; 54
7
-
550.
[13]
Yin B
H
, F
a
n
g
GR, Liu
JB, et
al. M
i
ni
ature
Electron
Be
am
Lith
ogra
p
h
y
S
y
stem f
o
r Micr
o /Na
nomet
er
Pattern F
abric
ation.
Na
notec
hno
logy
and Pr
ecisio
n Eng
i
n
e
e
rin
g
.
201
0; 4: 290-
294.
[14]
Cummin
g
DR
S,
T
homs S, Beaum
ont SP, et al. F
abric
a
t
ion of 3
nm
w
i
res us
in
g 10
0 keV e
l
ectron
beam lithography
and poly
(
m
et
hy
l methac
r
y
late) res
i
st.
Appl
ied
Physic
s
Letters
. 1
9
9
6
; 68(
3): 32
2-
324.
[15]
Yang
H, F
an
L, Aizi J, et al
.
Low
-energy
Electron-
bea
m Litho
g
rap
h
y o
f
Z
EP-520 Po
sitive Res
i
st.
Procee
din
g
s of
the IEEE NEMS. 2006; 39
1–
3
94.
[16]
F
ontana RE, K
a
tine J, Rooks
M,
et al. E-Beam W
r
iting: A N
e
xt-G
e
nerati
o
n
Lithogr
aph
y A
ppro
a
ch for
T
h
in-Film Hea
d
Critical Fe
atu
r
es.
IEEE Transactions o
n
Ma
gnetics.
20
02; 38(1):
95-
10
0.
[17]
Lv SL, Son
g
ZT
,
F
eng SL.
F
abricati
on of
arra
ys of li
ne
w
i
t
h
na
nosc
a
le
w
i
dth a
nd l
a
r
ge le
ngth
b
y
electro
n
b
eam
litho
grap
h
y
w
i
th hi
gh-pr
ecisi
on stag
e.
Micr
oel
ectronics J
ourn
a
l.
2
008;
39(9): 1
1
2
6
-
112
9.
[18]
W
e
i SH, L
i
u
W
,
Li X,
et a
l
. Desi
gn
an
d
Impleme
n
tati
on of E
x
pos
ur
e Data
F
o
rma
t for E-beam
Litho
g
rap
h
y
’, Microfabric
atio
n
T
e
chnolo
g
y
.
200
6; 6(6): 6-1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.