TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 13, No. 3, March 2
015,
pp. 476 ~ 48
2
DOI: 10.115
9
1
/telkomni
ka.
v
13i3.716
7
476
Re
cei
v
ed
De
cem
ber 9, 20
14; Re
vised Janua
ry 5, 20
1
5
; Acce
pted Janua
ry 2
4
, 20
15
Control Design of Wind Turbine System Using Fuzzy
Logic Controller for Middle Voltage Grid
Soedib
y
o
*
1
,
Feb
y
Agung Pamuji
2
, Mo
chamad Ash
a
ri
3
Dep
a
rtment of Electrical E
ngi
neer
ing,
Institu
t
T
e
knolog
i Se
pul
uh No
pem
b
e
r (IT
S
)
Surab
a
y
a (6
01
11), Indon
esi
a
*
C
o
r
r
e
s
p
o
n
d
i
n
g
a
u
t
h
o
r
,
e
-
m
a
i
l
:
d
i
by
o_55@y
a
ho
o
.
com
1
,
febyag
ungp
amuji
@
g
m
a
i
l
.
co
m
2
,
as
h
a
ri
@
e
e.it
s.a
c
.i
d
3
A
b
st
r
a
ct
This paper
presents a syst
em wind turb
ine in order
to have
continously
electricity supply f
o
r 20 kV
grid. Output w
i
nd turbi
ne co
ntrolle
d by dc-
d
c boost co
nverte
r to produc
e maxi
mu
m p
o
w
e
r in ord
e
r to obta
i
n
the MPP (M
axi
m
u
m
Pow
e
r P
o
int). Outp
ut of
the c
onv
erter
is co
ntroll
ed
b
y
fu
zz
y
l
o
g
i
c t
o
o
b
tai
n
th
e M
P
P
(Maxim
u
m
P
o
wer Point) wind
turbine, thus
the efficiency
wind turb
ine c
an be increased. The system of
w
i
nd turb
ine
is
conn
ected t
o
2
0
kV gr
id. F
r
o
m
th
e si
mulati
o
n
usi
n
g
matla
b
20
10 c
an
be
c
oncl
ude
d th
at th
e
control
l
er can s
h
ift pow
er to 75 % maxi
mu
m
pow
er of w
i
nd turbi
ne.
Ke
y
w
ords
: ma
ximu
m pow
er p
o
int, w
i
nd turbi
ne, fu
zz
y
l
ogic
control
l
er
Copy
right
©
2015 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
In this ce
ntury, the incre
a
sing of ene
rgy
dem
an
d follo
wed by the i
n
cre
a
si
ng
co
st of fuel.
A lot of people are ten
d
to use ren
e
w
abl
e ene
rg
y to generat
e electri
c
en
ergy. Ren
e
wable
energy is u
s
ed du
e to
afforda
b
le
pri
c
e
and
produ
ce less
polluti
on (CO
2
) in t
he envi
r
onm
ent;
furthermore less gre
enh
ou
se effect can
be rea
c
h
ed [1
0].
Ren
e
wable
energy ha
s
been expl
ored to m
eet
the load d
e
mand.
Utilization
of
rene
wa
ble e
n
e
rgy is
able t
o
se
cu
re lo
ng
-term
su
stain
able e
nergy suppl
y, and
re
duce lo
cal a
n
d
global
atmo
spheri
c
emi
ssi
ons.
Win
d
T
u
rbine
(WT
)
u
n
its a
r
e
be
co
me the
promi
s
ing
technol
o
g
ies
for supplyin
g
the loa
d
d
e
mand
in
re
mote an
d i
s
olated a
r
e
a
. Ho
weve
r, there
are
se
veral
wea
k
n
e
ss fa
ced by
su
ch
resou
r
ces. O
ne of the we
akn
e
sse
s
is t
he po
we
r ge
nerate
d
by wind
energy is infl
uen
ced
by the weathe
r
con
d
ition
s
.T
h
e
variation
s
of power g
e
nerate
d
by these
sou
r
ces m
a
y not match
with the time distribution
of d
e
mand. In ad
dition, the intermittent po
wer
from
wind power may
result in serious reliab
ility concerns in both
desi
gn and
operation of
wi
nd
turbines
s
y
s
t
em [11].
Wind tu
rbine
(WT
) that cle
an, and ab
un
dantly
availa
ble in nature, are bein
g
de
veloped
to affordable
price and la
rg
e-scal
e use. But, highly
consid
ere
d
to incre
a
se the sy
stem efficien
cy
wind turbine
as
well as to impr
ove the system
reliability wind turbine. There
are t
w
o
ways to
incr
ea
se t
h
e
sy
st
em ef
f
i
cien
cy
of
wind t
u
rbin
e. First, improve the materi
als to have high
conve
r
si
on ef
ficien
cy at low co
st. Seco
nd, to
operate wind tu
rbin
e system o
p
timally. This p
ape
r
prop
osed th
e
se
co
nd
way
,
thus to
opti
m
ize th
e
system win
d
turbin (WT
)
u
s
i
ng fu
zzy lo
gi
c
controlle
r [10].
2. Rese
arch
Metho
d
The system consi
s
ts of
wi
n
d
turbi
ne
(WT
) conn
ecte
d to 20
kV g
r
id,
while fo
r
wind
turbin
e
(WT
) h
a
ve in
put v (wind
speed
) a
nd V
(actu
a
l voltag
e wi
nd tu
rbin
e). Fu
zzy logi
c for controllin
g
boo
st conve
r
ter to shift the actual voltag
e to the optimum voltage.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Control De
sig
n
of Wind Tu
rbine System
Usi
ng
Fu
zzy
Logi
c Co
ntroll
er for Middl
e
…
(Soedi
byo)
477
Figure 1. Hyb
r
id syst
em of photovoltai
c
and wi
nd turb
ine 20 kV G
r
i
d
con
n
e
c
ted
2.1. Wind Tu
rbine
The
wind i
s
air move
s th
at cau
s
e
d
by
uneq
ual h
e
a
t
ing of the
su
n to ea
rth su
rface. Ai
r
moves i
s
wi
n
d
kineti
c
en
ergy that can b
e
used
for va
riou
s ne
ed
s, like a g
ene
rat
o
r’s
prim
e mo
ver
of elect
r
icity
gene
ration
b
y
wind tu
rbin
e co
nver
sio
n
system
[10]. The total
of wind
po
wer that
cau
ght by turbine d
epe
nd
on si
ze
of rot
o
r bl
ade
tu
rbi
ne an
d wi
nd
spe
ed, can b
e
sh
own in th
is
equatio
n:
(1)
is radi
us of
wind turbin
e,
air den
si
ty and
wind
spee
d. Mechani
c po
wer that
prod
uced by turbin
e dete
r
mined bi wi
nd
turbine effici
ency, ca
n be
sho
w
n in thi
s
equatio
n:
(2)
Acco
rdi
ng to
Bezt limit, maximum eff
i
cien
cy of wind turbine i
s
0.57. T
h
is value
determi
ned
by powe
r
coefficient a
n
d
Tip Spee
d Ratio
(TS
R
) [10]. Po
wer
co
efficie
n
t is
mech
ani
cal p
o
we
r ratio
on
turbine
with wind po
we
r tha
t
caught by wind turbi
ne’s
rotor bla
de an
d
TSR is spee
d
ratio of wind
turbine’
s rotor
blade with
wi
nd sp
eed, ex
plain on thi
s
equatio
n:
(3)
(4)
is
power c
oeffic
i
ent,
is Ti
p Speed
Rati
o (TSR) an
d
is ang
ular
sp
eed of turbin
e
.
Con
n
e
c
tion b
e
twee
n me
ch
anical po
we
r
with p
o
we
r coefficient and
TSR explain on
the
equ
atio
n
belo
w
:
,
(5)
is angle of
wind turbi
ne’
s rotor bla
d
e
to
wind direction. Mech
a
n
ical po
we
r is power
that will be transfe
rred to
gene
rato
r. The value
of
power
coefficient determi
n
ed by TSR a
nd
angle
of wi
n
d
turbi
ne’
s ro
tor bla
de. Co
nne
ction
of
T
S
R, po
wer coefficient, an
d angl
e of
wi
nd
turbine’
s rotor blade sho
w
n
in this equati
on:
,
(
6
)
With,
.
.
(7)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 476 – 4
8
2
478
and
is
con
s
tant. The val
ue of TS
R d
e
termin
ed by
rotating
sp
e
ed of turbine
and
wind Spe
ed [10]. The value of powe
r
co
effici
ent and
TSR variating
on a wind
sp
eed, dep
end
on
turbine
rotation. Me
cha
n
i
c
al to
rqu
e
th
at used
to rotate
the ge
nerato
r
determined by
rot
a
ting
spe
ed of turbi
ne and me
ch
anical po
wer
of
turbine, explaine
d in this equation:
0
.5
(8)
Wind tu
rbine
that using a g
earb
o
x, powe
r
and me
ch
an
ical torq
ue on
the generato
r
shaft is:
(9)
(10)
is mechani
cal torque in low speed shaft,
is mech
anical torque
in generato
r
’
s
s
haft,
a
n
g
u
lar
sp
eed
of turbin
e,
is mech
ani
cal speed of
gen
e
r
ator’
s
shaft and
gearbox effici
ency.
2.2. Wind Tu
rbine Cha
r
ac
teristic
Cha
r
a
c
teri
stic plot of wind turbin
e usi
ng this follo
wing
diagram:
Figure 2. Block
Diag
ram
Chara
c
te
risti
c
Plot of Wind Turbi
n
e
Figure 3. Win
d
Turbi
ne Ch
ara
c
teri
stic
t
e
g
ang
an
ar
us
W
i
ndt
ur
b
i
ne
V+
V-
Va
(
P
V
)
v
+
-
Sc
o
p
e
3
P
r
od
uc
t
2
P o
u
t
Loa
d
2
I (
w
i
n
d
)
i
+
-
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Control De
sig
n
of Wind Tu
rbine System
Usi
ng
Fu
zzy
Logi
c Co
ntroll
er for Middl
e
…
(Soedi
byo)
479
3. Results a
nd Analy
s
is
3.1. Contr
o
ller Fuzz
y
Log
ic
Figure 4. Fuzzy Logi
c Co
ntrolle
r
Fuzzy logi
c controlle
r is u
s
ed to
contro
l dut
y
cy
cle
so t
he
suit
ab
le dut
y
cy
cle
can b
e
obtaine
d for b
oost converte
r to get optimal voltage.
Control de
sig
n
of MPPT from Wind T
u
rbine can be
seen bel
ow:
Figure 5. Win
d
Turbi
ne Fu
zzy Lo
gic
Fuzzy logic contain
s
of input and output
, for
fuzzy input Figure 5 contain
s
of two inputs
that are voltage and
wind
spe
ed. The m
e
mbe
r
ship sh
owe
d
belo
w
:
Figure 6. The
Voltage of Wind Turbine
Me
mb
er
sh
ip
F
u
n
c
tion
Figure 7. Win
d
Speed Me
mbershi
p
Fun
c
tion
Figure 8. Dut
y
Cycle Mem
bership
F
u
n
c
tion (outp
u
t fuzzy logi
c)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 476 – 4
8
2
480
From me
mbe
r
shi
p
above
can be mad
e
the rule of fuzzy logic a
s
be
low:
1. If (Voltage is V1) an
d (wi
nd_
spe
ed is
v1) then (d
uty_cycl
e is D1)
(1)
2. If (Voltage is V2) an
d (wi
nd_
spe
ed is
v2) then (d
uty_cycl
e is D2)
(1)
5. Simulation Resul
t
s
5.1. Simulation Sy
stem Wind Turbin
e
20 kV Grid Conn
ected
Figure 9. Simulation of System Wind Tu
rbin co
nne
cte
d
grid 20
kV
The de
sign a
bove com
p
o
s
ed of wind tu
rbine that
co
ntrolled u
s
in
g
fuzzy logi
c control to
obtain MPP for sy
stem. Th
e maximum p
o
we
r co
nditio
n
wind turbi
n
e is dist
ribute
d
to 20kV.
The sim
u
latio
n
results for
wind turbine
can b
e
se
en i
n
Figure 10 b
e
low:
Figure 10. Ou
tput from win
d
turbine g
e
n
e
rato
r (po
w
e
r
, current, voltage)
From
Figu
re
10, it ca
n be
see
n
that th
e fuzzy logi
c cont
rolle
r
ca
n co
ntrol
po
wer into
maximum, wit
h
win
d
spee
d
s
of 8m/
s
in t
he sec
ond to
zero s,
wind
spe
ed 8m/
s
t
o
0.1s, the
wi
nd
spe
ed of
12
m/s to 0.2
s
,
wind
sp
eed
o
f
12m/s to
0.3s,
wind vel
o
city of 12m/
s
to 0.4s,
and
the
wind
spe
ed o
f
8m/s to 0.5s.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Control De
sig
n
of Wind Tu
rbine System
Usi
ng
Fu
zzy
Logi
c Co
ntroll
er for Middl
e
…
(Soedi
byo)
481
Figure 11. Specification of perm
ane
nt magnet syn
c
ro
nou
s gen
erat
or
From Fi
gure
10 an
d 11
ca
n be
see
n
th
at wind tu
rbin
e not in maxi
mum po
we
r. So there
is much losses in wi
nd turbine, to shift power to max
i
mum po
wer t
he win
d
turbi
ne co
nne
cted
to
maximum power point converter.
The sim
u
latio
n
results for
Output Boo
s
t converte
r (V
input, I out,
V out) can b
e
seen in
Figure 12 bel
ow :
Figure 12. Ou
tput Boost co
nverter
(V inp
u
t, I out,
V out)
From Figu
re
12, it can be see
n
that the
fuzzy
logi
c co
ntrolle
r can
control bo
ost converte
r
in optimum voltage 50
0 Volt, so the po
wer of
wind turbin
e ca
n be
shifted to ma
ximum power.
The si
mulatio
n
re
sults fo
r
Powe
r (PQ
)
output to gri
d
can
be
seen
in Figu
re 13
belo
w
.
From Fi
gu
re
13, it can
be
see
n
that the
fuzzy lo
gic
co
ntrolle
r can
control
power i
n
to maximum
:
P
=
7000 watt, Q =
27000 V
A
R , the maximum power of
wind turbine is
s
u
pplied to 20 k
V
grid.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 13, No. 3, March 2
015 : 476 – 4
8
2
482
Figure 13. Power
(PQ) o
u
tput to grid
4. Conclusio
n
De
sign of a system wi
nd
turbine
cont
rolled by
fuzzy logic can
contribute to the po
wer
grid
20
kV in
acco
rdan
ce
with the e
n
e
r
gy pro
duced in
optimum condition.
By
varying the i
n
pu
t
wind
spee
d for win
d
turbin
es sy
stem ca
n gene
rate m
a
ximum po
wer. The sy
ste
m
of wind turbine
can p
r
ovide p
o
we
r 75% the
i
r ene
rgy to 20 kV grid.
Referen
ces
[1]
Hussei
n
A
l
-Ma
sri, FathiAmou
r
a. Feasi
b
ilit
y
St
ud
y of
a Grid C
o
n
necte
d
H
y
brid
Wind/P
V
S
y
ste
m
.
Internatio
na
l Journ
a
l of App
l
i
ed Pow
e
r Eng
i
neer
ing (IJAPE
).
2013; 2(2): 8
9
~
98 ISSN: 22
52-8
792.
[2]
HUANG W
a
n
g
-ju
n
, Z
E
NG Z
h
i-gan
g, Z
H
OU Hui-fa
ng
,
T
E
N Yuan-j
i
an
g, Li Li.
Mode
lin
g an
d
Exp
e
rim
ental Stud
y
on
Grid-
C
on
necte
d
In
verter for Direct
Drive W
i
nd T
u
rbi
ne.
TEL
K
OMNIKA
. 2013
;
11(4): 20
64~
2
0
72 e-ISSN: 20
87-2
7
8
X
, 20
13
.
[3]
F
Almonaci
d
, C Rus, PJ Per
e
z, L Ho
ntoria.
Estima
tion
of T
he Energ
y
Of PV Generator
Using Artific
i
a
l
Neur
al Net
w
o
r
k.
Science Dir
e
c
t.
2009.
[4]
Yusuf Oner, E
ngi
n Ceti
n, Ha
run Kem
a
l Ozturk,
Ahmet Yil
anci. D
e
sig
n
of
T
h
ree Degre
e
Of F
r
eedo
m
Spher
ical Moto
r F
o
r Photovolt
a
ic-T
racking S
y
stems.
Scie
nc
e Direct
. 200
9.
[5]
Yuli
n He, Xin
p
i
ng C
hen,
Wind
Tu
rb
ine
Ge
nerator System
.
T
he Supp
l
y
C
hai
n In Chi
na:
Status And
Probl
ems. Scie
nce Dir
ect. 200
9.
[6]
W
i
ssem Z
g
h
a
l
,
Gueorg
u
i
K
antchev,
He
di
Kcha
ou. Opt
i
mizatio
n
A
n
d
Man
agem
ent
Of Energ
y
Produc
ed B
y
A
W
i
nd Energ
i
zi
ng S
y
stem,
Science D
i
rect
. 20
10.
[7]
YM Ch
en, SC
Hu
ng, CS
Ch
eng, Y
C
L
i
u.
Multi-
Inp
u
t Inv
e
rter F
o
r Grid-
C
on
necte
d H
y
brid
PV/W
i
n
d
Po
w
e
r S
y
stem.
IEEE.
2005.
[8]
Chian-song
Chiu, T
-
S Fuzzy
. Ma
ximum P
o
w
e
r
Point T
r
acking Cont
rol of Solar P
o
w
e
r Generatio
n
S
y
stems.
[9]
Muldi Yu
he
ndr
i, Mochamad
Ashar
i, Mauri
d
hi Her
y
P
u
rn
o
m
o.
Maximum Output Power Tracking
den
ga
n Metod
e
Direct F
i
el
d Oriented C
ontr
o
l Pa
d
a
Pe
mb
angk
it Listrik T
ena
ga An
gin
Stand Al
on
e
.
Semin
a
r Nasi
o
nal
XIV - FT
I-IT
S. 2009.
[10]
Soed
ib
yo, F
e
b
y
A
g
u
ng P
a
m
u
ji, Moc
ham
ad
Ashari.
Gri
d
Qualit
y H
y
b
r
id
Po
w
e
r
S
y
ste
m
Contro
l of
Microh
ydr
o
, W
i
nd T
u
rbine
an
d F
uel C
e
l
l
Us
ing F
u
zz
y
Log
i
c
.
Internation
a
l
Review
o
n
M
ode
lli
ng a
n
d
Simulations (I.RE.MO.S).
2013; 6(4): 127
1 - 127
8, Inde
xed
in Scop
us, ISSN : 1974 - 9
8
2
1
/ e-ISSN :
197
4 - 983
X
[11]
Soed
ib
yo, H
e
r
i
Sur
y
oatmo
jo,
Imam Roba
n
d
i,
Mocham
ad
Ashari. Opti
mal Des
i
gn
o
f
H
y
dr
oge
n
Based/W
i
n
d
/Mi
c
roh
y
dr
o Usin
g Genetic Alg
o
rithm.
T
E
LKOMNIKA Indonesi
an Jour
na
l
of Electrica
l
Engi
neer
in
g
. 2012; 10(
6): 130
9-13
18.
[12]
Soed
ib
yo,
Rib
ka Steph
an
i, Aprile
l
y
Aj
en
g
F
i
tri
ana, R
a
tih
Mar’atus S
h
o
l
iha
h
, Primad
it
ya Sul
i
stijo
no
,
Suy
anto. Po
w
e
r Optimization for A
daftive W
i
n
d
T
u
rbine: Cas
e
Stud
y o
n
Isla
nde
d a
nd Grid
Con
necte
d
.
Internatio
na
l R
e
view
of Electri
c
al Eng
i
ne
eri
n
g (IREE)
. 2014
; 9(4): 835 – 84
3.
Evaluation Warning : The document was created with Spire.PDF for Python.