TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 12, Decembe
r
2014, pp. 81
7
5
~ 819
2
DOI: 10.115
9
1
/telkomni
ka.
v
12i12.63
32
8175
Re
cei
v
ed Ma
y 26, 201
4; Revi
sed Septe
m
ber
28, 201
4; Acce
pted
Octob
e
r 15, 2
014
The B
+
-tree-based Method for Nearest Neighbor
Queries in Traffic Simulation Systems
Zhu Song*
1
, Zhiguang Qi
n
2
, Wei
w
ei
Deng
3
, Yuping Zhao
4
Schoo
l of Com
puter Scie
nce
& Engin
eeri
ng,
Universit
y
of E
l
ectron
ic Scien
c
e and T
e
chno
log
y
of Ch
in
a,
Che
ngd
u, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: toni11
0@1
6
3
.
com
1
, zgqin@
uestc.edu.c
n
2
, uestcde
ng
ww@hotmai
l
.com
3
,
z
y
p
uestc@
live.
com
4
A
b
st
r
a
ct
Extensive us
ed traffic sim
u
lation system
s
are helpfu
l in planning and contr
o
lling the traffic system.
In traffic sim
u
lation syst
em
s, the state
of
each v
e
hicl
e is affected
by
that of
nearby
vehic
l
es, called
nei
ghb
ors. Ne
arest nei
gh
bor
(NN) qu
eries,
w
h
ich are
mu
lti 1-di
mensi
o
n
a
l an
d hi
gh
ly c
oncurr
ent, larg
el
y
deter
m
i
ne the
perfor
m
ance of
traffic sim
u
lation system
s.
M
a
jority of existing traffic sim
u
lation system
s use
Link
ed l
i
st b
a
s
ed
meth
ods
to process
N
N
qu
eries.
A
l
thou
gh s
i
mpl
e
and
effective t
hey ar
e, existi
n
g
meth
ods
are
n
e
ither sc
ala
b
l
e
nor effici
ent. In this
p
a
p
e
r, w
e
pro
pos
e a B
+
-tree-base
d
meth
od to
i
m
pr
ove
the effici
ency
o
f
NN q
ueri
e
s b
y
borrow
i
n
g
i
d
e
a
s fro
m
me
thods used in databases. In
particular, we create a
linke
d
loca
l B+
-tree, cal
l
ed
L
L
B+
-tree, w
h
ic
h is
a v
a
ri
atio
n of Ori
g
in
al
B
+
-tree, to
mai
n
tain th
e i
n
d
e
x
of
nei
ghb
ors of e
a
ch ve
hicl
e. W
e
als
o
b
u
il
d a
math
e
m
atic
al
mo
de
l to o
p
ti
mi
z
e
the
par
a
m
e
t
er setting
of L
L
B+
-
tree accord
ing
to multi
p
l
e
par
ameters for lan
e
s and ve
hi
cl
e
s
. Our theoretical an
alysis sh
ow
s that the time
compl
e
xity of
the
meth
od
is
O(log
N
) u
n
d
e
r
the
a
ssu
mpti
on
of ra
ndo
ml
y distri
butio
n
of veh
i
cles.
Our
simulati
on res
u
lts show
that LLB+
-
tree ca
n outperfor
m
Link
ed list an
d
Origina
l
B+
-tree by 64:
2%
an
d
12:8%, resp
ect
i
vely.
Ke
y
w
ords
:
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The traffic si
mulation sy
stem is a mathem
atical modelin
g of transportatio
n
system
s
throug
h the appli
c
ation of
compute
r
software, which leads to b
e
tter unde
rst
andin
g
, plani
ng,
desi
gning
an
d optimizi
ng
the traffic
system. N
earest neighb
or
(NN) q
u
e
r
ie
s pl
ay an impo
rt
ant
role in t
r
af
f
i
c simulat
i
o
n
sy
st
em
s,
bec
au
se ea
ch ve
hi
cle ne
ed
s to find nea
rby vehicl
es, calle
d
neigh
bors, an
d determi
ne its state
a
c
cording to neig
h
bors’ state
s
.
It is difficult t
o
imp
r
ove th
e pe
rform
a
n
c
e of
NN
que
ries be
cau
s
e NN
qu
erie
s h
a
ve
the
followin
g
pro
pertie
s
: 1) M
u
lti 1-dime
nsi
onal case
s: i
f
we con
s
id
e
r
a lane a
s
a 1-dim
e
n
s
io
nal
ca
se, then a
road
with mul
t
iple lane
s ca
n be seen a
s
infrequ
ent m
u
lti 1-dime
nsi
onal cases. 2
)
High
con
c
u
r
rency: the mo
re vehi
cle
s
e
x
ist in a
sim
u
lation, the l
a
rge
r
nu
mbe
r
of NN que
ries
oc
cur in e
a
c
h
cy
cle.
Exis
ting
traffic
s
i
mulation sys
tems
,
Paramic
s
[16], Viss
im [17], MITSim [18], SUMO [19]
etc, adopt Li
nke
d
list-b
a
sed method
s to pro
c
e
ss
NN que
rie
s
. Such meth
od
s, which a
r
e very
easy to
cre
a
te and m
a
int
a
in, index th
e se
quen
ce
of vehicle
s
i
n
ea
ch lan
e
. Ho
wever, th
ose
method
s
are
not
scalabl
e
,
becau
se th
ey nee
d to
t
r
averse
the
Linked li
st to
find a
vehi
cle.
Videlicet, the time compl
e
xity of such me
thods i
s
O
(
N
).
In this
pap
er,
we
propo
se
a B+-tre
e-b
a
s
ed
metho
d
,
calle
d L
L
B+-tree
(lin
ke
d lo
cal B
+
-
tr
e
e
)
b
y
bo
rr
ow
in
g id
ea
s fro
m
th
os
e me
th
o
d
s
for
1 o
r
2
-
d
i
me
ns
io
n
a
l NN
qu
er
ie
s in
d
a
t
ab
as
es
.
In
particula
r, we
firstly index
all vehicle
s
in
each road
in a same di
rectio
n, and impleme
n
t the
bidire
ction
a
l
orde
r of l
eaf
node
s of
Ori
g
inal B
+
-tree.
We th
en m
a
intain lin
ks
of neigh
bo
rs
for
each vehicle
in the same
lane. We also build
a m
a
thematical model to optimize pa
ram
e
ters
setting for L
L
B+- tre
e
. Such a mod
e
l
cacul
a
tes t
he min value of the expect que
ry length
according to
numbe
rs of lanes a
nd vehi
cle
s
.
Our th
eoretical analy
s
is
shows that th
e time
compl
e
xity of the LLB+-tree
m
e
thod i
s
O
(log
N
). The
optimal avera
ge qu
ery len
g
t
h can fu
rt
he
r improve the
perfo
rman
ce
of the metho
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8175 – 81
92
8176
Our
sim
u
lat
i
o
n
re
sult
s
sho
w
t
hat
L
L
B
+
-t
ree
ca
n
o
u
tp
erform
Lin
k
e
d
list a
nd
Ori
g
inal B
+
-tree
by
64
.
2% and 1
2
.
8%, resp
ect
i
vely.
Overall, the
main prope
rties of
LLB
+-tree are li
sted
as follo
ws:
a)
LLB+-tree
su
pport
s
m
u
ltipl
e
qu
ery type
s, inclu
d
ing
ra
nge
que
ry a
n
d
reverse
ne
a
r
est
neigh
bor (RNN)
qu
ery.
b)
LLB+-tree i
s
efficient in NN que
rie
s
in traffic simulation sy
stems. The time
compl
e
xity of
LLB+-tree b
a
s
ed meth
od i
s
O
(l
og
N
).
c)
The mainte
n
ance overh
e
ad of LLB+-tree is
a
c
cept
able, whi
c
h i
s
simil
a
r to that of
the Origin
al B+-tree.
The
re
st of th
e pap
er is
organi
zed
as fo
llows. Sectio
n
II gives a
n
o
v
erview
of th
e rel
a
ted
work. Section III defines NN qu
eries in traffic
si
mulation
syst
ems and
i
n
tr
oduces the
data
stru
cture of LLB+-tree. S
e
cti
on IV pro
poses alg
o
rit
h
ms for ma
n
aging LLB
+-t
r
ee. Section V
analyzes the
time compl
e
xity of the method and o
p
timi
ze
s pa
ramete
rs. Sectio
n VI evaluates th
e
perfo
rman
ce
of LLB
+-tre
e
thro
ugh
b
o
th expe
rim
ents
and
st
atistical
anal
ysis. Se
ction
VII
con
c
lu
de
s this pap
er.
2. Relativ
e
Work
In this
se
ctio
n, we fi
rstly
overview met
hod
s for NN que
rie
s
in
databa
se
s.
We th
en
descri
be met
hod
s for NN queri
e
s in traffic simulatio
n
system
s.
2.1. NN Qu
er
ies in Data
b
ases
NN que
rie
s
,
also kn
ow as
proximity
qu
erie
s,
simil
a
ri
ty querie
s o
r
clo
s
e
s
t point
queri
e
s,
can b
e
divide
d into two cat
egori
e
s: the q
uery for stati
c
and moving
obje
c
ts.
NN q
ueri
e
s f
o
r stati
c
obje
c
ts u
s
e ind
e
x stru
cture
s
, inclu
d
ing B-tr
ee, B+-tree, quad
-tre
e
and R-tre
e
. Rou
s
sop
oulo
s
et al. [3] propo
se
an in
fluential met
hod for findi
ng the K-ne
are
s
t
neigh
bors
(KNN) u
s
ing
R-tree; Haibo
Hu et al.
devise EXO-tre
e to sp
eed
up
NN qu
erie
s [6]; HV
Jag
adi
sh et
al. [7] pro
p
o
s
e
a B+-tre
e
ba
sed
meth
od, for K
N
N
sea
r
ch in
a
high-dimen
s
i
onal
spa
c
e; G
R
Hj
altaso
n et al. [2] devise a g
eneral
frame
w
ork an
d alg
o
rithm
s
for p
e
rformi
ng sea
r
ch
based on di
stance; a ran
domized alg
o
rithm for
co
mputing ap
proximate nea
rest neig
hbo
r is
prop
osed by
Arya et al. [8]. Ling Hu
et al. [9
] prop
o
s
e a
ro
ad n
e
t
work KNN q
uery verifi
cati
on
techni
que to
prove the int
egrity of the query resu
lt. Seidl et al. [10] improve a
KNN multi-st
e
p
algorith
m
whi
c
h is g
uarant
eed to pro
d
u
c
e the minimu
m numbe
r of can
d
idate
s
.
NN
que
rie
s
f
o
r movin
g
o
b
j
ects mainly
use
si
mil
a
r i
ndex st
ru
ctures, in
cludi
ng
B+-tree
and TP
R-t
r
ee
. Kollios
et al
. [1] gene
rali
ze m
o
ving o
b
j
ects in a
pla
ne, the m
o
ve
ments
of whi
c
h
are rest
ricte
d
to a numbe
r
of line se
gme
n
ts, as a
“1.5
-dime
n
si
onal
” ca
se [11]. Je
nse
n
et al. [12]
develop
s
alg
o
rithm
s
fo
r
NN q
ueri
e
s wh
ose
pe
rform
a
nce
is bette
r
than TP
R-tre
e
. Tao
et al. [
1
3
]
solve the ove
r
hea
d proble
m
s in
continu
ous n
e
a
r
e
s
t neighb
or (CNN) que
rie
s
. An algorith
m
wh
i
c
h
requi
re
s o
n
ly one
data
s
et
lookup to
d
e
liver a
co
m
p
lete p
r
edi
cti
v
e re
sult for
CNN q
u
e
r
ie
s, is
devise
d
by
L
ee et
al. [14].
Xie et
al. [15
]
prov
id
es a
solution
whi
c
h
su
ppo
rts different
shape
s of
comm
only-u
s
ed impreci
s
e
regio
n
s u
s
in
g
u
-bi
s
e
c
tor.
Benetis et al.
[11] prop
ose
algorithm
s f
o
r
respon
ding
RNN a
nd NN q
uerie
s for mo
ving points in
plane.
2.2. NN Qu
er
ies in Traffic
Simulation Sy
stems
NN q
ueri
e
s i
n
t
r
af
f
i
c simu
lat
i
on sy
st
em
s ai
m to find
at least 2 neighb
ors. Wh
en the
vehicle
ha
s n
o
adja
c
e
n
t la
ne, it only ne
ed to find
2 n
e
ighb
ors in th
e local lan
e
;
Whe
n
the ve
hicle
has o
ne adj
a
c
ent lan
e
, it need
s to find
4 neighb
or
s:
2 in the local lane an
d 2
in the adjacen
t
lane. When t
he vehi
cle h
a
s b
o
th left and ri
ght
adj
ace
n
t lane
s,
it need
s to find ad
ditional
2
neigh
bors in the other a
d
ja
cent lan
e
.
Although the
r
e has mi
nor
differen
c
e in t
he defin
ition
of neighb
ors i
n
different si
mulation
system
s (e.g.
,
VISSIM [17] do not co
nsi
der the
n
eare
s
t followin
g
vehicl
e in the local la
ne a
s
a
neigh
bor), ex
isting traffic
simulatio
n
system
s
ad
opt
simila
r line
a
r method
s
(Li
n
ke
d list
-
ba
sed
method
s) for
NN qu
erie
s.
Parami
cs [16
], a famou
s
software
which supp
orts a
simulatio
n
ov
er
1
million vehi
cl
es,
store veh
i
cle
s
cu
rre
ntly in lin
ear
qu
eue
s, rega
rdl
e
ss of lane; While in MIT
S
im
[18], a simul
a
tor develo
ped
by MIT, vehicle
s
a
r
e
al
so
store
d
in
Lin
k
ed list in
ea
ch lane. S
U
M
O
[19], an ope
n so
urce, hi
ghly porta
ble
,
micro
s
c
opi
c an
d contin
uou
s road traffic sim
u
lati
on
packa
ge, ind
e
xes vehi
cle
s
in each la
ne
in a linear q
u
eue.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The B
+
-tree
-
b
a
se
d Method
for Nea
r
e
s
t Neighb
or Qu
eri
e
s in Traffic Sim
u
lation… (Zhu Song
)
8177
Those Lin
k
e
d
list-ba
se
d m
e
thod
s, very che
ap in
cre
a
ting and m
a
intaining, a
r
e
suitable
to s
i
mulate spars
e
traffic
c
o
n
d
ition
s
. Howeve
r, such
method
s a
r
e not scal
abl
e be
cau
s
e th
ey
need
to trave
r
se
the
Lin
k
e
d
list to
search a ve
hicl
e. V
i
delicet, the
more
vehi
cle
s
in
a
simul
a
tion,
the worse p
e
rforman
c
e of those method
s.
3. Problem Statement a
n
d Data Struc
t
ures
In this
se
ctio
n, we
firstly analyze the
appli
c
ability
of tradition
al
method
s fo
r
1 an
d 2
-
dimen
s
ion
a
l NN qu
eri
e
s i
n
traffic simul
a
tion system
s. We then p
r
opo
se forma
l
descriptio
n
s of
s
u
c
h
NN
qu
er
ie
s
.
At las
t, w
e
in
tr
od
uc
e
th
e
d
a
t
a
stru
cture
of B
+
-t
ree, do
uble
Li
nke
d
li
st, LL
B+-
tree and
com
pare the d
e
tai
l
s of them.
3.1. Applicabilit
y
Anal
y
s
is
We use
an
example
to
explain why tradi
tional
m
e
thod
s for 1
or
2-dimen
s
ional
NN
queri
e
s a
r
e n
o
t suitable for traffic simula
tion system
s.
Figure 1. 8 vehicle
s
in a three-la
ne road
segm
ent
Figure 1 is a
segm
ent of a
road. Th
ere
are 8
vehi
cle
s
dist
ribute
d
in 3 lane
s: vehicle
s
A
and
B
in lane
1; vehicle
s
C
,
D
an
d
E
in lane 2; veh
i
cle
s
F
,
G
an
d
H
in lan
e
3
.
When vehi
cl
e
D
laun
ch
s a NN que
ry, call
ed the initiator, it
needs t
o
find 6 neig
hbors: the ne
are
s
t leadin
g
an
d
fo
llo
w
i
ng
ve
h
i
c
l
es
C
a
nd
E
in the
lo
cal l
ane
(lan
e 2
)
;
A
and
B
in th
e left adj
acen
t lane
(La
ne
1);
G
and
H
in th
e right adja
c
e
n
t lane (lan
e 3).
If we ado
pt a
method fo
r 1
-
dime
nsi
onal
NN
que
rie
s
, we
con
s
id
er
each lan
e
a
s
a linea
r
spa
c
e. In
o
r
d
e
r to
find th
e
nea
re
st vehi
cle
s
in
ea
ch
l
ane,
we
crea
te virtual i
n
itiators
D
′
an
d
D
′′
with the sam
e
displ
a
ceme
nt of
D
se
pa
rately in the
left and right
adjacent lan
e
s. Thu
s
, th
e
method find t
he 2 ne
arest
vehicle
s
of
D
,
D
′
and
D
′′
in
the local, left
adja
c
ent an
d
right adj
acent
lane
s, re
sp
ectively. Howev
e
r, the
s
e ve
h
i
cle
s
may
not
be the
corre
c
t nei
ghbo
rs. The
2 n
eare
s
t
vehicle
s
of
D
′′
in lane 3 are
G
and
F
, whil
e the neigh
bo
rs a
r
e
G
an
d
H
.
If we use a m
e
thod for 2
-
di
mensi
onal
NN que
rie
s
, we
con
s
ide
r
a whole road a
s
a plane.
Such a meth
od ca
n find the 6 nea
re
st vehicle
s
of the initiator
D
. While the
s
e
vehicle
s
may
not
be the
n
e
igh
bors
either.
As
sho
w
n
in
Fi
gure
1, th
e
6
nearest
vehi
cles
are
A
,
B
,
C
,
F
,
G
a
nd
H
.
Vehicle
F
is
m
o
r
e
c
l
os
e
r
to
D
than vehi
cle
E
, but
F
is not a corre
c
t neigh
bor.
3.2. Problem Statemen
t
We de
note
V
as the set of
all vehicle
s
in a
L
-lan
es road,
is the
th vehicle. We
can
further u
s
e two prope
rtie
s, the displa
ceme
nt of a
vehicle in th
e road
and the lane
whe
r
e the ve
hicle lo
cate
d
to describ
e e
a
ch vehi
cle.
That is,
can be
de
scribed
in a tuple
. To find nei
g
hbors of
, we divide
V
into two
s
e
ts acc
o
rding t
o
the
displ
a
cement
. One is the set of leadin
g
vehicle
s
:
; The othe
r is
the set of fo
llowing
vehi
cles:
. The
n
e
ighb
ors of
vi
in
clu
de th
e
nearest lea
d
i
ng and follo
wi
ng vehicl
es in
the local an
d
two adja
c
ent
lanes.
That is, a NN query contain
s
followi
ng 3
step
s:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8175 – 81
92
8178
1)
We find th
e neig
hbo
rs
of the vehicl
e
in t
he lo
cal l
ane. The
nea
rest l
eadin
g
vehicl
e of
vi
in the local lane is th
e element with the minimize
in the set
: the vehicl
e
. The nearest following vehicl
e of
vi
in the local l
ane is the el
ement with t
h
e
maximize
of
the set
: the vehicl
e
.
2) If there exists a left adj
ace
n
t lane, we
find the n
e
ighb
ors in that lane. The
neare
s
t
leadin
g
vehi
cle of
in the
left adja
c
ent
lane i
s
th
e el
ement
with t
he mini
mize
in the set
: the vehicle
. The nearest following ve
hicle of
vi
in
the left adjacent
lane is the el
ement with th
e maximize
of the set
: th
e vehicle
1).
3) If there exi
s
ts a
rig
h
t ad
jace
nt lane,
we
find th
e n
e
ighb
ors in t
hat lane. T
h
e
nea
re
st
leadin
g
vehicle of
in the right adja
c
e
n
t lane i
s
the
element
with
the minimi
ze
in the set
: the vehicle
. The ne
are
s
t
followin
g
vehi
cle of
vi
i
n
the right a
d
jacent
lane is the el
ement with th
e maximize
of the set
: th
e vehicle
1).
3.3. Data S
t
r
u
ctur
e of LL
B+-tr
ee
The LLB
+-tre
e
(Lin
ke
d local B+-tree), a
variati
on of B
+
- tree, is a
combinatio
n of
B+-tre
e
and Lin
k
e
d
list.
Linked li
st-b
a
s
ed
metho
d
s index ve
hicl
es i
n
e
a
ch la
ne, while B
+
-tree b
a
sed
m
e
thod
s
index vehi
cle
s
in
ea
ch
ro
a
d
. Using
an
example
of a
roa
d
seg
m
e
n
t sh
own in
Figure 1,
we
can
build th
ree
Li
nke
d
li
sts. As sh
own in
Fig
u
re
2, ea
ch
Li
nke
d
li
st sto
r
es ve
hicl
es
o
r
de
rly in a
sa
me
lane. Fig
u
re
3 tells the
ma
pping
sch
e
m
e
of L
L
B+-tre
e u
s
ing
the
same
roa
d
se
gment. Acco
rding
to the
displacement
of vehi
cle
s
in
the
ro
ad, we
can
m
ap the
di
strib
u
tion of
the
8
vehicl
es into
a
1-dim
e
n
s
iona
l queue:
.
Figure 2. An example of d
ouble Li
nke
d
list
Fi
gure 3. Mapping vehi
cle
s
into 1-di
me
nsio
nal
c
o
or
d
i
na
te
LLB+-tree
m
a
inly modifie
s
the
structu
r
es
of
internal
nod
es
and
l
eaf no
de
s. In intern
al
node
s, we i
m
pleme
n
t the bidirectio
n
a
l ord
e
r of
e
a
ch
node to
facilitate mult
i query type
s. In
particula
r, we
create 2 p
o
i
n
ters to lin
k t
he previo
us
and next inte
rnal no
de
s, denote a
s
and
, re
spe
c
tively. Each i
n
ternal
no
de
ha
s
k
e
y va
lu
es
an
d
+ 1 children.
The
stru
cture of
e
a
ch
internal
node
is pri
n
ted b
e
lo
w, wh
ere
de
note
s
the
i
th k
e
y
value,
P
i
po
in
ts
the
i
th c
h
ild:
In leaf no
de
s, we mainta
in the thread
of
the nei
g
hbors
of ea
ch entity (veh
icle). In
particula
r, we
create 2 poi
nters in e
a
ch
entity to
link the vehicle’s neighbo
rs in the local lan
e
,
denote
a
s
an
d
. T
h
us
, ea
c
h
e
n
t
ity has
4 do
ma
ins
:
th
e
i
th key v
a
lue
, the
vehicle
data
, neig
hbo
rs
a
nd
. Each
le
af nod
e i
s
fo
rmed
by entiti
e
s
and
two poi
nters:
and
, which
point to the p
r
evious
and
n
e
xt leaf node
s. The
stru
ctu
r
e
of each le
af node is of the form:
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The B
+
-tree
-
b
a
se
d Method
for Nea
r
e
s
t Neighb
or Qu
eri
e
s in Traffic Sim
u
lation… (Zhu Song
)
8179
Usi
ng th
e
sample
of th
e di
stributio
n of 8
veh
i
cle
s
, the
1
-
dime
nsi
onal
que
ue
, we build a L
L
B+-t
ree, sho
w
n in Figu
re
4.
Figure 4. An example of a LLB+-tree
As a combi
n
a
t
ion of B+-tre
e and Lin
k
ed
list,
LLB+-tre
e
inherit
s a lot of advantages: data
points
are
sto
r
ed o
n
ly at the leaf
nod
es.
These leaf n
ode
s are simi
lar to the first (ba
s
e
)
level
of
an index. Inte
rnal n
ode
s of
B+-tre
e corresp
ond to the
other level
s
of a multileve
l index [20]. B+
-
tree imple
m
e
n
tation retai
n
s the log
a
rith
mic cost p
r
op
erties fo
r op
e
r
ation
s
by ke
y, but gains the
advantag
e of requi
ring at
most 1 a
c
ce
ss to
sati
sfy
a next operation [21]. Ju
st like Lin
k
ed li
st,
LLB+-tree
al
so maintain
s t
he thread
s of
the nea
re
st l
eadin
g
an
d n
eare
s
t follo
wi
ng nei
ghb
ors o
f
each vehicl
e in the local la
ne, whi
c
h
faci
litate NN qu
eries in that lan
e
.
4. Algorithm
s Optimiza
tion
In this sectio
n
,
we adopt the repla
c
em
en
t of
a
vehicle in the road a
s
its sea
r
ch key
value
in a LLB+-t
r
ee. we prop
ose three sub-al
go
rithms for the managem
ent
of the LLB+-tree,
inclu
d
ing
sea
r
chi
ng, inserti
ng and d
e
leti
ng.
4.1. Searchi
ng
This sub-algo
rithm
sea
r
che
s
n
e
igh
bors
o
f
a v
ehi
cle i
n
the lo
cal l
ane
and
adj
acent
lane
s.
The se
arch key value of vehicl
e
i
is
,
the lane of vehicle
i
is
. In LL
B+-tree, data points a
r
e
store
d
o
n
ly at
leaf n
ode
s. T
hus,
we
u
s
e
a fun
c
tion
to
impleme
n
t th
e searchi
n
g
pro
c
e
s
s from
root n
ode to
the obje
c
tive
leaf
nod
e. T
he sub-algo
rit
h
m in
clude
s t
w
o
NN
que
ri
es:
the NN que
ri
es in th
e adj
ace
n
t lane
and in the lo
cal lane
. Neig
hbors in
the local lan
e
s indi
cate the nea
re
st leading vehi
cle
and the followin
g vehicle
.
and
are respectively the
nearest l
eadi
ng an
d
follo
wing vehi
cle
s
i
n
the a
d
ja
ce
nt
lane.
The su
b-al
go
rithm mainly contai
ns follo
wing
two
step
s: 1) It searches the leaf n
ode and
find the neig
h
bors of a veh
i
cle in the l
o
cal lane
s;
2) It sea
r
che
s
rel
a
ted leaf no
d
e
s a
nd find t
he
neigh
bors of
a vehicl
e in
the adja
c
e
n
t lane if
nee
d
ed. The p
s
e
udo-co
de of
the algo
rithm
is
s
h
ow
n
in
Algo
r
i
th
m 1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8175 – 81
92
8180
4.2. Insertin
g
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The B
+
-tree
-
b
a
se
d Method
for Nea
r
e
s
t Neighb
or Qu
eri
e
s in Traffic Sim
u
lation… (Zhu Song
)
8181
This sub-algorithm illustrates the procedure for
inserting a reco
rd (vehicle) with
a search
field value
in LLB+-tree. A
l
gorithm 2
gives a d
e
taile
d
pse
udo
-code
of the sub
a
l
gorithm.
We
denote
and
as the point
ers
and
of the nea
re
s
t
followin
g
and
leadin
g
vehicl
es of
i
, res
pec
tively.
We can furth
e
r divide this
sub
-
alg
o
rithm
into two part
s
: 1) It create
entry of vehicle
i
in c
o
rrec
t
leaf node a
n
d
update
s
relat
i
ve pointers; 2) It update
s
internal n
ode
s to maintain the right
stru
cture of LLB+-t
r
ee. Wh
en a nod
e is full it w
ill split and when the
parent no
de
also b
e
full, the
splitting can p
r
opa
gate all
way up to cre
a
te a new lev
e
l for LLB+-tree.
4.3. Deleting
This al
gorithm illustrates
deleting a
record with a
search field v
a
lue
from a LLB+-
tree. When
d
e
leting a
n
e
n
try, we
sh
ould
alway
s
remo
ve it from the
leaf level. If the ent
ry is i
n
an
internal n
ode,
we mu
st also
remove it fro
m
there.
The alg
o
rith
m contai
ns th
ree p
a
rts: 1
)
It sear
che
s
in
ternal n
ode
s
recursively to find the
path a
c
cordi
ng to th
e
se
arch field
val
ue
Ki
.
Whe
n
the
sea
r
ch f
i
eld valu
e o
c
cur in
an
int
e
rnal
node,
we
use
a left (o
r
rig
h
t) ent
ry to repla
c
e it;
2
)
It delete
s
the
entry of
the
vehicl
e in
co
rrect
leaf node
a
nd upd
ates
relative poi
nters; 3
)
It update
s
the l
eaf nod
e by mergi
ng an
d
redi
strib
u
ting
sibling
nod
es
when th
e
r
e exist
s
no
de und
erflo
w
; 4) Wh
en t
he me
rge a
nd
redi
strib
u
te in
leaf no
de
s l
ead
s to
an u
nderflo
w
of a
intern
al n
o
d
e
, the inte
rna
l
nod
e will
al
so
merg
e a
nd
re
distrib
u
te to
maintain
the
stru
cture
of
the L
L
B+-tre
e
.
We
give th
e
pseud
o-cod
e
of
the algorith
m
in Algorithm 3
.
5. Param
e
ter
s
Optim
i
za
tion
In this se
ctio
n, we firstly analyze those par
amete
r
s that effect on the hit rate
of NN
queri
e
s.
We t
hen a
nalyze
the time cost
of
LLB+-tre
e
based m
e
th
od an
d buil
d
a mathem
atical
model to opti
m
ize the no
d
e
size of the LLB+-tree.
5.1. Hit Ra
te
Analy
s
is
In a LLB
+-t
r
e
e
, data p
o
inte
rs
are sto
r
e
d
in
leaf n
ode
s.
For
better un
derstandi
ng,
we
call
vehicle
s
in a leaf node a
s
a
“platoon
”. Un
der the
a
s
su
mption of ran
domly distri
b
u
tion of vehicl
es,
the perfo
rma
n
ce, the
exp
e
ct qu
ery len
g
th
ϵ
of a
NN qu
ery is
d
e
termin
ed by
the hit rate
of a
query
P
in a
platoon. F
u
rt
her, the
hit ra
te
P
is i
n
fluen
ced
by the
averag
e a
m
oun
t of vehicle
s
i
n
a
platoon
q
. Th
us, we
comp
ute the optimi
z
ed val
ue of
q
to minimi
ze
the expe
ct q
uery le
ngth
ϵ
of a
NN q
uery
.
To cal
c
ul
ate
P
, we assu
m
e
that there
are
N
vehi
cle
s
ra
ndo
mly d
i
stribute
d
in
L
lane
s.
We ca
n use a
q×
L
matrix
A
to de
scri
be
po
ssi
ble
dist
ribution
s
of
q
vehicle
s
. Ea
ch ele
m
ent i
n
t
he
matrix is a po
ssi
ble po
sitio
n
for a vehicl
e. In example,
a
ij
is the
i
th positio
n in the
j
th lane.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8175 – 81
92
8182
Whe
n
we
qu
ery nei
ghb
ors of ve
hicl
e
a
ij
in
adja
c
e
n
t lane
s, the
r
e
exist two
different
situation
s
whi
l
e the road h
a
s
at least 3 la
nes.
The first situ
a
t
ion is, vehicl
e
a
ij
is in an edge lan
e
of a road (th
e
or
whe
n
). It need
s to qu
ery neighb
ors
in the onl
y
a
d
jacent lan
e
, that are
vehicle
s
in
.
In this
c
a
s
e
,
we calculate
P
A
, the possi
bility of finding a neigh
bo
r in the adja
c
e
n
t lane of
vehicle
a
ij
in the platoon.
We can co
m
pute the
possible di
strib
u
tions of all oth
e
r
q
−
1 vehi
cle
s
(
e
xc
ept vehicle
a
ij
in the edge lane
) tha
t
are not distributed in the adja
c
ent lane
:
.
The total
po
ssible
di
stributi
ons of
q
−
1 veh
i
c
l
es
is
. T
h
us
, we
c
a
n ca
lc
u
l
a
t
e
P
A
u
s
i
ng the
following formula:
The second
situation i
s
, vehicl
e
aij
is i
n
a mid lan
e
(the lan
e
1
< j <
L
when
L >
2). In
this
case, vehic
l
e
a
ij
ha
s both left an
d right a
d
ja
cent lane
s. T
herefo
r
e,
we
need to q
u
er
y
neigh
bors in
two a
d
ja
cent lane
s,
that are ve
hicle
s
in
and
.
We den
ote
P
B
as th
e p
r
obability of fi
nding
neig
h
b
o
rs of vehi
cl
e
a
ij
i
n
b
o
th
adja
c
ent
lane
s. To cal
c
ulate
P
B
, we
also define
P
′
B
,
the probability of all o
t
her
q
−
1 ve
hicle
s
that are not
distrib
u
ted in
those adja
c
ent lanes. When we d
o
not
con
s
ide
r
distributio
ns of
vehicles in
one
adja
c
ent la
n
e
, The di
stri
bution
s
of v
ehicl
es
exist
in an
other
adja
c
ent la
n
e
is:
.
Acco
rdi
ng to prin
ciple of in
clu
s
ion
-
excl
u
s
ion,
the ge
n
e
ral form of
which i
s
sh
own
as follow:
P
′
B
can be given by excludi
ng t
he overla
p distrib
u
tion
s
:
Thus,
we can
compute
PB
as
follow:
In gene
ral,
we ca
n con
c
lu
de the hit
rate
P
of a NN q
u
ery in a
d
ja
ce
nt lane
s in 3
ca
se
s: 1)
Whe
n
the ro
ad ha
s only 1 lane, vehicl
es do
n’t hav
e to query n
e
ighb
ors in a
d
jacent lane
s. 2)
Whe
n
the ro
ad has 2 lan
e
s, vehicle
s
only hav
e to query neigh
bors in one
adja
c
ent lane
. 3)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
The B
+
-tree
-
b
a
se
d Method
for Nea
r
e
s
t Neighb
or Qu
eri
e
s in Traffic Sim
u
lation… (Zhu Song
)
8183
Whe
n
the ro
ad has mo
re
than 2 lanes, we nee
d to
con
s
ide
r
two situatio
ns: vehicles in edg
e
lane
s and in
mid lane
s. We list the form
ula of
P
as
follow:
We
also
sum
m
ari
s
e th
e re
lationship
am
ong th
e hit
ra
te
P
, avera
g
e
numb
e
r of v
ehicl
es
in a pl
atoon
q
and numb
e
r of
lane
s
L
,
which i
s
sh
own
in Fig
u
re
5.
The o
b
servati
on
sho
w
s tha
t
in
comm
on ro
a
d
s condition
s, a road with
L lanes 1
< L
≤
10, The rate of converge
nce of
P
is
diminishing
with the incre
a
s
ing of
L
.
Figure 5. The
relation
ship
among
L
,
q
a
nd
P
5.2. Time Cost An
aly
s
is
Being a varia
t
ion of B+-tre
e, we ca
n find vehicle
i
in LLB+-tree sp
endin
g
O
(lo
g
z
N
) time,
whe
r
e
N
is t
he num
be
r o
f
vehicle
s
in
the roa
d
;
z
i
s
the minimi
ze numb
e
r
of child
ren i
n
e
a
ch
internal n
ode.
Whe
n
que
ryi
ng neig
hbo
rs of vehicle
s
i
in the local la
ne, we
can
di
rectly obtai
n them by
pointers
and
. That is, we can find nei
ghbo
rs of ve
hicle
i
in the local lane
also in
O
(log
z
N
) time.
Whe
n
que
rying neig
hbo
rs of vehicle
i
in the adja
c
e
n
t lanes, we use the exp
e
c
t que
ry
length
ϵ
to
m
easure th
e ef
ficien
cy of the que
ry. Such
a qu
ery se
arch nei
ghb
o
r
s by traversi
ng all
vehicle
s
in e
a
c
h pl
atoon. T
he expe
ct qu
ery length
of finding a vehi
cle in
a
plato
on by traversi
ng
is
. The exp
e
c
t que
ry len
g
th of findin
g
th
e obje
c
t n
e
ig
hbor in the
lo
cal pl
atoon
is:
and
in
the next pl
ato
on i
s
:
. We
can
summ
ari
z
e
the expe
ct query
l
ength
ϵ
of fin
d
ing
the obje
c
t vehicle in the
k
th platoon i
s
:
The nu
mbe
r
of leaf nod
es (platoo
n
s) in
a LLB
+-tree
can
be exp
r
e
ss
by
. We
can
descri
be the
expect qu
ery length
ϵ
of fin
d
ing nei
ghbo
rs in all platoo
n as follo
w:
We can si
mpl
i
fy the formula usin
g following method
s:
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 12, Decem
ber 20
14 : 8175 – 81
92
8184
By using geo
metric
se
ries,
we ca
n find:
Thus, the exp
e
ct que
ry len
g
th
ϵ
ca
n be
simplified a
s
follow:
For a ce
rtain road,
L
i
s
a consta
nt,
and
P
is
rapi
d
co
nverge
nce to
1
with the
in
cre
a
si
ng
of the nu
mbe
r
of vehi
cle
s
in the pl
atoo
n
q
. Fo
r a
ce
rtain
L
, we can
get an accepta
b
le
P
with
limited
q
. Therefo
r
e,
q
is also co
nsi
d
ered a
s
a consta
nt in this ca
se. Thu
s
, the limitation
, and we can
also
cal
c
ulate
the limitation of
ϵ
:
As a
re
sult,
we can
also fin
d
the
neig
hbo
r of ve
hicl
e
i
i
n
the
adja
c
e
n
t
lane i
n
lo
g
z
N
time,
unde
r the assumptio
n
of randomly di
stribution
of vehicle
s
. The rel
a
tionship am
ong the num
ber
of lane
s
L
, ex
pect
(ave
rag
e
)
n
u
mbe
r
of vehicl
es in
on
e plato
on
q
a
nd the
expe
ct
que
ry le
ngth
of
finding nei
gh
bors in the a
d
jacent lane
s
ϵ
with an e
n
ough la
rge
N
(we a
dapt
N
= 100
0 in th
is
ca
se) i
s
sho
w
n i
n
Fi
gu
re
6. T
he
cu
rve called
skyli
ne i
s
a lin
e
con
n
e
c
ting
e
v
ery poi
nts, t
he
minimum val
ue of
ϵ
of all
curve
s
, sho
w
s the optim
al
c
hoi
ce a
nd th
e variation tre
nd of
q
with t
h
e
increa
sing n
u
m
ber of lan
e
s
L
.
Figure 6. The
relation
ship
among
L
,
q
a
nd
ϵ
We al
so anal
yze the impa
ct
of the number of vehicle
s
N
, our rese
arch sh
ows that there
exists th
re
sh
old valu
es of
N
fo
r
a
cert
ain p
a
ir
of a
m
ount of
lan
e
s
L
a
nd
averag
e a
m
ou
n
t
of
vehicle
s
in a platoon
q
. When
N
is la
rg
er than the threshold value
,
the expect query length
ϵ
for
Evaluation Warning : The document was created with Spire.PDF for Python.