Indonesi
an
Journa
l
of El
ect
ri
cal Engineer
ing
an
d
Comp
ut
er
Scie
nce
Vo
l.
9
, No
.
2
,
Februa
ry
201
8
,
pp.
512~
525
IS
S
N:
2
502
-
4752
,
DOI: 10
.11
591/
ijeecs
.
v9.i
2
.
pp
512
-
525
512
Journ
al h
om
e
page
:
http:
//
ia
es
core.c
om/j
ourn
als/i
ndex.
ph
p/ij
eecs
Hybrid
Mi
cro G
enetic
Algorithm
Assisted
Optimu
m Dete
ctor
for Mult
i
-
Car
rier System
s
Mahm
ou
d
A.
M.
Albreem
1
,
SPK B
ab
u
2
, M F
M S
alleh
3
Depa
rtment
o
f
E
le
c
troni
cs
and
C
om
m
unic
at
ion
E
ngine
er
ing, Col
l
ege
of
Eng
ine
e
ri
ng,
A’S
har
qi
y
a
h
Univer
sit
y
,
400
Ibra
,
Om
an
Art
ic
le
In
f
o
ABSTR
A
CT
(
10
PT)
Art
ic
le
history:
Re
cei
ved
A
ug
9
, 2
01
7
Re
vised
N
ov
2
0
, 2
01
7
Accepte
d
Dec
28
, 201
7
A
low
-
complex
ity
de
tecti
on
sc
heme,
whi
ch
c
onsists
of
a
H
y
brid
Micro
Gene
tic
Algorithm
(Hy
brid
-
µG
A),
is
propose
d
for
Orthogonal
Freque
n
c
y
Division
Multi
ple
xing
(OF
DM
)
sy
st
ems
.
In
th
e
abse
nce
of
orthogonal
i
t
y
,
int
er
ca
rri
er
-
in
te
r
fer
ence
(ICI)
oc
cur
s
because
a
signal
from
one
subca
rri
e
r
ca
uses
int
erf
erence
to
othe
rs.
I
n
seve
ral
envi
r
onm
ent
,
the
OF
DM
signal
ref
lecti
ons
from
a
far
obst
ac
l
e
g
ene
ra
te
int
er
-
b
lo
ck
-
interfe
r
enc
e
(
IBI)
due
to
long
ti
m
e
d
el
a
y
s
.
To
avoi
d
the
se
unple
asa
n
t
eff
ects
of
IBI
and
ICI
in
OF
DM
s
y
st
em,
a
H
y
br
id
-
µG
A
det
ec
tion
al
gorit
hm
i
s
proposed.
The
proposed
det
e
ct
or
combines
the
conv
ent
io
nal
on
e
-
Ta
p
equ
al
i
ze
r
and
the
M
ic
ro
Gen
eti
c
Algorit
hm
(µG
A)
sea
rch
engine.
The
ou
tput
of
one
-
Ta
p
e
qual
i
ze
r
is
conside
red
as
the
input
to
µG
A s
ea
rch
engi
ne
.
Th
ere
f
ore
,
the
µG
A sta
rts
with
som
e
knowledge
rat
h
er
tha
n
b
l
indly
to
spee
d
up
the
sea
r
ch.
The
ore
ti
c
al
ana
l
y
sis
and
si
m
ula
ti
on
result
s
show
tha
t
the
proposed
det
e
ct
i
on
H
y
brid
-
µG
A
sche
m
e
s
ubstant
iall
y
improves
the
p
erf
or
m
anc
e
of
OF
DM
s
y
stems
.
Moreove
r, it
s
co
m
ple
xity
is 10 ti
m
es
lower
th
an
t
he
conv
ent
ion
al
GA
.
Ke
yw
or
d
s
:
Gen
et
ic
Algori
thm
s
Ma
xim
u
m
Likel
iho
od
OFDM
Copyright
©
201
8
Instit
ut
e
o
f Ad
vanc
ed
Engi
n
ee
r
ing
and
S
cienc
e
.
Al
l
rights re
serv
ed
.
Corres
pond
in
g
Aut
h
or
:
Ma
hm
ou
d A.
M. Albreem
,
Dep
a
rtm
ent o
f El
ect
ro
nics
and C
omm
un
ic
ation
En
gin
ee
rin
g,
C
ollege
of E
ng
i
neer
i
ng,
A’
S
ha
rq
iy
ah
Unive
rsity
, 400 Ibr
a
,
Om
an
Em
a
il
:
m
ah
m
ou
d.al
breem
@asu
.e
du.
om
1.
INTROD
U
CTION
Or
t
hogonal
Fre
qu
e
ncy
Divis
ion
Mult
iplexi
ng
(
OFDM)
offer
s
high
da
ta
rate
transm
issi
on
for
wireless
a
ppli
cat
ion
s.
The
re
fore,
it
has
bee
n
chosen
f
or
Di
gi
ta
l
aud
io/
Vide
o
broa
dcasti
ng
(
DA
B/
D
VB)
,
high
Sp
ee
d
dig
it
al
su
bsc
ribe
rs
li
ne
(D
SL
),
W
M
A
N,
Hi
per
L
A
N
syst
e
m
s,
Lon
g
Term
Evo
luti
on
(LTE
),
L
ong
Term
Ev
olu
ti
on
-
Adv
anced
(LT
E
-
A
),
et
c
[
1].
H
ow
ever,
O
FD
M
t
ran
s
f
or
m
s
the
fr
e
qu
e
ncy
sel
e
ct
ive
fad
i
ng
c
ha
nn
el
conditi
on
i
nto
a
set
of
narrow
flat
fad
in
g
c
ha
nn
el
s
,
there
by
reducin
g
the
e
ff
ect
s
of
In
te
r
Sy
m
bo
l
I
nterf
e
ren
c
e
(I
S
I)
[
1].
Mi
ni
m
u
m
Me
a
n
Square
Esti
m
at
ion
(MM
SE)
base
d
Zer
o
-
F
orci
ng
(ZF)
eq
ua
li
zer
is
a
low
com
plexity
su
bo
ptim
a
l
so
luti
on
but
this
te
chn
i
qu
e
re
du
c
es
ICI
with
s
om
e
lim
i
ta
ti
on
s.
W
he
ne
ver
the
norm
alized
D
oppler
fr
e
qu
e
ncy
bec
om
es
la
rg
e,
t
he
noise
en
ha
ncem
ent
and
I
CI
are
pre
va
il
ing
.
The
refore
,
MM
SE
beco
m
es
un
s
uitable
[2
]
.
Ma
xim
u
m
li
ke
li
ho
od
detect
i
on
(M
LD
)
is
t
he
optim
al
det
ect
ion
te
ch
nique.
T
he
MLD
has
a
high
com
pu
ta
ti
on
al
com
plexity
,
especial
ly
fo
r
a
l
arg
e
blo
c
k
data
siz
e.
The
refo
re,
oth
er
m
et
ho
ds
su
c
h
as
Vi
te
rb
i
Algorithm
(
VA
),
it
erati
ve de
cod
i
ng
[3
-
9], an
d Gen
et
ic
A
l
gorithm
s (
GA
)
[
10
-
11
]
h
a
d
be
en
pro
posed
t
o
assist
the d
et
ect
io
n p
ro
ces
s.
The
a
pp
li
cat
io
ns
of
G
A
al
go
r
it
h
m
s
fo
r
m
ultip
le
-
in
put
-
m
ultip
le
-
ou
t
pu
t
(MI
MO)
syst
em
are
pr
e
sente
d
in
[
7
,
10]
.
T
he
GA
al
gorit
hm
is
al
so
use
d
in
Mult
i
-
U
ser
-
Detect
ion
(MU
D)
,
an
d
OFDM
al
ong
with
a
Mi
ni
m
u
m
Mean
S
quare
Erro
r (MM
SE) detec
tor.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Hyb
ri
d
Mi
cr
o Gen
et
ic
Al
gorit
hm
Assist
ed O
ptimum
Detect
or
f
or
…
(
Ma
hmo
ud A
. M. Al
br
ee
m
)
513
The
w
ork
in
[
11,
12]
presents
a
sin
gle
a
nten
na
OFDM
syst
e
m
us
in
g
G
A.
Wor
k
in
[
10
]
presents
the
adap
ti
ve
s
ubca
rr
ie
r
a
nd
bit
allocati
on
sc
hem
e
to
m
axi
m
iz
e
the
su
m
data
rate
for
m
ult
iuser
OFDM
syst
e
m
s
us
in
g
G
A.
Dif
fer
e
nt
init
ia
l
c
onditi
on
t
o
acce
le
rate
conve
rg
e
nce
tim
e
of
GA
is
us
e
d
w
it
ho
ut
sac
rifici
ng
th
e
perform
ance
of
the
syst
e
m
.
Me
anwhil
e,
th
e
work
in
[12]
pr
ese
nts
the
use
of
G
A
to
s
ol
ve
the
pro
ble
m
of
the
m
axi
m
u
m
-
li
kelihood
est
im
ati
on
of
OFDM
s
yst
e
m
in
the
presence
of
nonlinear
disto
rtion.
In
[13],
a
dete
ct
ion
schem
e
con
sis
ti
ng
a
sphe
re
dec
oder
a
nd
pa
rall
el
inter
fer
e
nce
ca
ncel
la
ti
on
(
PI
C
)
e
qu
al
iz
er
achie
ved
a
relat
ively
low
er co
m
plexity
than
oth
e
r
detect
or
s
. I
n
[
14]
, an eff
ic
ie
nt lat
ti
c
e sp
he
re d
ec
oding
(
L
SD) tec
hniq
ue
has
bee
n
propose
d
f
or
m
ulti
-
carrier
syst
em
s
.
T
he
propose
d
detect
io
n
te
ch
nique
c
om
bin
es
the
L
SD
wit
h
t
w
o
regulariz
at
io
n
m
et
ho
ds.
I
n
[
15
]
,
a
n
im
plem
entat
ion
of
receiver
s
f
or
sp
at
ia
l
m
ult
iplexin
g
MIM
O
-
OFDM
syst
e
m
is
con
s
idere
d.
The
re
su
lt
s
pr
ov
i
de
a
so
li
d
ba
sis
f
or
syst
em
atic
com
plexity
-
per
f
or
m
ance
tra
de
off
of
diff
e
re
nt d
et
ect
ion
al
gorithm
s f
or a
pp
li
cat
io
n i
n
the e
volvi
ng n
e
xt g
e
ne
rati
on cell
ular
acce
ss stan
dard.
The
m
ai
n
obj
e
ct
ive
of
t
his
pa
per
is
to
pro
pose
an
ef
fici
ent
Hybr
i
d
-
µ
G
A
de
te
ct
ion
schem
e
to
achieve
a
good
balanc
e
betwee
n
co
m
plexit
y
and
perform
ance.
The
pro
pose
d
detect
ion
sc
he
m
e
is
su
it
able
fo
r
t
he
syst
e
m
s
su
ff
er
ed
ICI
a
nd
IB
I.
H
ow
e
ve
r,
L
TE
syst
e
m
de
pends
on
MI
MO
-
OFDM
struct
u
re,
the
propos
e
d
detect
ion t
ech
ni
qu
e is
su
it
able
and a
pp
li
ca
ble for LTE a
nd L
TE
-
A
syst
em
s.
This
pa
pe
r
is
orga
nized
as
f
ollows:
Sect
io
n
2
is
a
desc
r
ipti
on
of
t
he
OFDM
syst
em
.
Sect
io
n
3
pr
ese
nts the G
A
an
d
Mi
cr
o
-
GA
Base
d
ML
BD.
Sect
io
n 4 prese
nts the pr
opos
e
d
de
te
ct
ion
al
gorithm
. S
ect
ion
5
pr
ese
nts
a
m
ath
em
atical
analy
sis
of
the
syst
e
m
per
f
or
m
ance.
Sect
io
n
6
pr
ese
nts
t
he
re
su
lt
s
an
d
disc
ussi
on,
and Secti
on
7
c
on
cl
ud
e
s the
paper
.
2.
ORTH
OGO
N
AL F
REQ
UENCY DI
VIS
I
ON M
ULTIP
LE
X
I
NG
Fig
ure
.
1
s
how
s
the
bl
oc
k
dia
gr
am
of
the
pr
opos
e
d
OFDM
syst
e
m
.
A
co
nt
inu
ous
bin
a
ry
inf
or
m
at
ion
bits
are
tr
uncat
ed
int
o
blo
c
ks
of
data.
The
ze
ro
bits
are
ad
de
d
to
m
ake
each
blo
c
k
to
be
of
siz
e
(
N
).
T
he
n,
t
he
bits
of
eac
h
bl
ock
are
m
app
e
d
us
in
g
a
ny
m
odulati
on
sc
he
m
e.
The
m
app
ed
data
a
re
c
onve
rt
ed
to
pa
r
al
lel
sy
m
bo
ls
an
d
s
hould
be
tra
nsm
itted
to
an
in
ver
se
Fast
Fou
rier
Tra
nsfo
rm
(iFFT
).
T
his
process
m
od
ulat
es
each
sy
m
bo
l by a
ca
rr
ie
r
(
total
N
c
arr
ie
rs
)
i
n
ti
m
e
dom
ai
n.
Fig
ure
.
1
Bl
oc
k
Diag
ram
of
the
P
r
opos
e
d
O
FD
M
Syst
em
In
order
to
a
void
IB
I,
a
co
py
of
the
la
st
few
sy
m
bo
ls
(le
ng
t
h
great
er
th
an
or
eq
ual
to
the
order
of
channel)
of
eac
h
blo
c
k
is
c
on
c
at
enated
to
the b
loc
k.
Th
is
is
c
al
le
d
the
cy
cl
ic
pr
e
fix
(CP
)
w
hich
is discar
de
d
a
t
the
receive
r.
T
he
ad
diti
on
of
CP
m
akes
the
li
near
c
onvoluti
on
t
o
be
a
ci
rc
ular
c
onvoluti
on
w
hich
pro
du
ci
ng
a
diag
on
al
c
ha
nn
el
m
at
rix
at
the
r
ecei
ve
r [17]
.
At
the
receive
r,
CP
shou
l
d
be
rem
ov
ed
a
nd
the
blo
c
k
data
are
conv
erted
to
pa
rall
el
sy
m
bo
ls.
Ther
ea
fter
,
the
y
are
fe
d
to
th
e
Fast
Four
ie
r
Transf
or
m
(F
F
T).
T
he
data
bl
ock
a
re
c
onve
r
te
d
to
se
rial
da
ta
and
Bin
ary
D
ata a
s
Blo
cks
En
co
d
in
g
(Cha
n
n
el c
o
d
in
g
&
Bl
o
ckin
g
&
IFFT
Ad
d
c
y
clic
p
refix
Ch
an
n
el +
N
o
ise
Rem
o
v
e
cy
clic pr
efix
De
-
Bl
o
c
kin
g
&
FF
T
Est
im
a
te
d
Bin
ary
D
ata a
s
Bl
o
cks
S/
P
D
et
ect
i
o
n
Al
g
o
rith
m
P
/
S
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
512
–
525
514
Mult
ipli
ed
by
the
com
plex
c
onjug
at
e
of
t
he
channel
f
re
quency
respo
nse
via
eq
ualiz
at
ion
process
.
T
hen
t
he
serial
d
at
a a
re
f
ed
to
a
detect
or an
d
the
b
it
s a
r
e rec
ov
e
red.
Suppose
Ci
be
the
OFDM
bloc
k
to
be
tra
nsm
itted
th
r
ough
a
fad
i
ng
cha
nnel
h(n
)
of
le
ngth
L
de
fine
d
as
(1)
(2)
and
1
2/
0
(
)
(
)
L
j
n
l
N
l
H
n
h
l
e
(3)
H(n)
is
the
c
ha
nn
el
f
re
qu
e
ncy
response
of
th
e
nth
sub
ca
rr
i
er
[
18
]
.
T
he
H
(n)
te
rm
is
the
FFT
gri
d
of
the
cha
nnel
wi
th
each
c
oe
ff
ic
ie
nt
ref
le
ct
in
g
a
set
of
na
rro
w
flat
cha
nnel
.
This
blo
c
k
co
ns
ist
s
of
the
B
PSK,
QP
S
K,
or
QAM
sy
m
bo
ls.
It
al
so
co
ns
ist
s
of
zer
o
sym
bo
ls
that
f
or
m
the
virtu
al
c
ha
nn
el
s
to
pr
e
ve
nt
th
e
powe
r
le
aking to t
he near
by c
hannel
s [17
]
. T
he
iFF
T is p
e
rfo
rm
ed
by m
ulti
plyi
ng
the
Ci
w
it
h a
m
at
rix
F as giv
en
as
H
ii
s
F
C
(4)
wh
e
re
H
repres
ents a
Her
m
it
ian
tra
nspose
. T
he
ele
m
ents of
F
m
at
rix
are g
i
ven as
,
12
[
]
e
x
p
,
f
o
r
0
,
1
nk
j
n
k
F
n
k
N
NN
(5)
Afte
r a
dding
N
g
c
ycl
ic
pre
fi
x, t
he
tra
nsmi
tted
si
gnal
be
co
me
s
_
i
c
p
c
p
i
S
T
S
(6)
Whe
r
e
g
N
XN
cp
N
P
T
I
(7)
wh
e
re
IN
is
r
e
pr
ese
nted
by
the
N
×
N
identit
y
m
a
t
rix
a
nd
P
N
g
×
N
is
N
g
×
N
m
a
trix
c
ollec
ti
ng
the
la
st
N
g
rows
as
CP
. W
it
hout c
onsid
erin
g
the
noise,
the
receive
d
si
gn
al
is
d
e
fine
d as
(8)
Whe
re
(9)
(
1
)
[
(
0
)
,
(
1
)
.
.
.
.
.
.
]
T
i
i
i
i
N
C
c
c
c
(
)
[
(
0
)
,
(
1
)
.
.
.
.
.
.
.
.
.
(
1
)
]
h
n
h
h
h
L
_
_
1
_
lu
i
c
p
i
c
p
i
c
p
r
B
S
B
S
0 . . .
(
1
)
(
2)
. . .
(
1
)
0 . . .
0
(
1
)
. . .
(
2)
. . . . . .
.
. . . . . .
.
. . . . . .
.
0 .
.
l
h
h
h
L
h
h
L
B
. 0
(
1
)
0
.
.
.
.
.
.
0
. . . . . . .
.
. . . . . . .
.
.
.
.
.
.
.
.
.
0
.
.
h
. . . . 0
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Hyb
ri
d
Mi
cr
o Gen
et
ic
Al
gorit
hm
Assist
ed O
ptimum
Detect
or
f
or
…
(
Ma
hmo
ud A
. M. Al
br
ee
m
)
515
A
nd
(10)
The
seco
nd
te
r
m
in
Eq
uation
8
represents
t
he
IBI
com
ponen
t
[
14,
18]
,
wh
ic
h
can
be
rem
ov
ed
by
m
ul
ti
plyi
ng
the
term
w
it
h
Rc
p. T
her
e
fore,
t
he
r
ecei
ve
d
si
gn
al
is g
ive
n
as
(11)
wh
e
re
cl
c
p
c
p
B
R
B
T
is
a
ci
rcu
la
nt
m
at
rix
whose
first
c
olu
m
n
is
giv
e
n
by
0
T
TT
NL
h
.
T
he
rece
ive
d
sign
al
ri is c
onver
te
d
f
r
om
p
arall
el
to
serial
and fe
d
t
o
the
FFT un
it
ca
n b
e ex
pr
es
sed
as
H
i
i
d
i
R
F
B
F
C
D
C
(12)
FBFH
is
dia
gonal
m
at
rix
due
to
the
dia
gonoli
zat
ion
pr
op
e
rty
of
t
he
ci
rcu
la
nt
m
at
rix
[14].
T
he
transm
itted sig
nal can
b
e
r
ec
overe
d by
Eq
uat
ion
13.
1
ˆ
i
d
i
C
D
R
(13)
Eq
uation
12 ca
n be
represe
nted
in
a scalar
fo
rm
as
(
)
(
)
(
)
,
0
1
ii
R
n
H
n
C
n
n
N
(14)
Si
nce
Dd is a
di
agonal m
at
rix,
Eq
uatio
n
14 ca
n be
re
-
wr
it
te
n as
()
ˆ
(
)
,
0
1
()
i
i
Rn
C
n
n
N
Hn
(15)
Eq
uation
15
s
hows
that
eac
h
el
em
ent
of
the
receiv
ed
ve
ct
or
is
m
ulti
pl
ie
d
by
sin
gle
el
e
m
ent
(o
ne
Tap)
of
1/
H(n).
The
syst
e
m
works
well
in
abse
nce
of
no
i
se
an
d
f
or
cha
nn
el
s
with
ou
t
deep
fa
des
(
spe
ct
ral
nu
ll
s)
. Ho
we
ve
r,
when
the c
ha
nn
el
s
exhibit
s
pectral
nu
ll
s,
this
in
versi
on
proces
s leads
to hig
h
BER
[18].
3.
IMPLEME
N
TATION
METHOD
S FO
R GA
PA
RAME
TE
RS
In
GA,
m
any
par
am
et
ers
shou
l
d
be
ta
ken
into
co
ns
i
derat
ion
s
uch
as
cod
i
ng,
ob
j
ect
ive
f
un
ct
io
n
evaluati
on,
se
arch
proce
ss,
and
sto
ppin
g
crit
eria
of
GA.
I
n
t
his
resea
rch,
a
bin
a
ry
GA
(B
GA)
is
us
e
d.
Ther
e
f
or
e,
whe
n
the
searc
h p
r
ocess
is
co
m
plete
d,
the
s
olu
ti
on
sho
uld be
g
i
ven b
y t
he GA
in a
bin
a
ry for
m
.
3.1
Coding
of Sol
ut
ion
Space
This
sect
io
n
pr
esents
the
c
oding
pa
rt
of
G
A
so
luti
on
s
pace.
Table
I
il
lustr
at
es
the
transm
issi
on
a
nd
detect
ion
of
m
essage
blo
c
ks
of
siz
e
4
t
hro
ugh
t
he
I
SI
a
f
fected
c
ha
nn
el
us
in
g
a
M
LD
w
her
e
al
l
po
s
sible
so
luti
ons a
re
presente
d.
(
0)
0
0
......0
(
1
)
(
0)
0
.......0
(
2)
(
1
)
(
0)
.......0
. . .
h
hh
h
h
h
B
. .
. . .
. .
. . .
. .
(
1
)
(
2)
(
3
)
...
...
.0
0
(
1
)
h
L
h
L
h
L
hL
(
2)
...
...
.0
. .
. . .
.
.
. . .
.
.
. .
hL
.
0
0
...
...
.
. 0
(
0)
h
_
cH
i
c
p
i
c
p
i
r
R
r
B
F
C
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
512
–
525
516
Table I: C
odin
g of
So
l
utio
n
S
pace
for
a
Me
s
sage
Bl
oc
k
of
Size
4
i
n
Bi
na
r
y
Fo
rm
at
Bl
ock
N
o.
Me
ssage
Bl
oc
k
Me
ssage
Bl
oc
k
1
-
1
-
1
-
1
-
1
0 0 0
0
2
-
1
-
1
-
1
1
0 0 0
1
3
-
1
-
1
1
-
1
0 0 1
0
4
-
1
-
1
1 1
0
0 1 1
5
-
1
1
-
1
-
1
0 1 0
0
6
-
1
1
-
1 1
0 1 0
1
7
-
1
1
1
-
1
0 1 1
0
8
-
1
1
1 1
0 1 1
1
9
1
-
1
-
1
-
1
1 0 0
0
10
1
-
1
-
1
1
1 0 0
1
11
1
-
1
1
-
1
1 0 1
0
12
1
-
1
1
1
1 0 1
1
13
1
1
-
1
-
1
1 1 0
0
14
1
1
-
1
1
1 1 0
1
15
1
1 1
–
1
1 1 1
0
16
1
1 1
1
1 1 1
1
3.2
Obj
ec
tive Fun
ction
Fig
ure
.
2
s
how
s
the
obj
ect
ive
functi
on
for
each
chrom
os
ome
that
rep
rese
nt
s
the
po
ssible
transm
itted
m
essage in
t
he GA
b
ase
d SC
-
BDTS.
T
he obj
ect
ive fun
ct
io
n ca
n be e
xpres
s
ed
as
(16)
wh
e
re
SSE
e
,
R,
S,
and
H
a
re
t
he
Eucli
dea
n
dis
ta
nce,
the
rece
ived
blo
c
k,
tra
ns
m
itted
blo
c
k,
an
d
channel
m
at
ri
x,
re
sp
ect
ively
.
For
a
m
essa
ge
bl
ock
siz
e
of
4,
the
re
a
re
16
possi
ble
m
essage
blo
c
ks
or
so
luti
ons.
I
f
t
he
tra
ns
m
it
te
d
m
essage
blo
c
k
is
t
h
e
row
15
t
h
(S
ee
Tab
le
I)
f
or
the
r
ecei
ved
vect
or
R,
t
he
Eq
uation
16
(obj
ect
iv
e
functi
on)
is
evaluate
d
f
or
al
l
possib
le
m
essage
bloc
ks
Si.
F
or
the
no
ise
fr
ee
c
onditi
on,
the
obj
ect
iv
e
f
un
ct
io
n
value
i
s
zero
for
the
15th
blo
c
k,
a
nd
the
oth
e
r
bl
oc
ks
resu
lt
in
a
non
-
ze
ro
valu
e
f
or
the
evaluati
on
of
Eq
uation
16.
F
ig
ure
2
s
ho
ws
the
obj
e
ct
i
ve
f
un
ct
io
ns
pr
e
se
nted
in
Eq
uation
16
w
he
n
th
e
15
t
h
m
essage
bl
ock
([1
1
1
–
1])
is
transm
it
te
d
thr
ough
no
rm
a
li
zed
cha
nn
el
i
m
pu
lse
res
pons
e
[0
.40
82
0.
81
65
0.408
2]
[19].
I
f
a
gr
a
dient
ba
sed
searc
h
te
ch
nique
is
us
e
d,
t
her
e
is
a
possi
bili
ty
that
t
he
s
earch
te
c
hn
i
que
will
end
up
i
n
so
m
e
local
m
ini
m
a
.
In
this
case
th
e
m
essage
blo
c
ks
7,
11,
13,
a
nd
16
a
re
su
c
h
local
m
ini
m
a,
wh
ic
h
are close
r
t
o
ze
ro (
the
g
l
ob
al
optim
u
m
)
an
d
c
om
petit
or
s for
the 15th
b
l
oc
k.
Fig
ure
2
.
Eucli
dean
Dista
nces
of
All
Po
ssi
bl
e
Bl
ock
s
f
or
C
hannel
[0.40
82 0
.
8165
0.4
082]
|
|
H
S
R
e
i
n
S
S
E
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Hyb
ri
d
Mi
cr
o Gen
et
ic
Al
gorit
hm
Assist
ed O
ptimum
Detect
or
f
or
…
(
Ma
hmo
ud A
. M. Al
br
ee
m
)
517
3.3
St
oppi
n
g Crit
eri
a
The
G
A
proce
ss
sta
rts
with
a
set
of
so
l
utions
or
tr
ai
ning
da
ta
an
d
e
nds
w
it
h
a
set
of
s
ol
utions.
The
best
am
on
g
the
so
luti
ons
at
the
end
of
the
r
un
is
ta
ken
as
th
e
glo
bal
opti
m
um
,
wh
ic
h
is
t
he
transm
it
te
d
blo
c
k,
as
in
this
case
.
The
c
onve
rg
e
nce
of
t
he
G
A
for
the
cha
nn
el
s
ta
ken
i
nto
consi
der
at
io
n
diff
e
rs
with
re
sp
ect
to
the
disto
rtion.
This
is
due
to
increase
i
n
num
ber
of
c
om
petito
rs
(l
ocal
m
ini
m
a)
or
eq
uiv
a
le
nt
decr
ease
s
in
th
e
obj
ect
ive
f
unct
i
on
val
ue
of
the
c
om
petit
or
s.
I
n
t
his
case
,
the
GA
ta
kes
m
or
e
tim
e
to
conve
rg
e
the
global
op
ti
m
u
m
,
w
hi
ch
is
t
he
tra
nsm
itted
bl
ock.
The
pro
posed
GA
bas
ed
det
ect
or
syst
em
i
s
tim
e
sensiti
ve.
T
he
stoppin
g
crit
eri
on
c
on
si
ders
th
e
us
e
of
the
m
axim
u
m
gen
er
at
ion
s
o
f
the
G
A
for
a
par
ti
c
ul
ar
In
it
ia
l
po
pu
la
ti
on
to
co
nv
e
r
ge.
T
he
m
axi
m
u
m
gen
erati
ons
for
the
G
A
ba
sed
detect
or
s
f
or
t
he
BDT
S
un
de
r
a
pa
rtic
ular
c
hannel
are
fou
nd
in
a
dvance
by
the
tria
l
and
error
m
et
hod.
A
fter
ch
eckin
g
the
G
A
converge
nce
on
106
blo
c
ks
,
SN
R
va
lue
is
inc
rea
sed.
E
ven
th
ough
this
proce
dure
is
ti
m
e
consum
ing
,
it
is
done
in
offli
ne
and
the
res
ult
values
are
sto
re
d.
O
nc
e
the
c
ha
nn
el
par
am
et
ers
li
ke
i
m
pu
lse
re
spon
s
e
a
nd
f
requ
ency
res
ponse
are
known
,
the
I
niti
al
popula
ti
on
siz
e
and
m
axi
m
u
m
gen
erati
ons
,
wh
ic
h
var
y
f
or
dif
fer
e
nt
ch
ann
el
c
har
act
e
risti
cs,
are
set
.
Othe
r
par
am
et
ers
li
ke
Crosso
ver, M
utati
on
a
nd S
el
ect
ion
a
re
fou
nd
from
p
aram
e
te
r
tu
ning.
Figure
3
is
do
ne
offli
ne
.
T
he
proce
dure
sho
wn
is
to
deter
m
ine
the
nu
m
ber
of
ge
ner
at
i
on
s
re
qu
ir
ed
for
G
A
ba
se
d
detect
or
s
to
perform
equ
al
ly
with
the
Ex
haust
ive
searc
h
te
chn
i
qu
e
,
wh
ic
h
is
the
op
tim
u
m
syst
e
m
.
Si
m
i
la
rly
,
the
siz
e
of
In
it
ia
l
popula
ti
on
is
fi
xed
an
d
ge
ner
at
io
ns
ar
e
va
ried.
A
dat
a
blo
c
k
is
ge
ne
rated
and
c
onvolve
d
with
the
Cha
nnel
Im
pu
lse
Re
sp
onse
(CI
R)
a
nd
noise
is
ad
de
d
f
or
t
he
de
fined
SN
R
value
.
Th
e
receive
d
data
bl
ock
is
se
nt
to
the
E
xh
a
us
ti
ve
search
a
nd
G
A
based
MLB
D
m
et
ho
d
for
det
ect
ion
.
If
the
r
esults
are
the
sam
e;
t
he
pro
ced
ur
e
i
s
rep
eat
e
d
f
or
106
ti
m
es,
wh
ic
h
is
the
m
axim
u
m
nu
m
ber
of
blo
c
ks
.
T
his
value
(num
ber
of
e
xperim
ents)
of
106
is
ta
ke
n
to
ascerta
in
the
work
i
ng
of
the
syst
e
m
.
If
the
resu
lt
s
are
dif
fer
e
nt,
the
ge
ner
at
io
ns
are
increase
d
in
te
ns
.
T
he
increm
ent
te
n
is
cho
s
en
beca
us
e
it
is
no
t
to
o
sm
all
or
too
big
to
m
iss i
nterm
edi
at
e v
al
ue
.
Fig
ure
.
3 Proce
dures
t
o
Fi
nd
the
Ma
xim
u
m
Gen
e
rati
ons
for
Co
nver
ge
nce
Def
ine t
he
Cha
nn
el
I
m
p
uls
e
Respo
ns
e
Def
ine t
he
Sig
na
l
-
to
-
No
is
e
Ra
t
io
Def
ine In
it
ia
l po
pu
la
t
io
n a
nd
g
ener
a
t
io
ns
B
lo
ck
=
1
ST
O
P
Sta
rt
G
ener
a
t
e
da
t
a
blo
ck
Co
nv
o
lv
e
w
it
h CIR
Add AW
G
N
w
it
h SNR
def
i
n
ed
Use E
x
ha
u
s
t
iv
e
s
ea
rc
h t
o
do
M
L
B
D
Use G
A
t
o
perf
o
r
m
M
L
B
D
Co
m
pa
re
t
he
re
s
ults
g
ener
a
t
io
ns
=
g
ener
a
t
io
ns
+
10
B
lo
ck
=
B
lo
c
k
+
1
No
Yes
Yes
SNR
=
SN
R
+
1
Are
t
hey
s
a
m
e?
B
lo
ck
=
m
a
x
(
B
lo
ck
)
?
Yes
No
No
S
NR
>
m
a
x
(
SNR
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
512
–
525
518
4.
DETE
CTIO
N
SCHEME
This
sect
io
n
pr
esents
the
m
axi
m
u
m
l
ikeli
hood
detect
ion
sc
hem
e,
fo
ll
ow
e
d
by
the
pro
posed
hy
br
i
d
-
µGA base
d
M
LD
4.1.
Maximum
Li
keli
ho
od
Det
e
ction
The
ML
D pro
bl
e
m
is
fo
rm
ulate
d belo
w wh
e
r
e the
receive
d bloc
k
is
giv
e
n as
(
)
(
)
(
)
(
)
ii
R
n
H
n
C
n
w
n
(17)
wh
e
re
w(n
)
i
s
the
a
ddit
ive
w
hite
Ga
ussi
an
no
ise
(
A
WGN)
wit
h
zero
m
ean
and
va
riance
22
|
(
)
|
w
E
w
n
.Th
e MLD c
om
par
es all the
po
s
sible C
i with
the
receive
d
sign
al
d
e
fine
d
in Eq
.
17
base
d on
the
Eu
cl
idea
n
distance
as
s
how
n
in
E
q
uatio
n
18
.
T
he
Ci
t
hat
ha
s
the
lo
west
E
uclidean
distan
ce
val
ue
is
c
ho
sen
a
s
the m
os
t prob
a
ble tra
ns
m
itted b
loc
k.
||
i
e
R
H
C
(18)
In
this
est
i
m
at
i
on,
th
e
blo
c
k
involve
s
the
CP
te
r
m
wh
ic
h
ha
s
su
f
fici
ent
sta
t
ist
ic
abo
ut
the
sign
al
.
F
or
a
sy
m
bo
l
le
ng
t
h
of
N
,
the
CP
le
ng
th
of
N
g
and
c
ha
nn
el
le
ng
t
h
of
L,
t
he
receive
d
vect
or
R
ha
ve
le
ngth
l
is
giv
e
n
as
;
if
1
;
if
gg
g
N
N
L
N
l
N
L
L
N
(19)
IBI
oc
cu
rs
w
hen
l
is
gr
eat
er
tha
n
N
+
Ng.
I
n
this
si
tuati
on
,
t
he
de
te
ct
or
does
no
t
ta
ke
i
nt
o
consi
der
at
io
n
t
he
I
nter
-
Bl
oc
k
-
I
nterf
e
re
nce
(
I
BI)
a
nd
the
rec
ei
ver
s
houl
d
w
ai
t
fo
r
the
ne
xt
blo
c
k
a
nd
us
e
s
the
channel i
m
pu
lse
r
es
pons
e
(
CI
R) sho
rtenin
g proce
dure.
4.2.
Hy
brid
M
ic
r
o GA
Base
d
M
LD
Figure
4
s
how
s
the
blo
c
k
dia
gr
am
of
th
e
pr
opos
e
d
detect
ion
al
gorithm
.
Ma
xim
u
m
li
kelihood
blo
c
k
detect
ion
(ML
BD)
for
the
pr
ob
le
m
is
handled
us
in
g
the
H
ybrid
-
µG
A
bas
ed
detect
or.
T
hi
s
detect
or
co
m
bin
es
the
conve
ntional
on
e
-
Ta
p
eq
ualiz
er
with
th
e
µGA
searc
h
eng
i
ne.
T
he
outp
ut
of
the
on
e
-
Tap
e
qu
al
iz
e
r
afte
r
thres
ho
l
d
detect
ion
is
s
uboptim
al
and
use
d
as
t
he
sta
r
ti
ng
po
i
nt
of
the
µG
A
sea
r
ch
e
ng
i
ne.
By
this
arr
a
ng
em
ent,
t
he
µ
GA
sta
rts
with
so
m
e
knowle
dge
rath
er
blind
ly
.
Th
is
proce
dure
s
peeds
up
the
search
process
th
ere
by
red
uc
in
g
th
e
com
pu
ta
ti
onal
load
by
r
e
du
ci
ng
t
he
ini
ti
al
po
pula
ti
on.
Table
I
I
s
hows
a
com
par
ison bet
ween t
he p
rop
os
e
d
Hy
br
i
d
-
µ
GA an
d
c
onve
ntion
al
G
A
in
term
o
f
init
ia
l p
opulati
on varia
ti
on
s
Table I
I: Init
ia
l
Pop
ulati
on
Va
riat
ion
s
S
NR
(
d
B
)
M
e
t
h
o
d
0
2
4
6
8
10
12
14
C
o
n
v
e
n
t
i
o
n
a
l
G
A
1600
1400
1200
1000
800
700
600
500
Hy
b
r
i
d
µ
G
A
700
700
600
600
500
500
500
400
The
popula
ti
on
siz
e
of
5
is
us
e
d
in
this
w
ork.
T
he
G
A
par
am
et
ers
us
e
d
are
t
wo
poi
nt
cr
os
s
ov
e
r,
stochastic
un
i
f
or
m
sel
ect
ion
and
m
utati
on
rate
of
ze
ro.
I
n
the
al
gorith
m
,
the
first
ge
ner
at
io
n
of
th
e
µG
A
process
is
al
te
r
ed
by
forcin
g
t
he
be
st
ind
i
vidual
to
be
the
outp
ut
of
the
one
-
Tap
eq
ualiz
er.
T
he
Hy
br
i
d
μGA
base
d
MLB
D
a
lgorit
hm
is g
iv
en
as:
Step
1: G
e
ne
ra
te
r
an
dom
p
opulati
on
of si
ze
4.
S
te
p 2: Ad
d
th
e d
et
ect
ed
b
l
oc
k from
BLE to
the po
pu
la
ti
on
gen
e
rated
so th
at
the total
popula
ti
on
is
5.
Step
2:
Fit
ness
functi
on
is
ev
al
uated
f
or
the
chrom
os
om
es
gen
e
rated
in
s
te
p
1,
2
an
d
be
st
ind
ivid
ual
is
ta
ken
.
Step
3: T
he be
st i
nd
i
vidual i
s
ta
ken
f
or
t
he n
ext g
e
ne
rati
on.
Step
4: T
he
sel
ect
ion
is m
ade
on f
i
ve
c
hrom
os
om
es.
Step
5: Do c
r
osso
ver
at
r
at
e e
qu
al
t
o 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Hyb
ri
d
Mi
cr
o Gen
et
ic
Al
gorit
hm
Assist
ed O
ptimum
Detect
or
f
or
…
(
Ma
hmo
ud A
. M. Al
br
ee
m
)
519
Step 6
: C
heck
for
co
nver
ge
nc
e (In
this case
Ma
xim
u
m
g
ener
at
ion
s
)
a
nd
i
f
it
is n
ot ach
ie
ve
d
retai
n
t
he
be
st
string an
d ge
ne
rate ra
ndom
ly
ano
t
her 4
chro
m
os
o
m
es and
go to st
ep 2.
Step
7: Stop.
Fig
ure
.
4
Hy
bri
d
µG
A base
d M
LBD for O
F
DM
4.3.
Hy
brid
M
ic
r
o GA
Base
d
M
LB
D
Fig
ure
5
s
how
s
the
G
A
base
d
ML
detect
or
for
the
O
FD
M
syst
e
m
.
In
this
syst
e
m
,
the
detect
ion
pa
rt
of
the
OFDM
sy
m
bo
l
is
per
f
or
m
ed
by
the
GA
base
d
MLB
D.
The
G
A
ba
sed
MLB
D
c
om
par
es
the
re
cei
ve
d
blo
c
k
with
al
l
po
s
sible
(
her
e
it
is
2
m
,
wh
er
e
m
is
the
siz
e
of
t
he
O
FD
M
sy
m
bo
l)
sym
bo
ls.
Ag
ai
n
it
ha
s
to
be
no
te
d
that
the
receiver
has
a
pr
i
or
knowle
dg
e
a
bout
t
he
channel
im
pu
lse
res
pons
e
(CIR)
,
an
d
pe
rf
ect
synch
ronizat
io
n
is al
s
o
ass
ume
d betwee
n
tra
ns
m
itter and r
e
cei
ver
Fig
ure
.
5
Ge
ne
ral
Bl
ock
Dia
gram
of
A
G
A b
ased MLB
D for
A
n
OFDM
S
yst
e
m
The
G
A
pa
ram
et
ers
Crosso
ve
r,
Muta
ti
on,
Se
le
ct
ion
,
are
defi
ned
.
For
exam
ple,
one
can
de
fine
w
hat
ty
pe
of
Cr
os
s
ov
e
r
(
Sin
gle
point,
T
w
o
point,
or
Mult
i
point)
is
us
ed
.
The
I
niti
al
popu
la
ti
on
pa
ra
m
et
er
is
change
d,
as
it
dep
e
nds
on
the
SN
R
value.
T
he
In
it
ia
l
po
pu
la
ti
on
is
cho
se
n
as
high
or
low
SN
R,
or
vic
e
ver
sa
.
The
S
NR
valu
e
is
increm
ental
ly
chan
ge
d
a
fter
eac
h
it
erati
on
.
The
flo
w
char
t
of
t
he
H
ybrid
-
µG
A
sys
tem
is
sh
ow
n
i
n
Fi
g
ure
6,
w
her
e
t
he
µG
A
detect
or
is
us
e
d
inste
ad
of
the
G
A
detect
or.
T
he
hybri
dizat
ion
pa
rt
is
R
e
c
e
i
v
e
d
b
l
o
c
k
w
i
th
n
o
i
s
e
[R
i
(n
)]
Eq
u
al
i
z
ati
o
n
-
s
i
n
gl
e
tap
fi
l
t
e
r
1
ˆ
i
d
i
C
D
R
H
(
n
)
(
A
s
s
u
m
e
d
to
b
e
k
n
o
w
n
i
n
a
d
v
a
n
c
e
)
ˆ
i
C
I
ni
t
ial
pop
ul
at
ion
ge
ner
at
ion
µ
G
A
b
as
e
d
M
L
B
D
D
e
te
c
te
d
b
l
o
c
k
ˆ
M
L
B
D
i
C
Enc
od
i
ng
(Cha
nn
el
c
odin
g
& Map
ping)
Bl
ock
in
g
&
I
FFT
Add
cy
cl
ic
pr
e
fix
Chan
nel
+ N
oise
Rem
ov
e
cy
cl
ic
pr
e
fix
De
-
Bloc
king
&
FF
T
Bi
nar
y
Data as
Bl
ock
s
Bi
na
ry
Data as
Bl
oc
ks
S/P
H
y
b
r
i
d
µ
G
A
M
L
B
D
P/S
Ca
lc
ulate
BER
&
Disp
la
y
Evaluation Warning : The document was created with Spire.PDF for Python.
IS
S
N
:
2502
-
4752
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci,
Vo
l.
9
,
No.
2
,
Fe
bruary
2
01
8
:
512
–
525
520
sh
ow
n
by
the
do
tt
ed
li
ne
.
Th
e
received
bloc
k
is
sent
to
bl
ock
li
nea
r
eq
ua
li
zer
(BLE).
The
outp
ut
of
the
BLE
is
ta
ken
as
on
e
of
t
he
fi
ve
I
niti
al
popu
la
ti
on
s
,
a
nd
it
is
the
in
pu
t
to
t
he
µGA.
T
he
i
ncor
porati
on
of
µG
A
instea
d
of
G
A
has
c
ha
ng
e
d
t
he
GA’s
p
ara
m
et
er
def
init
io
n.
F
or
Mi
cr
o
-
GA
it
is
the
num
ber
of
ge
ne
rati
on
s
,
wh
ic
h
is
var
ie
d f
or
dif
fer
e
nt S
NR val
ue, as t
he Initi
al
popul
at
ion
is al
ways fix
e
d.
Figure.
6 Me
th
odology
of H
y
br
i
d
-
µ
GA b
as
e
d
MLB
D
fo
r M
ulti
-
Ca
rr
ie
r
(M
C) syst
em
5.
PERFO
R
MANC
E
A
NA
L
Y
SIS
An
er
r
or
Eik
oc
cur
s
wh
e
n
m
e
ssage
bl
ock
Si
is
transm
i
tt
ed
and
m
essage
bl
ock
S
k
is
received
(
Si
and
Sk
a
re a
ny tw
o p
os
sibil
it
y, 2m
m
essage b
lo
cks for
blo
c
k
si
ze o
f
“m
”) [
16]
. Err
or
Eik ca
n be e
xpresse
d
a
s
Def
ini
t
io
n o
f
pa
ra
m
et
er
s
f
o
r
O
F
DM
F
F
T
s
ize
,
Nu
m
b
er
o
f
s
ub
ca
rr
iers,
Nu
m
b
er
o
f
bits per
O
F
DM
s
y
m
bo
l,
nu
m
ber
o
f
O
F
DM
s
y
m
bo
ls
,
T
o
t
a
l bit
s
t
ra
ns
m
it
t
ed,
SNR
=
0
dB
,
x
,
cha
nn
el
t
a
p leng
t
h,
g
enera
tio
ns
=
y
ST
O
P
I
s
SNR
<
1
4
dB
B
E
R
Def
ini
t
io
n o
f
pa
ra
m
et
er
s
f
o
r
μG
A
No
.
o
f
g
enera
tio
ns
No
t
e:
O
t
her
G
A
pa
ra
m
et
er
s
a
re
s
a
m
e
irre
s
pect
iv
e
o
f
no
is
e
o
r
s
ize
o
f
O
F
D
M
s
y
m
b
o
l
G
ener
a
t
e
O
F
DM
s
y
m
bo
ls
M
o
du
la
t
e
by
B
P
SK
Ass
ig
n c
a
rr
iers f
o
r
ea
ch
s
ig
n
a
l e
le
m
e
nt
Add ze
ro
s
a
cc
o
rding
t
o
I
E
E
E
8
0
2
.
1
1
a
s
t
a
nd
a
rd
T
a
k
e
F
F
T
a
nd
no
r
m
a
lize
s
o
t
ha
t
ea
ch
s
y
m
bo
l ha
s
v
a
lue o
f
1
.
Add Cy
clic
pref
i
x
Co
nv
o
lv
e
w
it
h c
ha
nn
el
Add AW
G
N
f
o
r
SNR
v
a
lue
I
nit
ia
l p
o
p
ula
tio
n
g
ener
a
t
io
n
Co
m
pa
re
w
it
h T
ra
ns
m
it
t
ed
O
F
DM
Sy
m
bo
l
No
.
o
f
Sy
m
bo
ls
=
No
.
o
f
Sy
m
bo
ls
+
1
SNR
=
SN
R
+
1
No
.
o
f
Sy
m
bo
ls
=
1
0
6
?
No
.
o
f
Sy
m
bo
ls
=
0
No
Yes
Yes
No
M
L
B
D
us
ing
μG
A
B
L
E
+
Det
ec
t
o
r
H
y
bridi
za
t
io
n
g
enera
tio
ns
=
g
enera
tio
ns
-
x
Sta
rt
Evaluation Warning : The document was created with Spire.PDF for Python.
Ind
on
esi
a
n
J
E
le
c Eng &
Co
m
p
Sci
IS
S
N:
25
02
-
4752
Hyb
ri
d
Mi
cr
o Gen
et
ic
Al
gorit
hm
Assist
ed O
ptimum
Detect
or
f
or
…
(
Ma
hmo
ud A
. M. Al
br
ee
m
)
521
)
,
(
)
,
(
:
Y
S
R
d
Y
S
R
d
R
E
i
k
ik
(20)
wh
e
re
R
=
H
iY
+
N
a
nd
d(
R,
SiH)
is
th
e
distance
bet
ween
the
rece
ived
vecto
r
R
from
SiH.
Ther
e
f
or
e, e
rro
r
occurs whe
n
a b
lock
Si is detec
te
d
as Sk
. Th
is occurs whe
n
the r
ecei
ve
d
blo
c
k
Si li
es b
ey
ond
the
pe
r
pendicu
la
r
bisect
or
of
the
li
ne
dik
=
||
SkH
–
SiH||
.
For
a
ny
m
essage
blo
c
k,
pro
ba
bili
ty
of
blo
c
k
e
rror
is
giv
e
n
as
d
N
N
E
p
o
d
o
ik
ik
2
2
e
x
p
1
]
[
(21)
Eq
uation
21
is
a
sta
nd
ar
d
G
au
ssian
integ
ral
and
ca
n
be
e
xpr
essed
as
Q
f
un
ct
ion
w
hich
is
the
integral
of
the
ta
il
of
t
he
unit
va
riance
zer
o
m
ean
of
a
Ga
us
sia
n
d
e
nsi
ty
fu
nctio
n
[
11,
20
]
.
The
refor
e
,
E
q
uati
on
21
can
be re
-
wr
it
te
n
a
s
2
ik
ik
d
Q
E
p
(22)
Eq
uation
22
is
the
gen
e
ral
ex
pr
essi
on
of
the
prob
a
bili
ty
of
blo
c
k
erro
r
(p[
Eik]
)
for
m
ess
age
blo
c
k
Si
transm
itted
an
d
Sk
detect
ed.
Fo
r
al
l
oth
e
r
er
r
or
eve
nts
by
the
possible
m
e
ssage
bl
ocks
inclu
ding
Sk
giv
es
an
uppe
r
-
bound o
n
the
pr
ob
a
bili
ty
o
f
Bl
ock Er
r
or as
m
m
i
k
k
ik
i
k
k
ik
i
E
p
E
p
S
E
p
2
,
1
2
,
1
]
[
)
/
(
(23)
Upo
n
s
ubsti
tuti
on of E
quat
ion
23 in
the
uppe
r bou
nd w
e
g
et
m
i
k
k
ik
B
L
E
R
d
Q
p
2
,
1
2
(24)
This
is
the
uppe
r
bound
on
blo
ck
er
r
or
pr
obabili
ty
fo
r
a
m
essage
bl
ock
S
i
being
tran
sm
i
tt
ed.
The
Q
functi
on
is
a
ve
ry
ste
ep
f
unct
ion
a
nd
t
he
ab
ov
e
s
um
is
dom
inate
d
by
sm
al
l
arg
um
ents
of
dik
wh
ic
h
is
dm
in
or
twic
e the m
inim
u
m
o
f
distan
ces to
decisi
on
bounda
ry
ik
d
d
m
i
n
an
d
2
2
m
in
ik
d
Q
d
Q
(25)
The u
pp
e
r bou
nd can
b
e
app
r
ox
im
at
ed
as
2
)
1
2
(
m
i
n
d
Q
p
m
B
L
E
R
(26)
A
lowe
r
lim
i
t
can
be
obta
ine
d
by
lim
i
ti
ng
t
o
the
m
essage
blo
c
ks
that
have
m
ini
m
u
m
dis
ta
nce
dm
in.
The
t
otal
num
ber
of
s
uc
h
bl
ock
s
is
giv
e
n
as
Nm
in.
Wh
e
n
li
m
i
ti
ng
to
the
near
e
st
m
es
sage
blo
c
ks,
th
e
lowe
r
bound o
f
t
he block er
ror pr
ob
abili
ty
is g
iven
b
y;
2
m
i
n
m
i
n
d
Q
N
p
B
L
E
R
(28)
Evaluation Warning : The document was created with Spire.PDF for Python.