TELKOM
NIKA
, Vol.11, No
.1, Janua
ry 2013, pp. 476
~48
3
ISSN: 2302-4
046
476
Re
cei
v
ed Se
ptem
ber 15, 2012; Revi
se
d De
cem
ber
5, 2012; Acce
pted De
cem
b
er 13, 201
2
Resear
ch on the AVC Testing Platform for the Regional
Grid based on Real-Time Digital Simulator (RTDS)
Lin Xu*
1
, Ya
ng Han
2
1
Sichua
n Electr
ic Po
w
e
r R
e
se
arch Institute, No.
24, Qing
hu
a Roa
d
, Qing
yang D
i
strict, 61007
2 Ch
eng
du
,
Chin
a
2
Universit
y
of E
l
ectron
ic Scien
c
e and T
e
c
hno
log
y
of Ch
in
a, 611
73
1 Che
n
g
du, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
il: xu
lin
19
84
31
@hotmai
l
.com, han
ya
ng
_facts@hotmai
l
.com
A
b
st
r
a
ct
T
he auto
m
atic
voltag
e contro
l
(AVC) relay p
r
ovid
es real-ti
m
e a
u
to
matic
control for the
on-l
o
a
d
transformer ta
p chan
ger (OL
T
C), w
h
ich is w
i
dely use
d
fo
r pow
er system volt
age
mon
i
torin
g
an
d con
t
rol
purp
o
ses throu
gho
ut the w
o
rld. How
e
ver, th
ere ar
e no un
iform testin
g standar
ds
for the
AVC system, a
n
d
the lack of on
-site inspecti
o
n
me
ans
has
stimu
l
ate
d
the
introductio
n
o
f
the real-time
digital si
mu
lat
o
r
(RT
D
S)-base
d
testing pl
atform. T
h
is pa
per i
n
troduc
es
the testing p
l
atfor
m
of t
he AVC controll
er base
d
o
n
the RT
DS. T
h
e circuit mod
e
l
of
the region
al pow
er
grid i
s
establish
ed, and
the OLT
C
and the reactiv
e
pow
er co
mp
en
sation
devic
es
are als
o
i
n
corp
orated. T
he
int
e
rmedi
ate d
a
ta
conversi
on
de
vice is uti
l
i
z
e
d
for
bi-dir
ectio
nal
d
a
ta exch
an
ge
of the re
mote
meter
an
d co
n
t
rol sig
nals
bet
w
een the
RT
D
S
and
the AV
C
system
. The
principle
of the AVC voltage regulati
on and the RTDS-
b
ased AV
C tes
t
ing platfor
m
are
introd
uced, fo
ll
ow
ed by th
e d
a
ta flow
of the
OLT
C
and
ca
pacitor/i
nduct
o
r banks, w
h
ic
h
formu
l
ates t
h
e
found
atio
n for close
d
-lo
op tes
t
ing of the AVC
control syste
m
for the electric
pow
er system.
Ke
y
w
ords
: RT
DS (Rea
l time
digit
a
l si
mu
lati
on), AVC (Auto
m
atic v
o
ltag
e c
ontrol), d
a
ta co
nversi
on, clos
e
d
-
loo
p
control, te
sting pl
atform,
on-l
oad ta
p ch
ang
er (OLT
C)
Copyrig
h
t
©
2013
Univer
sitas Ahmad
Dahlan. All rights res
e
rv
ed.
1. Introduc
tion
The in
cre
a
si
n
g
integration
of regio
nal tr
ansmi
ssion
system ha
s sti
m
ulated the e
m
ergi
ng
of inter-con
n
e
cted, tra
n
s-contin
ental el
ectri
c
po
we
r grid. The
se
curity, reliabilit
y and sup
r
e
m
e
quality of the
power t
r
an
smissi
on
and
distrib
u
ti
on a
r
e
maj
o
r co
n
c
ern
for
the electri
c
po
we
r
engin
eeri
ng societie
s throu
ghout the wo
rld, bot
h in the indust
r
y and the acade
mic com
m
uni
ties
[1-4]. At
the same time, the powe
r
electronic co
mp
on
ents are wide
ly used in the powe
r
syste
m
,
su
ch a
s
the
high voltag
e
DC t
r
an
smi
s
sion
(HV
D
C)
or the flexib
le AC tra
n
smissi
on
syst
ems
(FACTS
). Th
e testing of t
he po
we
r ele
c
troni
c d
e
vi
ces, a
s
well
a
s
the supe
rvi
s
ion
cont
rol o
f
th
e
power flow and voltage
levels are
challen
g
in
g
task, which are indisp
ensi
b
le tech
nical
requi
rem
ent for promoting
the sma
r
t grid
(SG) revol
u
tion glob
ally [5-7].
The main function of the g
r
id AVC (automatic
voltag
e control
)
system is to ensure the
se
curity and stability operation
of the
power syste
m
, and ensu
r
e that the
voltage and p
o
we
r
factor of the specifi
c
buses are withi
n
the pr
eset
values, and
also minimi
ze line rea
c
t
i
ve
transmissio
n, red
u
ce the
power l
o
ss of
the gri
d
du
e
to unn
ecessary re
active
power flo
w
.
The
AVC relay provides real time automati
c
contro
l fo
r the on-lo
ad tra
n
sformer tap
cha
nge
r (O
L
T
C).
Whe
n
the tra
n
sformer's
se
con
dary volta
ge is o
u
ts
ide
the permitted
margi
n
, thus t
he rel
a
y issu
es
a comm
and t
o
cha
nge the
tap positio
n to resto
r
e
it to the pre
s
et lim
its [1, 3, 4, 7].
The OLT
C
s
intera
ct with each other
whe
never th
ere is a voltage deviatio
n
on the
system. Tradi
tionally, each
voltage level is grad
ed wi
t
h
the next, using
simple ti
me delays. T
h
is
ensure
s
that the up
strea
m
tap cha
nge
rs
take p
r
iority o
v
er the down
s
trea
m units
and ma
ke the
i
r
tap chan
ge
s first. This prevents hu
nting and re
ve
rse a
c
tion
s by lower-lev
e
l tap chang
ers.
Unfortu
nately
,
the
voltage control can b
e
com
e
crude
and inefficie
n
t at small vo
ltage deviatio
n
s
[3, 4]. The new co
ntrol st
ra
tegies h
a
ve b
een dev
el
ope
d to improve
the coo
r
din
a
tion of the AVC
relays a
nd he
nce p
r
ovide a
n
improve
d
‘q
ualit
y of suppl
y’ for con
s
um
ers [1, 4, 5, 8-12].
In persp
ectiv
e
of network secu
rity
and conveni
ent
maintenan
ce, the AVC
and the
energy man
a
gement
syste
m
(EMS)
pla
tforms a
r
e
n
o
rmally d
e
si
g
ned tog
e
ther.
The
real
-time
acquisition of data is achieved from
PAS net
work modeling
control model
and the onl
in
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the AVC Test
ing Platform
for the Re
gion
al Grid … (Li
n
Xu)
477
analysi
s
and
calcul
ation
can be reali
z
ed. Besi
de
s, the unified monitoring,
sup
e
rvisi
on
and
control of th
e OLTC as
well as the reactive
com
pensation devices
are utilized to achieve
optimize
d
re
active po
we
r and voltag
e co
ntrol
pu
rpo
s
e
s
. The
AVC sy
ste
m
achieve
s
the
ccentrali
ze
d monitori
ng a
nd analy
s
is
of the reac
ti
ve powe
r
an
d voltage sta
t
us of the entire
netwo
rk fro
m
a global perspe
c
tive. By
usin
g the
optimal control strategi
es of the wide
-are
a
distrib
u
ted g
r
i
d
rea
c
tive po
wer
re
gulatio
n devices
, th
e stability an
d quality of the system volt
age
is sig
n
ifica
n
tly enhan
ced.
And the econ
omical o
p
e
r
at
ional of the e
l
ectri
c
po
we
r system
can b
e
easily a
c
hiev
ed [1, 5, 7, 13-16].
In orde
r to o
v
erco
me the
difficulty of no uni
form testing stan
dard
s
for the AV
C sy
stem
and the lack of on-site inspectio
n
mean
s for onli
ne state estimatio
n
of the electric po
we
r gri
d
.
The real
-time
digital simul
a
tor (RTDS
)
-based AVC
testing platfo
rm is introdu
ced. The circuit
model of th
e re
gional
p
o
we
r g
r
id i
s
establi
s
h
ed,
and the
O
L
TC
and th
e re
active p
o
we
r
comp
en
satio
n
device
s
are also in
co
rpo
r
at
ed. Th
e intermedi
a
t
e data con
v
ersio
n
device
(OPEN3000
) is utilized for
bi-di
r
e
c
tional
data excha
n
g
e
of the remo
te meter and
control sig
nal
s
betwe
en the
RTDS
and th
e AVC sy
ste
m
. The p
r
in
ci
ple of the AV
C voltage
re
gulation
and
the
RTDS
-ba
s
e
d
AVC testing platform are
introdu
ced,
followed by the data flow of the OLTC and
cap
a
cito
r/ind
u
ctor
ban
ks, whi
c
h form
ul
ates the
fou
n
dation for
clo
s
ed
-loo
p testi
ng of the AVC
control syste
m
for the electric po
we
r system.
2. Principles of the AV
C (Automatic V
o
ltage
Contr
o
l) s
y
stem
2.1The con
t
r
o
l model of the AVC sy
st
em
In the persp
ective of net
work
se
cu
rity and
mai
n
te
nan
ce
conve
n
ien
c
e, the i
n
tegrate
d
desi
gn is
ad
opted for th
e
AVC and E
M
S platform
s. The co
ntrol
model i
s
obt
ained from P
AS
netwo
rk, and
the real-time data acqui
siti
on is obtai
ne
d from the SCADA syste
m
. The centralize
d
monitori
ng, u
n
ified man
a
g
e
ment, an
d
optimal
c
ontrol of clo
s
e
d
-l
oop o
peratio
n of the
wh
ole
netwo
rk i
s
a
c
hieved by u
s
ing onlin
e an
alysis a
nd
ca
lculatio
n of the grid a
nd su
bstation O
L
T
C
device
s
, as
well as the re
a
c
tive power
compens
a
tion devic
es
[1, 4, 5].
The hierarchi
c
al partition
-b
alan
ce prin
ci
pl
es mu
st be guarante
ed to optimize the powe
r
system rea
c
tive powe
r
flow at high voltage level, nam
ely:
(1) It sho
u
ld
have sufficie
n
t rea
c
tive p
o
we
r, thu
s
p
o
we
r
system
ope
ration i
n
the hig
h
voltage
level can b
e
ensure
d
;
(2) T
he gri
d
rea
c
tive power bala
n
ce should b
e
en
sured at different voltage levels, in ord
e
r to
avoid exce
ssi
ve reactive p
o
we
r excha
n
ge, which
will
help to improve the powe
r
factor of the
transmissio
n system;
(3) T
he lon
g
-distan
c
e tran
smissio
n
of reactive
po
we
r sh
ould b
e
a
v
oided, rea
c
ti
ve powe
r
wit
h
in
different voltage levels should be pa
rtitioned as
much a
s
possi
ble, thus red
u
ce net
work
losse
s
. Besi
d
e
s, it is
wo
rth
emph
asi
z
ing
t
hat the voltage a
nd
rea
c
tive powe
r
b
a
l
ance on th
e
total amount is insufficient, one mu
st bal
ance the rea
c
tive power lo
cally;
(4)
The charact
e
risti
cs
of local a
nd di
spe
r
s
ed rea
c
tive power balan
ce in
dicate that t
h
e
hiera
r
chi
c
al p
a
rtitioning
co
ntrol mu
st be
im
plemente
d
for the AVC syste
m
wit
h
spa
c
e
and
time de
cou
p
l
ed control al
gorithm
s, thu
s
the
co
ordi
n
a
ted an
d effe
ctive AVC
co
ntrol
can
be
achi
eved, an
d voltage and
reactive po
wer fluc
tuatio
n
s
or o
s
cillatio
n
s can be eli
m
inated.
2.2 The s
y
stem control
mode of th
e AVC
The autom
atic voltage co
n
t
rol (AVC)
system
is ba
se
d on the optimized
cont
rol
structu
r
e
of the reactive voltage optimization an
d
the gl
obal coordi
nation o
f
the
network secu
rity an
d
eco
nomi
c
al a
s
pe
ct. The o
p
t
imal power fl
ow
cal
c
ulatio
n and o
n
line
soft partition
of the three
-
l
e
vel
voltage opti
m
ization
co
ntrol is ad
o
p
ted. A
nd the ce
ntrali
zed de
cisi
on-makin
g
and
the
coo
r
din
a
ted
sub
-
control is utilize
d
for reacti
ve po
wer a
nd voltage optimi
z
a
t
ion control. The
con
s
trai
nts o
f
the
grid se
curity and the online
optimization calculation re
sult
in reasona
b
l
e
corre
c
tion of voltage and reactive po
we
r optimizati
o
n
strategie
s
to achieve aut
omatic re
acti
ve
power an
d voltage co
ntrol [1, 5, 7].
Figures 1 an
d 2
show th
e schemati
c
diagram
s of t
he overall st
ructu
r
e of the AVC
system for the three-level
voltage control based on
soft partition control, respe
c
tively. The three-
level control is respon
sibl
e
for the reactive pow
er opti
m
ization calculation of the
global network.
The
whole
n
e
twork
bu
s voltage o
p
timization i
s
utili
zed as
overa
ll
optimize
d
control obje
c
tives,
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 476 – 4
8
3
478
and the sup
e
rio
r
coo
r
din
a
tion control
require
m
ent
s are used as co
nstraint
s for the whole
netwo
rk, an
d the power pla
n
ts and
sub
s
t
a
ti
ons a
r
e tre
a
ted as
control targets.
On the ot
her hand, a
c
co
rding to the
real-tim
e
stat
us of th
e re
g
i
onal p
o
wer
grid, the
automatically control zo
nin
g
partitioning
is achi
ev
ed base
d
on the chara
c
te
risti
c
s of
the region
al
grid pa
rtitioni
ng and ra
dia
t
ion feature
s
. The se
cond
-level cont
rol
is based on
the traditional
voltage and
reactive po
we
r co
rrectio
n
control, fo
llo
wed by the op
timization g
o
a
ls of the third-
level voltage control. By using the expert ru
le
s,
the discret
e device co
ntrol reg
u
lations
requi
rem
ents
are g
uarante
ed. Mean
whil
e, the first-lev
e
l cont
rol de
g
r
ade
s a
s
an
e
x
ecutive age
nt,
mainly re
spo
n
sibl
e for the sub
s
tation
ca
pacito
r
/re
a
cto
r
switchin
g an
d transf
o
rme
r
tap switching
.
Figure 1. The
sch
ematic di
agra
m
of the so
ft-pa
rtition-based thre
e-l
e
vel voltage control
3. The basic
composition
of the test s
y
stem
3.1. The RT
DS-base
d AV
C tes
t
s
y
stem
Figure 2 sho
w
s the overal
l data flow diagra
m
of the
AVC system,
t
he system model of
the study are
a
is built in
the RTDS pla
tform,
the telemetry data (bus voltage, the transfo
rm
er
side a
c
tive/reactive po
we
r, the active/rea
ctive
power at the line terminal
s, transfo
rme
r
tap
positio
n), re
mote sig
nali
ng data (th
e
controllabl
e
capa
cito
r/re
actor
switch
position
at each
sub
s
tation
) are tran
smitted
to the interm
ediate
data
conversion
de
vices. Me
an
while, the rem
o
te
control com
m
and
s (sub-clo
s
ing
)
of the contro
lla
ble cap
a
cito
r/reacto
r switchin
g are al
so
received.
The d
a
ta a
c
q
u
isition
and
remote d
a
ta transmi
ssion
b
e
twee
n the A
V
C SCA
D
A system
and the inte
rmediate d
a
ta
conve
r
si
on
device
s
is
a
c
hieve
d
by usin
g IEC10
4
. The dyna
mic
partitionin
g
of
the study a
r
ea is
reali
z
e
d
by the
AVC
system
after
the filtered d
a
ta is o
b
taine
d
,
the control m
ode is autom
atically sele
ct
ed accordi
ng
to the space
distrib
u
tion of the grid voltage
and rea
c
tive power
status,
and the
co
n
t
rol mod
e
pr
i
o
rity is "area
voltage cont
rol" > "voltag
e
corre
c
tion
co
ntrol" > "re
g
io
nal rea
c
tive p
o
we
r co
ntrol".
For exam
ple,
in ca
se of region
al low v
o
ltage,
then “area volta
ge
control” i
s
a
c
tivated
,
thus the voltage level is rapidly increa
sed. In
ca
se
of excessive overvoltage o
r
unde
r-volta
ge
occurs, the "voltage co
rre
ction co
ntrol"
is acti
vated to ensu
r
e the
allowabl
e no
de voltages. In
ca
se of qu
alified node vol
t
ages th
rou
g
hout the
net
work, then th
e eco
nomi
c
operation of
the
netwo
rk i
s
a
dopted by u
s
ing “a
rea rea
c
tive pow
er
control
”
. Then,
the control comm
and
s a
n
d
alarm lat
c
hin
g
sign
als a
r
e
sent to the re
mote interfa
c
e for executio
n.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the AVC Test
ing Platform
for the Re
gion
al Grid … (Li
n
Xu)
479
Figure 2. The
overall data fl
owcha
r
t of the AVC syste
m
In the initialization pro
c
e
s
s of
the AVC
sy
stem, you need to man
ually set the
“on
-
off”
logic an
d co
n
t
rol model
s. The hybrid
con
t
rol st
ru
cture is adopte
d
for t
he AVC system; hence the
clo
s
ed
-loo
p control auto
m
atically co
ordin
a
te
s th
e voltage and rea
c
tive power statu
s
. For
instan
ce, wh
e
n
the AVC system detect
s
a voltage limit
violation, the discr
et
e event is formulated
to drive the
controlle
r, whi
c
h i
s
se
nt to the re
mo
te int
e
rface for ex
ecutio
n. The
r
efore, the
system
execute
s
the
comman
d
to form a new steady-sta
te
powe
r
flow to eliminate the voltage limit
violation.
If
the grid voltage
s are with
in the allowa
ble
limits, the “area re
activ
e
powe
r
optimization
control” i
s
a
c
tivated. The seq
uential
switchi
ng me
chani
sm is a
d
opted for th
e
rea
c
tive device
s
,
i.e., only one switchi
ng ad
justment is al
lowe
d dur
in
g
one control
perio
d. This cha
r
a
c
teri
stic is
vital to provide sufficient re
spo
n
se time for the
netwo
rk to form a new stea
dy-state powe
r
flow
after the
discrete
cont
rol a
c
tion i
s
imp
o
s
ed to
t
he
ne
twork. In the
next cont
rol
perio
d, the A
V
C
controlle
r sel
e
cts th
e cont
rol mo
de aut
omatically
, th
us a
pproa
chi
ng optimal
o
peratio
n of the
netwo
rk g
r
a
d
ually and con
t
rol oversh
o
o
t is also effe
ctively avoided.
The unified
software pl
atform is ad
opte
d
for the AVC and SCA
D
A system. Th
e control
model i
s
obt
ained from PAS network,
and the real
-t
ime data acquisition is obtained from
the
SCADA sy
ste
m
. The ce
ntralize
d
monito
ring, uni
fied
manag
eme
n
t, and optimal
control of clo
s
ed
-
loop op
eratio
n of the whol
e netwo
rk is
achi
eved
by
usin
g onlin
e analysi
s
an
d
cal
c
ulatio
n of the
grid a
nd
sub
s
tation O
L
TC device
s
, a
s
well a
s
the
reactive p
o
we
r co
mpe
n
sation devi
c
e
s
. The
data flow dia
g
ram of the A
V
C system m
odelin
g is sho
w
n in Figu
re
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 476 – 4
8
3
480
Figure 3. The
data flowcha
r
t of the AVC automatic m
o
deling
Figure 4. The
topology of the st
udy area
of the AVC system
3.2. Sy
stem
modeling an
d control s
t
r
a
tegy
based on the RTDS
platform
Figure 4
sho
w
s th
e topol
o
g
y map of th
e study
a
r
e
a
of the AVC,
whi
c
h
con
s
i
s
ts of two
220
kV sub
s
tations and te
n 110kV su
b
s
tation
s, t
he
remote net
works are represe
n
ted by the
equivalent ge
nerato
r
s. Figure 5
shows the system model of th
e
RTDS re
se
a
r
ch a
r
ea, whi
c
h
con
s
i
s
ts of th
e main ci
rcuit
,
control
circuit
and input
-output ch
ann
el conf
ig
urati
on. The cont
rol
sub
s
ystem
contain
s
the active/rea
ctive powe
r
co
n
t
rol loop, the transformer tap control,
the
controllabl
e capa
citor/rea
c
tor switching l
ogic
cont
rol.
The inp
u
t an
d output chan
nel co
nfigu
r
at
ion
sen
d
the analog sig
nal
s to the analog output
ch
annel
s (AO
)
, such a
s
the bus voltag
es,
transfo
rme
r
a
c
tive/rea
ctive powers, the active/rea
ctive powe
r
s at both end
s
of
the line, as well
as the tran
sf
orme
r tap po
sition
s. Besid
e
s, the
swit
ch position
si
gnal
s are se
nt via the digita
l
output chan
n
e
ls
(DO). An
d the o
penin
g
and
cl
os
in
g
of the switch
and th
e on
-l
oad tran
sformer
“up/do
wn
” si
gnal
s are se
nt to RTDS system vi
a digital input chann
els (DI).
The sch
em
atic
diagram for d
e
tailed co
nfig
uration i
s
sho
w
n in Fi
gure 6, which can
also be referred in the RTDS
manual confi
guratio
n
inst
ruction
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the AVC Test
ing Platform
for the Re
gion
al Grid … (Li
n
Xu)
481
Figure 5. The
system mod
e
l of t
he stud
y area of the RTDS
syste
m
Figure 6. The
analog o
u
tpu
t
and swit
ch i
nput / output config
uratio
n of RTDS
Figures 7 an
d 8 sho
w
the on-lo
ad tra
n
sfor
mer tap
-
cha
nge
r co
ntrol and lo
gic contro
l
block dia
g
ra
m of the capa
citor b
a
n
ks, resp
ective
ly. As sh
own in Figure 7, the “UP”
and “DO
W
N”
denote th
e u
p
-shifting a
n
d
do
wn
-shifting comma
nd
s
of the
AVC system,
“TA
P
0” de
note
s
the
initial tap position of the
transformer, “DW” den
otes
the real
-time tap position of
the transformer.
Whe
n
there is no ne
ed for chan
ging th
e tap posit
io
n
s
, the voltage
levels of “UP” and “DO
W
N”
are lo
w. Wh
en the tap p
o
sition n
eed
s to be adj
ust
ed, a risi
ng
edge of the
trigge
r pul
se
is
gene
rated fo
r “UP” an
d “DO
W
N”. A correspon
ding
increa
se o
r
decrea
s
e
of the tap po
sition
woul
d be exe
c
uted
whe
n
the risi
ng ed
g
e
of the trigge
r pulse is det
ected.
As sh
own in
Figure 8, “T
RYDQC1”
den
otes t
he
cap
a
c
itor o
n
/off si
gnal ge
ne
rate
d by the
AVC system, “YDQ1” de
n
o
tes the cap
a
citor swit
ch positio
n sign
al, “SH” and “ST” den
otes the
swit
ch o
n
an
d switch
off signal of the
manual
swit
ch, respe
c
tively, to facilitate logic te
sting
for
the switch
po
sition
sign
als.
The
relatio
n
ships
of
the fo
ur
sign
als
“T
RYDQ
C1
”, “Y
DQ1
”
, “ST
”
a
n
d
“SH” a
r
e
sho
w
n in Tabl
e 1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NIKA
Vol. 11, No
. 1, Janua
ry 2013 : 476 – 4
8
3
482
Table 1. The
relation
shi
p
s
betwe
en the
cap
a
cito
r
switchin
g sig
nal a
nd switch p
o
sition sign
al
SH ST
TRY
D
Q
C
1
Y
D
Q
1
0 0
0
Remain
unchang
ed
0
→
1
(
↑
)
0 0
1
0
0
→
1
(
↑
)
0 0
0 0
0
→
1
(
↑
)
rev
e
rs
ed
,
1
→
0
,
0
→
1
Whe
n
“SH”, “ST”, “T
RYDQC1
” are lo
w, “Y
DQ
1”
remain
s un
ch
ange
d. Whe
n
a risi
ng
edge of the trigger pul
se is detect
ed by the signal “S
H”, “YDQ1” is set to 1 and
the capa
citor
is
swit
che
d
on. Whe
n
a risi
n
g
edge of the
trigger pul
se
is detected
by the
signal
“ST”, “YDQ1” is
set to 0
an
d the
capa
ci
tor is t
r
ippe
d. Whe
n
the
trigge
r pul
se is d
e
tecte
d
by the
sig
nal
“TRY
DQ
C1
”, the sign
al “Y
DQ1
”
set to the opp
osite
state (from 0 to 1 or from 1
to 0).
Figure 7. The
control bl
ock diagra
m
of the on-lo
ad tra
n
sformer
Figure 8. The
switch logi
c contro
l blo
ck
diagram of ca
pacito
r
ban
ks
4. Conclusio
n
The real
-time
digital simul
a
tor (RTDS
)
-bas
ed autom
atic voltage control (AVC) testing
platform is int
r
odu
ce
d in thi
s
pap
er. The
circuit mod
e
l of the regio
n
al power g
r
id
is establi
s
h
e
d
,
and the
OL
TC an
d the
rea
c
tive po
wer
co
mpe
n
s
ation
devices a
r
e al
so
inco
rpo
r
ate
d
. The
interme
d
iate
data co
nversi
on device (O
PEN300
0) i
s
utilized fo
r bi-dire
c
tional
da
ta exchan
ge
of
the remote meter and control sig
nal
s (the acti
ve
-, reactive p
o
we
rs an
d voltage
s at the
transfo
rme
r
, bus voltage
s,
shunt-co
nne
cted capa
cito
rs o
r
indu
ctor banks) bet
ween the RT
DS
and the AVC
system.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Re
sea
r
ch on
the AVC Test
ing Platform
for the Re
gion
al Grid … (Li
n
Xu)
483
The pri
n
ci
ple
of the AVC voltage re
gulat
ion
and the
RTDS
-ba
s
e
d
AVC testing
platform
are introdu
ce
d, followed b
y
the data flow of
the O
L
TC a
nd ca
pacito
r
/indu
ct
or ba
nks, wh
ich
formulate
s
th
e found
ation
for cl
ose
d
-l
oop te
sting
of the AVC
control sy
ste
m
for the el
ectri
c
power
syste
m
. Due to th
e sp
ace lim
itation, the re
sults of re
al-ti
m
e state e
s
ti
mation an
d the test
result of the AVC cont
rol strategie
s
wo
u
l
d be rep
o
rte
d
in the forthcoming pa
pe
rs.
Referen
ces
[1]
P Kundur. Po
wer S
y
stem Sta
b
ilit
y a
nd
Co
ntrol. Ne
w
York:
Mc-Gra
w
-
Hill.
199
4.
[2]
N Mohan, T
M
Und
e
la
nd an
d W
P
Robbins.
Po
w
e
r El
ectro
n
ics: Converter
s
, Applicati
ons,
and Desi
gn.
Ne
w
York: W
i
l
e
y
.
1
995.
[3]
PM Anderso
n. Po
w
e
r S
y
stem
Protection. Pis
c
ata
w
a
y
, NJ:
IEEE Press
. 1999.
[4]
M Ilic and J Z
aborszk
y
.
D
y
n
a
m
ics and co
ntrol of larg
e el
ectric po
w
e
r s
y
ste
m
s. Ne
w
York:
W
ile
y
.
2
0
0
0
.
[5]
LL Grigs
b
y
.
El
ectric Po
w
e
r G
ener
ation.
Tran
smi
ssi
on
an
d D
i
s
tri
b
u
t
io
n
.
B
o
ca Rat
on, FL: CRC Press-
T
a
y
l
or & F
r
anci
s
Group. 200
6.
[6] MH
Rashid.
Po
w
e
r Electronics
Hand
bo
ok
. San Die
go, CA: Academ
ic Press
-
Elsevier. 2
007
.
[7] R
Marcon
ato.
Electric Power System
s
. Milan, Italy
: CEI. 2008; 2.
[8]
JS
T
horp, M Ilic-Spo
ng an
d
M Varghes
e. “An
optimal secon
dar
y
v
o
lt
age-v
a
r contro
l techniq
ue”.
Autom
a
tica
. 1
9
86; 22(2): 2
17–
222,.
[9]
Kuffel, J Giesbrecht,
T
Magui
re, RP W
i
erckx,
PA F
o
rsy
t
h and PG Mclaren. “RT
D
S- A
F
u
ll
y
D
i
git
a
l
Po
w
e
r Simulator Operating in Real T
i
me”.
1995 W
ESCANEX Confer
ence P
r
ocee
din
g
s o
n
Co
mmun
icati
o
ns, Pow
e
r, and
Computi
n
g
. 19
95; 300
– 305.
[10]
R Kuffel, J Giesbrec
ht,
T
Magu
ire, RP W
i
erckx,
PA Fors
yth a
nd PG Mclare
n. “A Fully Di
gita
l Rea
l
-
T
i
me Simulator for Protective
Rela
y T
e
sting”
. 1997 Dev
e
lo
p
m
ents in Po
w
e
r Sy
st
em Protection,
Sixt
h
Internatio
na
l C
onfere
n
ce
. 19
9
7
: 147-1
50.
[11]
P Fors
y
t
h, R Kuffel. “Utilit
y
A
ppl
icatio
ns of a RT
DS Simulator”.
20
07 IPEC Internatio
nal Pow
e
r
Engi
neer
in
g C
onfere
n
ce
. 20
0
8
; 112-1
17.
[12]
Real T
i
me Dig
i
t
al Simul
a
tor Po
w
e
r S
y
stem a
nd Co
ntrol Use
r
Manua
l.
RT
DS T
e
chnol
og
ie
s
. 2009.
[13]
Corsi S, Pozzi M, Sforna M, Dell'
Olio G.
The
coord
i
nat
ed
automatic vol
t
age control of
the Italian
transmission Grid-part II: control apparatus
es and fiel
d per
formance of the cons
olidated hierarc
h
ical
sy
s
t
e
m
.
IEEE Transactions on Power System
s
. 20
04; 19(
4
)
: 1733-1
7
4
1
.
[14]
Corsi S, Pozzi
M, Sabelli C,
Serrani A. The coor
din
a
te
d automat
ic v
o
ltag
e control
of the Italian
transmissio
n
Grid-part I: reasons of the choi
ce and ov
ervie
w
of the cons
o
lidat
ed hi
erarc
h
ical s
y
stem
.
IEEE Transactions on Power
System
s
. 20
04
; 19(4): 172
3-1
732,.
[15]
Gao C, Redfe
r
n MA. Automatic Comp
ens
ation V
o
ltag
e
Contro
l strateg
y
for o
n
-lo
ad
tap cha
nge
r
transformers w
i
th
distrib
u
ted
gen
eratio
ns.
2
011 Inter
nati
o
n
a
l Co
nfere
n
ce
on Adv
anc
ed
Pow
e
r Syste
m
Autom
a
tion and Protection (A
PAP)
. 2011; 1: 737-
741.
[16]
Li Mia
o
, Sun J
i
an Bo, L
i
Xia
o
Ping, H
u
W
e
i, Xu
F
e
i, D
y
n
a
m
i
c H
y
bri
d
Auto
matic Volta
ge
Contro
l of the
po
w
e
r s
y
stem.
201
1 Internatio
nal Co
nferenc
e
on Advanced
Po
w
e
r System Auto
matio
n
an
d Protection
(APAP)
. 2011; 3: 1918-
19
24.
Evaluation Warning : The document was created with Spire.PDF for Python.