Indonesian Journal of
Electrical
Engineer
ing and
Computer Science
V
o
l. 10
, No
. 3, Jun
e
20
18
, pp
. 92
5
~
93
3
ISSN: 2502-4752,
DOI: 10.
11591/ijeecs
.v10
.i3.p925-933
9
25
Jo
urn
a
l
h
o
me
pa
ge
: http://iaescore.c
om/jo
urnals/index.php/ijeecs
Devel
o
p
m
ent of Accurate BSIM
4 Noise Parameters for CMOS
0.13-µm Transi
st
ors in B
e
low 3-GHz LNA Application
Asma
a Nur
Aqila
h Z
a
ina
l
B
a
dri
1
, No
rla
ili
Mohd No
h
2
,
S
hukri bin
K
o
r
a
kk
ottil Ku
nh
i Mohd
3
,
Asrulniz
am Abd Manaf
4
, Arjun
a
Marz
uki
5
, M
o
hd
Ta
fir Mus
t
af
fa
6
,
Mohamed F
a
uz
i Packeer
Mohamed
7
1,2,5,6,7
School of
Electrical and
Electron
i
c
Engin
e
ering,
Univ
ersiti Sains
Malay
s
ia, Engineering
C
a
mpus,
14300 Nibong Tebal, Malay
s
ia
3,4
Collabor
ativ
e M
i
croel
ectron
i
c
Des
i
gn
Exc
e
ll
en
ce
C
e
ntr
e
(CED
EC), Univ
ersiti
Sains Mala
ysi
a
,
Sains@USM,
11900 Bay
a
n
Lepas, Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 15, 2018
Rev
i
sed
Mar
12
, 20
18
Accepted
Mar 28, 2018
Accurat
e
tr
ansistor therm
a
l no
ise m
odel
is cruc
i
a
l in IC d
e
sign
as it al
lows
accur
a
t
e
s
e
le
ct
i
on of trans
i
s
t
or
s
for s
p
ecifi
c f
r
equenc
y
appl
ic
ation
.
Th
e
accur
a
c
y
of
the
m
odel is
repres
e
n
ted b
y
the s
i
m
i
l
a
rit
y
b
e
twe
e
n th
e s
i
m
u
late
d
and the measured noise parameters (NPs
). This work was based o
n
a problem
faced b
y
a foun
dr
y
con
cern
i
ng t
h
e dis
s
i
m
ilarit
i
e
s
between the m
eas
ured and
si
mul
a
t
e
d NPs, e
s
pe
ci
a
lly
mi
ni
mum noi
se
fi
gure
(NF
min
) for
frequen
c
ies
below 3 GHz. Hence,
this work looks into the BSIM4 charge-b
ased
(TNOIMOD 0)
and holistic (TN
O
IMOD 1)
thermal noise models of a 0.13-
µm
CMOS device
to de
term
ine
the m
o
st a
ccur
a
t
e
set
tings be
twe
e
n th
em
. As
such, both the simulated and measured da
ta for the transistors were retrieved
from four NPs; NF
min
,
noise resista
n
c
e
(R
N
), |
Г
opt
|
and
Г
opt
°
.
The
f
i
ndings
exhibit optimu
m
parameters
for
the TN
OIMOD 1 at TNOIA=1.
5,
TNOIB=3.5, R
NOIB=0.5164 and
RNOIA = 1.477 for best NF
min
and
Г
opt
°,
and RNOIA = 0.577 for best |
Г
opt
|
and R
N
. M
ean
while,
as
for
the
TNOIM
O
D
0, th
e proposed
setting
is NTNOI=5
(above 4
GHz), NTNOI=
10 (below
3
GHz), and either
5 or 10
for 3
to
4 GHz. On top
o
f
that, the noise f
i
gure (NF)
perform
ance
of
a low-no
ise a
m
plifier (
L
NA) was chosen
to
verif
y
the
transistor’s new NP
settings. A
s
a re
sult, it was found that for applicatio
n
below 3 GHz,
the TNOIMOD
0
at NTNOI=
10 s
upe
rse
d
e
t
h
e
ac
cura
cy
of t
h
e
TNOIMOD 1.
K
eyw
ords
:
BSIM4
C
h
ar
ged
-
based
t
h
erm
a
l noi
se
m
odel
,
C
M
OS 0.
13
-µ
m
Dual
-ba
n
d L
N
A
Ho
listic th
ermal n
o
i
se m
o
d
e
l
Copyright ©
201
8 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Norlaili
Mo
hd
Noh
,
School
of Elec
trical an
d
El
ect
ro
ni
c E
ngi
neer
i
ng,
Un
i
v
ersiti Sains Malaysia,
Eng
i
n
eer
i
n
g
C
a
m
p
u
s
,
143
00
N
i
bo
ng
Teb
a
l, Malaysia.
Em
a
il: eela
ili
@u
sm
.
m
y
1.
INTRODUCTION
For any se
m
i
c
o
nductor foundry, it is of utm
o
st
i
m
por
tance to provide t
r
ansist
ors with accurate noise
m
odels to allow acc
urate sel
ection
of
trans
i
stors
during i
n
tegrated ci
rc
uit (IC)
desi
gn. The
accuracy
of the
n
o
i
se m
o
d
e
l is assessed
b
y
the clo
s
en
ess of th
e
m
easu
r
ed
with
th
e si
m
u
lated
n
o
i
se p
a
rameters (NPs). In
th
is
wo
rk
, t
h
e p
r
o
b
l
e
m
st
at
em
ent
i
s
concer
ni
n
g
an i
ssue
hi
ghl
i
g
ht
ed
by
a sem
i
cond
uct
o
r f
o
un
d
r
y
on
t
h
e
inaccuracy bet
w
een t
h
e m
e
a
s
ure
d
a
nd
simulated m
i
nim
u
m noise figure (NF
mi
n
) o
f
an
ex
isting
0.13
-µm
C
M
OS R
F
de
vi
ce f
o
r
bel
o
w
3 G
H
z f
r
e
que
ncy
re
gi
o
n
.
H
e
nce, t
h
i
s
w
o
r
k
was
f
o
cuse
d
on t
h
e B
S
IM
4 n
o
i
s
e
m
odel
i
ng o
f
t
h
e m
e
nt
i
oned
0.
13
-µm
C
M
OS R
F
de
vi
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
,
Vol
.
1
0
,
N
o
.
3,
Ju
ne
20
1
8
:
x
x
–
xx
92
6
Tw
o m
odes of
t
h
e B
S
IM
4 t
h
erm
a
l noi
se m
odel
had
been
em
pl
oy
ed i
n
t
h
i
s
w
o
r
k
,
whi
c
h we
re t
h
e
TN
OI
MOD
0
an
d
TN
OI
MOD
1
[1
],
[
2
]. W
i
th
th
at,
in
order to
provi
d
e a m
o
re acc
urate tra
n
sistor m
odel
device, an L
N
A
design
was s
e
lected as the
te
st circu
it to v
e
rify th
e
n
e
w
n
o
ise m
o
d
e
l.
In t
h
i
s
w
o
r
k
,
t
h
e dat
a
ha
d
b
een o
b
t
a
i
n
e
d
f
r
om
bot
h si
m
u
l
a
t
i
on a
nd m
easurem
ent
fo
r f
o
u
r
n
o
i
s
e
param
e
ters, su
ch as NF
mi
n
, noise resistance
(R
N
), gam
m
a opt
im
u
m
i
n
m
a
gni
t
u
de (|
Γ
opt
|
)
and
gam
m
a op
t
i
m
u
m
i
n
pha
se (
Г
opt
°) [
3
],
[4
],
[5
],
fo
r f
r
e
qu
en
cies b
e
tw
een
1
G
H
z to
10 GHz. Next, the
m
eas
u
r
ed an
d
th
e sim
u
latio
n
resul
t
s
we
re c
o
m
p
ared an
d
as such
, su
g
g
e
s
t
i
ons are
of
fe
red
base
d o
n
t
h
e com
p
ari
s
o
n
s
m
a
de on t
h
e
noi
se
param
e
ters, which ha
d
been set based on
fre
que
ncy appl
ication. This e
x
em
plifies the
m
o
st accurate noise
m
odel for the
particula
r
fre
q
u
ency
ap
p
licatio
n. Th
e accu
r
acy o
f
th
e n
e
w
n
o
i
se
p
a
ram
e
te
rs were later tested
on
an i
n
t
e
r-st
a
ge
LNA
.
T
h
e
LN
A
was t
e
st
ed
w
i
t
h
va
ri
ed set
t
i
ngs
at
bot
h T
N
OIM
O
D
0
an
d
TNO
I
M
O
D
1.
Th
is
p
a
p
e
r is
o
u
tlin
ed
as fo
l
l
o
w
s:
Sectio
n
1
is
on
t
h
e in
t
r
odu
ctio
n to th
e st
u
d
y
d
e
scrib
e
d in
t
h
is
pape
r. N
e
xt
, S
ect
i
on 2 el
ab
or
at
es i
n
det
a
i
l
the t
h
eo
ry
of t
h
e t
w
o B
S
IM
4 t
h
erm
a
l
noi
se m
odel
s
appl
i
e
d
i
n
t
h
i
s
stu
d
y
.
After that, th
e m
e
th
o
d
o
l
og
y em
p
l
o
y
ed
in
t
h
is stud
y is ex
p
l
ain
e
d
i
n
section
3, wh
ile th
e resu
lts an
d
di
scussi
o
n
are
el
abo
r
at
ed i
n
s
ect
i
on
4.
Fi
nal
l
y
,
t
h
e c
oncl
u
si
on
i
s
depi
ct
ed
i
n
sect
i
o
n
5.
2.
THEORETICAL BACKGROUND
Th
is sectio
n
ex
p
l
ains in
d
e
t
a
il th
e two
BSIM4
th
erm
a
l noi
se m
odel
s
hi
g
h
l
i
ght
e
d
i
n
t
h
i
s
st
u
d
y
.
M
o
re
ove
r,
rel
e
vant
e
q
uat
i
o
ns
pert
ai
ni
ng
t
o
t
h
e si
g
n
i
f
i
cant
n
o
i
s
e
param
e
t
e
rs i
n
t
h
ese m
o
d
e
l
s
are
descri
b
e
d.
2.1.
Charge
Base
d Thermal
Nois
e Model
(TNOIMOD 0)
Th
e no
ise
cur
r
en
t
is g
i
v
e
n
b
y
[
1
],
[2
],
[6
],
[
7
],
[
8
];
.NT
N
O
I
(1)
w
h
er
e
is th
e b
i
as-
d
ep
end
e
n
t
ligh
tly doped
dr
ain (
L
DD
) so
ur
ce to
d
r
ai
n
r
e
sistan
ce,
is t
h
e
B
o
l
t
z
m
a
n’s c
o
nst
a
nt
(
=
1.38 x
10
-2
3J/K
), T
is
the t
h
erm
a
l te
m
p
erature
,
Δ
f is
the
freque
ncy differe
n
ce,
L
eff
is th
e effectiv
e len
g
t
h
o
f
transisto
r
,
μ
ef
f
is t
h
e effecti
v
e m
o
b
ility, Q
inv
is th
e
q
u
a
lity fact
o
r
of th
e inpu
t stag
e,
and the
pa
ram
e
ter NTNOI is introduce
d
for
m
o
re
accurate fitting of short
-
channel device
s.
2
.
2
Ho
listic
Therma
l No
ise Model
(TNOIMOD 1
)
In
t
h
is th
erm
a
l n
o
i
se m
o
del, all th
e sho
r
t-ch
a
nnel e
f
fects and
velocity saturation effect are
considere
d
. He
nce, it is
nam
e
d as
“Ho
listic Th
erm
a
l No
ise Mo
del”.
Th
e
no
ise vo
lt
ag
e sou
r
ce
p
a
rtitio
n
e
d
t
o
t
h
e so
urce si
d
e
is
g
i
v
e
n b
y
[9
], [10],
4
.
.
∆
(
2
)
(
3
)
whe
r
e,
is th
e n
o
i
se
vo
ltag
e
,
is o
n
e
of th
e TNOIMOD
p
a
rameters,
is the source-drain effective
vol
t
a
ge
,
is t
h
e source-drai
n curre
nt, F is t
h
e
noise
factor, F
mi
n
i
s
t
h
e
m
i
nim
u
m
noi
se
fact
or
,
G
opt
is
th
e
optim
u
m
conductance, G
s
is
the s
o
urce c
onducta
nce, B
opt
is th
e
o
p
tim
u
m
su
scep
tan
c
e and
B
s
is t
h
e
source
su
scep
tan
ce. In
ad
d
ition
,
ga
mm
a o
p
t
i
m
u
m
,
and
ga
mm
a source,
.
Equ
a
tio
n (3
) ind
i
cates th
at th
e m
o
st in
flu
e
n
t
i
a
l p
a
ram
e
ter o
f
F is F
mi
n
.
B
o
t
h
noi
se
par
a
m
e
t
e
rs, i
.
e. m
i
nim
u
m
noi
se f
i
gu
re,
NF
mi
n
, and R
N
, a
r
e de
ri
ved
bel
o
w t
o
c
o
m
p
rehe
nd
th
e effects
u
pon
h
o
listic th
ermal n
o
i
se [11
]
, [1
2
]
,
1
2
Г
(4)
∆
(5)
Whe
r
e,
Г
opt
and
Γ
s
are th
e ratio
o
f
th
e in
cid
e
n
t
to
th
e refl
ected wave along a transm
is
sion line, and
G
m
is
tran
sco
ndu
ctance. Su
bstitu
tin
g
eq
u
a
tion
(5
) i
n
to
equ
a
tion
(4),
we
h
a
v
e
;
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Developme
nt
of Accur
a
te B
S
IM4 N
o
ise P
a
r
a
meters
for CM
OS … (Asmaa
Nur A
q
ilah Zai
nal
Badri)
92
7
1
2
∆
(6)
Eq
uat
i
on
(6
) s
h
o
w
s t
h
at
NF
mi
n
is d
i
rectly p
r
o
portio
n
a
l to
i
d
2
. M
eanw
h
i
l
e
,
Eq
uat
i
on
(2
) c
a
n be si
m
p
l
i
f
i
e
d an
d
expresse
d i
n
te
rm
s of R
N
as
[
1
3
]
,
4
∆
(7)
Hen
c
e, it is
n
o
t
ed
th
at
is
d
i
rectly p
r
opo
rtion
a
l to
R
N
.
O
n
t
h
e
ot
he
r
ha
nd
, t
h
e n
o
i
s
e c
u
r
r
ent
i
s
ex
presse
d a
s
,
4
(8)
whe
r
e,
β
tnoi
i
s
one
o
f
t
h
e
TN
OIM
OD
1
par
a
m
e
t
e
rs, G
ds
i
s
drai
n t
o
s
o
urce
co
nd
uct
a
nce
a
n
d
G
mb
s
is th
e b
o
d
y
t
o
source tranc
onducta
nce.
To determine
in
Eq
u
a
tion
(2
) and
in
Equ
a
tion
(8
), th
e
fo
llo
wi
n
g
p
a
ram
e
ters
are defi
ne
d as
[
1
]
,
.
1
.
.
(9)
and
.
1
.
.
(10)
whe
r
e, V
g
s
t
e
ff
i
s
th
e
g
a
te-so
u
rce effectiv
e thresho
l
d
v
o
ltag
e
, E
sat
is the c
r
itical electrical field.
β
tnoi
is
one o
f
th
e TNOIMOD
1
p
a
ram
e
ters wh
ile RNOIA an
d RNOIB ar
e m
o
d
e
l p
a
ram
e
ters with
th
e
d
e
fau
lt v
a
l
u
es
of
0.
57
7 a
n
d
0.
51
64
,
respect
i
v
el
y
.
These
de
fa
ul
t
val
u
es
fo
r th
e m
o
d
e
l p
a
ram
e
ters were set
by th
e fou
n
d
r
y.
2
.
3 Lo
w-
No
ise
Amplif
ier
(
L
NA)
LNA is a typ
e
o
f
am
p
lifier th
at is ex
t
r
em
el
y sen
s
itiv
e to
n
o
i
se
(as i
n
d
i
cated
v
i
v
i
d
l
y in its n
a
m
e
–
“Lo
w
N
o
i
s
e A
m
pli
f
i
e
r”). I
n
f
act
, one
of t
h
e
m
o
st
im
por
tan
t
p
e
rform
a
n
ce
m
e
tric o
f
th
e LNA is th
e NF [14
]
.
Th
us, t
h
e L
N
A
ha
d
been
o
p
t
e
d as
t
h
e t
e
st
ci
r
c
ui
t
t
o
veri
fy
t
h
e
new
n
o
i
s
e
m
odel
.
As a test circu
it, a si
m
p
le LNA will b
e
favo
rab
l
e. If a m
o
re co
m
p
lex
circu
it is ch
o
s
en
, it wou
l
d
m
ean
th
e effects of p
a
rasitic an
d
i
n
tegrated
co
m
p
on
en
ts mig
h
t
in
flu
e
n
ce th
e
NF p
e
rfo
r
m
a
nce
m
o
re rath
er th
an
th
e
transistor’s
noi
se
m
odel. He
nce, the chosen
LNA
for th
i
s
wo
rk
has a d
u
a
l
-
st
age t
o
p
o
l
o
gy
[1
5]
, [1
6]
, [
17]
as
sho
w
n i
n
Fi
gu
r
e
1.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
of a
dual
-
st
age
na
rr
ow
b
a
nd
L
N
A
.
[
1
5]
, [
1
6]
, [
1
7]
3.
METHO
D
OL
OGY
For T
N
OIM
O
D 0, the
defa
ul
t value fo
r NT
NO
I was
5
,
wh
ile in
TNOIM
OD
1
,
th
e d
e
fau
lt v
a
lu
e fo
r
th
e p
a
r
a
m
e
ter
s
w
e
r
e
TNO
I
A
= 1
.
5
,
TNO
I
B
= 3
.
5
,
RNOI
A
= 0
.
5
7
7
,
and
R
N
OI
B = 0.5164
. Th
e
d
e
f
a
u
lt v
a
lu
es
w
e
r
e
ob
tain
ed
f
r
o
m
th
e f
oun
dr
y. In
t
h
is
w
o
rk
, t
h
ese
p
a
ram
e
ters were
v
a
ri
ed
to ob
tain opti
m
u
m
sett
in
g
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
,
Vol
.
1
0
,
N
o
.
3,
Ju
ne
20
1
8
:
x
x
–
xx
92
8
3
.
1
BSIM4
Therma
l No
ise Model
CM
OS 0
.
1
3
-
µ
m
transistors
(
DUT
)
were
fa
bricated
and
c
h
aracterize
d
. Next
,
t
h
e NPs obt
ai
ne
d fr
om
the m
easured
DUT
we
re com
p
ared to the
NPs
obtai
ne
d
fr
om
t
h
e HSPIC
E
si
m
u
l
a
t
i
on
usi
n
g t
h
e
B
S
IM
4
TNOIMOD
0
an
d TNOIMOD
1
th
erm
a
l n
o
i
se
m
o
d
e
ls. This
co
m
p
ariso
n
will d
e
term
in
e wh
ich
n
o
i
se m
o
d
e
l is
m
o
re accurate
in m
odeling the transist
or.
3
.
2 Lo
w
No
ise
Amplif
ier
Fi
gu
re
2 s
h
ow
s t
h
e l
a
y
o
u
t
of
t
h
e
dual
-
st
age
na
rr
ow
ba
nd
L
N
A
t
h
at
was
f
a
bri
cat
ed
an
d
use
d
as t
h
e
test circuit to verify the
accuracy of t
h
e T
N
OIM
OD
0 a
n
d TNOIMOD
1 therm
a
l noise m
odels in
m
o
deling
the tra
n
sistors.
Fi
gu
re
2.
The
l
a
y
out
of
t
h
e
d
u
a
l
-
st
age
nar
r
o
w
ba
n
d
L
N
A
us
ed i
n
t
h
i
s
w
o
r
k
4.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Sect
i
on 4
.
1
de
scri
bes t
h
e res
u
l
t
s
obt
ai
ne
d f
o
r al
l
NPs u
n
d
e
r vari
e
d
par
a
m
e
t
e
rs for TN
OIM
OD 0 a
n
d
TNO
I
M
O
D
1.
Sect
i
on
4.
2 d
i
spl
a
y
s
t
h
e res
u
l
t
s
achi
e
ve
d f
o
r
NF
mi
n
and
NF f
o
r t
h
e i
n
t
e
r-st
a
ge LN
A
un
de
r
vari
e
d
NTN
O
I
fo
r T
N
O
I
M
O
D
0 a
n
d t
h
e
res
u
l
t
s achi
e
ve
d
fo
r
NF
u
nde
r
vari
e
d
R
N
O
I
A
f
o
r
TNO
I
M
O
D
1.
4
.
1
BSIM4
Therma
l No
ise Model
Thi
s
sect
i
on s
h
o
w
an
d de
scr
i
be t
h
e resul
t
s
whe
n
t
h
e de
v
i
ce was un
der
di
ffe
rent
NT
NO
I f
o
r t
h
e
TNO
I
M
O
D
0 t
h
erm
a
l
noi
se m
odel
.
The N
T
NO
I wa
s va
r
i
ed at
1, 5,
1
0
and
15
. Fo
r t
h
e TN
OIM
O
D
1, t
h
e
RNOIA was varied
wh
ile th
e o
t
h
e
r t
h
ree
p
a
ra
m
e
ters were at th
eir
d
e
fau
lt valu
es.
4.
1.
1
Noise
parame
ters
ob
taine
d
for
TNO
I
MO
D =
0
under
variou
s c
o
nditi
o
ns
Fi
gu
re 3 s
h
o
w
s t
h
e resul
t
s
r
e
t
r
i
e
ved f
r
o
m
t
h
e fo
ur
noi
se
param
e
t
e
rs t
h
at
had bee
n
s
e
t
at
vari
ed
NTN
O
I
, i
.
e.
N
T
NO
I
1,
5, 1
0
and
1
5
. T
h
e g
r
ap
hs
pl
ot
t
e
d
p
o
i
n
t
o
u
t
t
h
e
va
ri
ances
bet
w
ee
n t
h
e si
m
u
l
a
t
e
d an
d
the
m
easured results. Observa
tion reco
rde
d
f
r
om
Fi
gu
re
3 a
r
e as
f
o
l
l
o
ws:
(i)
As the NT
NOI increases, NF
mi
n
, R
N
, and |
Γ
opt
| increase as well.
Γ
opt
° do
es sh
ow similar tren
d
bu
t at
N
T
NOI
=
5
,
10
an
d 15
, th
e
dif
f
e
r
e
n
ce is i
n
sig
n
i
f
i
can
t
.
(ii) Si
m
u
lated
R
N
and |
Γ
opt
| at NT
NO
I =
1,
o
f
f
e
r
near
sim
ilar
va
l
u
es t
o
t
h
ose
of
m
easured
dat
a
.
(iii)
NF
mi
n
si
m
u
lat
e
d
resu
lts are clo
s
est to
the
m
easu
r
ed
re
sults when
NTNOI =
5 (for freque
ncies
exceedi
n
g 4 GHz) and
NT
NOI =
10
for fre
que
ncies
below
3
GHz
.
(iv)
Γ
opt
° at
NTN
O
I
=
5,
1
0
a
n
d
1
5
di
spl
a
y
64%
t
o
7
9
%
o
f
t
h
e
m
easured
val
u
e w
h
i
l
e
Γ
opt
°
a
t
NT
NO
I =
1
is showi
n
g 54% to
75%
of the m
easured
val
u
e.
(v
)
Fi
gu
re
3, i
n
ge
neral
,
p
o
rt
ray
s
t
h
at
t
h
e best
va
l
u
e t
o
set
t
h
e
p
a
ram
e
t
e
rs unde
r TN
O
I
M
O
D
= 0 f
o
r
2
-
3
G
H
z
op
er
ation is N
T
N
O
I
=
1
0
. A
lthou
gh
N
T
NOI
=
1
sh
ow
s
b
e
tter
r
e
su
lts fo
r
R
N
a
nd |
Γ
op
t|, th
e
NF
mi
n
is th
e p
a
ram
e
ter th
at
m
o
stl
y
a
ffected the NF.
At NTNOI = 10, NF
mi
n
displays the closest
resul
t
s
t
o
t
h
ose
o
f
m
easured
at
t
h
i
s
f
r
e
que
ncy
ra
nge
.
(vi
)
In
gene
ral
,
NT
NO
I sh
o
u
l
d
be
set
at
5 for fre
que
nci
e
s ab
o
v
e
4 GHz a
nd at
10
fo
r fre
q
u
en
ci
es bel
o
w
3
G
H
z
.
A
s
f
o
r
3
to
4 GH
z
f
r
e
quen
c
y r
a
ng
e, t
h
e N
T
N
O
I
can
be set at eith
er 5 or
1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Developme
nt
of Accur
a
te B
S
IM4 N
o
ise P
a
r
a
meters
for CM
OS … (Asmaa
Nur A
q
ilah Zai
nal
Badri)
92
9
4.
1.
2
Noise
parame
ters
ob
taine
d
for
TNO
I
MO
D =
1
under
variou
s c
o
nditi
ons.
For t
h
i
s
e
xpe
ri
m
e
nt
, i
t
was f
o
u
n
d
t
h
at
t
h
e vari
at
i
o
n of T
N
O
I
A
,
TN
OI
B
and R
N
O
I
B
di
d n
o
t
m
a
ke
si
gni
fi
ca
nt
c
h
a
nge
s t
o
t
h
e
N
P
s. T
h
e
gr
ap
h
s
sh
o
w
i
n
g t
h
e
s
e res
u
l
t
s
are
not
i
n
cl
u
d
ed
h
e
re
due
t
o
t
h
e
pa
ge
l
i
m
i
t
a
t
i
on. The
va
ri
at
i
on i
n
R
N
O
I
A
,
on
t
h
e
ot
he
r
han
d
,
di
d
sh
ow
s
o
m
e
change
s t
o
t
h
e
N
P
s.
Fi
gu
re
3.
Si
m
u
l
a
t
i
on v
s
m
easure
d
res
u
l
t
s
f
o
r
al
l
noi
se
pa
ra
m
e
t
e
rs whe
n
N
T
NO
I i
s
va
ri
ed
f
o
r
TN
OIM
O
D =
0
Fi
gu
re
4.
R
e
sul
t
s fr
om
sim
u
l
a
ti
on a
n
d m
easur
em
ent
whe
n
T
N
O
I
M
O
D =
1
,
wi
t
h
R
N
OI
A
vari
e
d
a
n
d
TNOIA, T
N
OIB and RNOIB
rem
a
ined co
nst
a
nt
at
t
h
ei
r
de
f
a
ul
t
val
u
es
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
,
Vol
.
1
0
,
N
o
.
3,
Ju
ne
20
1
8
:
x
x
–
xx
93
0
Fi
gu
re 4 di
s
p
l
a
y
s
t
h
e noi
se pa
ram
e
t
e
rs for B
S
IM
4 C
M
OS t
r
ansi
st
or,
whe
n
o
n
l
y
R
NOI
A
was vari
e
d
and t
h
e
ot
he
r p
a
ram
e
t
e
rs’ set
t
i
ngs we
re m
a
de const
a
nt
at
t
h
ei
r defa
ul
t
val
u
es. R
N
O
I
A
wa
s vari
ed f
r
o
m
0.
57
7
to
1.577
.
For NF
mi
n
, the increase in R
N
OIA
ha
d inc
r
eased
NF
m
i
n.
W
h
e
n
R
N
OI
A = 1.
4
77 a
n
d 1
.
5
7
7
, t
h
e
NF
mi
n
had
bee
n
cl
osest
t
o
t
h
e
m
easured
dat
a
.
For |
Γ
opt
|, the
RN
OI
A at 0.57
7 or
0
.
67
7 was th
e
n
e
ar
es
t t
o
the
m
easure
d
data at
fre
quency bel
o
w
7
GHz
. M
e
a
n
w
h
i
l
e
at
fre
que
nc
y
abo
v
e
7
G
H
z
,
R
N
OI
A at
0.
8
7
7
ga
ve t
h
e cl
o
s
est
di
s
p
l
a
y
.
As fo
r param
e
ter
R
N
, in
crem
e
n
t in
R
N
OIA
had
in
creased
the R
N
an
d m
ove
d i
t
f
u
rt
her
u
p
away
f
r
om
the m
easured
data.
As a
n
exa
m
ple, for RNOIA =
1.477,
R
N
was
2
0
Ω
as com
p
are
d
t
o
the
m
easure
d
8
Ω
at
fre
que
ncy
2 G
H
z.
For
Γ
opt
°, th
e in
crease in
R
N
OIA will in
crease th
e p
h
a
se
an
d
m
o
v
e
d
it clo
s
er to
th
e m
e
a
s
u
r
ed
resu
lts.
The R
N
O
I
A at
1.
3
7
7
t
o
1.
57
7
had
bee
n
t
h
e
nearest to t
h
e m
easure
d
data.
From
the above m
e
ntioned
results and observatio
ns, the
m
o
st accurate
RNOIA settings for the
specific NP are as follows:-
NF
mi
n
:
R
NOIA = 1.
5
77
(< 7
GHz
) an
d 1
.
4
77
(> 7
GHz
),
|
Γ
opt
| : RN
O
I
A
= 0
.
577
or 0.
6
77 (< 7
GHz
)
a
nd 0.
87
7 (>
7 G
H
z
)
,
R
N
: RNO
I
A
= 0.577
and
Γ
opt
° :
R
N
O
I
A =
1.
3
77 t
o
1.
57
7.
Howev
e
r, fo
r
p
r
acticality an
d
to
b
e
im
p
l
e
m
en
ted
du
ri
n
g
IC sim
u
lat
i
o
n
,
RNOIA can
be set at 1
.
477
fo
r m
o
st
accurate NF
mi
n
and
Γ
opt
° a
nd
at
0.
57
7
fo
r m
o
st
acc
urat
e |
Γ
opt
|
a
n
d
R
N
. Fo
r ci
rcu
it lik
e
LNA, the desig
n
m
i
g
h
t
be targeting for very good
NF perfor
m
a
nce and thus, the
accuracy of the NF
mi
n
becomes critical. This has
been
hi
ghl
i
ght
ed
by
eq
uat
i
o
n
(3
).
Fo
r s
u
c
h
a
desi
g
n
,
R
N
OI
A ca
n
be set
at
1.
47
7.
4
.
2 Lo
w
No
ise
Amplif
ier
The dual
-
stage
LNA, designe
d
for
op
eration at 2
.
5
GHz,
was si
m
u
lated
with
v
a
riation
in th
e BSIM
4
th
erm
a
l n
o
i
se m
o
d
e
l p
a
ram
e
t
e
rs. In
itially, TNOIMOD
0
was
u
s
ed
with
NTNOI
v
a
ried
at 1
,
5
,
1
0
and
15
. Th
e
evaluate
d NF a
n
d NF
mi
n
are illustrated in
Figure
5.
(i
)
The si
m
u
l
a
t
e
d
NF at
NT
NO
I = 10 i
s
ve
ry
cl
ose t
o
t
h
e m
e
asure
d
N
F
f
o
r f
r
eq
ue
nci
e
s bet
w
een
1 t
o
3
GHz. Th
is co
rrespo
n
d
s
well
with
th
e ob
serv
atio
n in
4
.
1
.
1
.
(ii)
As
NT
NO
I inc
r
eases,
b
o
th
N
F
an
d
NF
mi
n
d
i
sp
lay in
crem
ent as well.
(iii)
Th
e LNA
was d
e
sign
ed
fo
r
a 2
.
5
GHz op
eratio
n, exp
l
ainin
g
th
e cl
o
s
est
resem
b
lan
ce b
e
tween
th
e
si
m
u
lated
NF an
d NF
mi
n
(at NTNOI = 10) wi
th
th
e m
easu
r
ed
d
a
ta at th
is
freq
u
e
n
c
y.
Fi
gu
re
5.
N
F
a
n
d
N
F
mi
n
o
f
th
e du
al-stag
e
LNA at
v
a
ried
NTNOI
v
a
lu
es, in
co
m
p
ariso
n
to
th
o
s
e ob
tain
ed
from
m
easurement
Fi
gu
re
6 s
h
o
w
s
t
h
e N
F
t
r
e
n
d
whe
n
T
N
OIM
OD
1
was a
p
pl
i
e
d.
W
i
t
h
re
fer
e
nce t
o
Fi
g
u
re
4, t
h
ere i
s
n
o
o
n
e
R
N
OIA that can
prov
id
e clo
s
est sim
u
la
tio
n
to
m
easu
r
ed
d
a
ta
for all NPs. No
d
oub
t th
at th
e closest t
o
measured NF
mi
n
dat
a
was ge
nerat
e
d by
R
N
OI
A = 1.
4
77
or
1.
57
7,
but
t
h
ese val
u
es w
e
re al
so t
h
e o
n
e
s t
h
at
gave t
h
e furt
hest from
the measured R
N
.
Due t
o
this, i
n
orde
r to c
o
m
p
are the LNA’s m
easure
d
vers
us
sim
u
l
a
t
e
d NF,
R
N
O
I
A = 1
.
1
7
7
was ch
ose
n
as i
t
shows m
oderat
e
pe
rf
orm
a
nce f
o
r t
h
e N
F
mi
n
and R
N
. Besides
R
N
O
I
A
=
1.
17
7, t
h
e
NF
o
f
t
h
e LN
A
was al
s
o
si
m
u
l
a
t
e
d at
R
N
O
I
A
=
0.
57
7, i
.
e
.
t
h
e
de
fa
ul
t
val
u
e
.
At
R
N
O
I
A =
1.
17
7 an
d ot
he
r param
e
t
e
rs at
t
h
ei
r defa
ul
t
v
a
l
u
es (i
.e. T
N
OI
A = 1.
5, T
N
O
I
B
= 3.
5,
R
N
O
I
B
= 0.
51
64
), t
h
e si
m
u
l
a
t
e
d dat
a
ga
ve t
h
e res
u
l
t
s
cl
osest
t
o
t
h
e
m
easure
d
dat
a
.
On t
h
e ot
he
r ha
n
d
,
whe
n
all p
a
ram
e
ters were
set at th
eir d
e
fau
lt
v
a
lues (i.e. R
N
OIA =
0
.
5
77), the resu
lts sho
w
ed
th
at t
h
e si
m
u
la
ted
data gave the
results furthe
st away from
the m
easur
ed data. These fi
ndi
ngs conf
irm th
at
th
e h
i
gh
er th
e
RNOIA, th
e clo
s
er is th
e simu
lated
t
o
the
measured NF.
Referri
ng to Fi
gure
4, where
increm
ent of RNOIA
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Developme
nt
of Accur
a
te B
S
IM4 N
o
ise P
a
r
a
meters
for CM
OS … (Asmaa
Nur A
q
ilah Zai
nal
Badri)
93
1
h
a
d a
l
s
o
in
cr
ea
s
e
d
N
F
mi
n
(movi
ng close
r
t
o
m
easured da
ta) and i
n
creas
ed R
N
(m
ovin
g
fu
rthe
r a
w
ay
fr
om
measured data
), these
findin
gs
also
prove that
the
NF
mi
n
affe
cts NF m
o
re t
h
an R
N
.
Fig
u
r
e
6
.
NF
of
th
e du
al-
s
tage LNA
at
v
a
r
i
ed
TN
OI
MOD
0
an
d TN
OI
M
O
D 1 p
a
r
a
m
e
te
r
s
co
m
p
ar
ed
with
those
of m
easurem
ent
5.
CO
NCL
USI
O
N
As a co
ncl
u
si
o
n
, t
h
e
fi
n
d
i
n
gs
obt
ai
ne
d
fr
om
t
h
e sim
u
l
a
t
i
o
n
of t
h
e
r
m
a
l
B
S
IM
4
noi
se m
odel
p
o
rt
ray
ch
ang
e
s
with
v
a
riation
in
the n
o
i
se p
a
rameters. For
inst
ance, as for T
N
OIMOD
= 0, th
e v
a
lu
e of
NTNOI
sho
u
l
d
be
set
a
t
val
u
e
5 f
o
r a
ppl
i
cat
i
o
n o
f
fr
eque
ncy
a
b
o
v
e
4
GHz
an
d
va
l
u
e 1
0
fo
r a
ppl
i
cat
i
on o
f
f
r
e
q
uency
b
e
low 3
GHz.
It is also
sugg
ested
th
at th
e
b
e
st v
a
lu
es to
set th
e p
a
ram
e
ter
s
for TNOIMOD = 1
are TNOIA =
1.5, TNOIB = 3.5, RNOIB = 0.5164
and RNOIA = 1.477 for m
o
st accurate NF
mi
n
, R
N
OI
A = 0.
57
7 f
o
r m
o
st
accurate |
Γ
opt
|, RNOIA =
0.577 for m
o
st accurate R
N
a
n
d R
N
OIA =
1.477 for m
o
st accurate
Γ
opt
°. He
nc
e,
the
ch
o
i
ce
o
f
RNOIA will b
e
b
a
sed
on
th
e ap
plicatio
n
an
d
focu
s of th
e desig
n
e
d
circu
it u
tilizin
g
th
e d
e
v
i
ce.
For
t
h
e desi
gn
an
d
sim
u
l
a
t
i
on o
f
ci
rcui
t
s
l
i
k
e t
h
e LN
A w
h
e
r
e
NF m
i
ght
be t
h
e f
o
c
u
se
d m
e
t
r
i
c
, t
h
e IC
de
si
gne
r
m
i
ght
wa
nt
t
o
set
t
h
e R
N
O
I
A
t
o
1.
47
7
si
nce
NF
mi
n
will b
e
t
h
e m
o
st affecti
n
g p
a
ram
e
ter.
Oth
e
r th
an
t
h
at, th
e
du
al-stage LNA, wh
ich h
a
d
b
e
en
selected
to test th
e n
e
w
no
ise m
o
d
e
l settin
gs
fo
r TN
OIM
O
D 0 an
d T
N
O
I
M
OD 1
,
co
nfi
r
m
e
d t
h
at
t
h
e pe
rform
a
nce exerted by the
NF was indeed t
h
e m
o
st
accurate,
when the pa
ram
e
ter
s
were
set at the suggeste
d
va
lues. It
was als
o
found th
at for
applications bel
o
w
3
GHz
, T
N
OI
M
OD
0
at N
T
NO
I =
1
0
h
a
d
been
the
closes
t to th
e NF m
easu
r
ed data, in
co
m
p
ariso
n
t
o
TN
OI
MOD
1
w
ith
th
e suggested
p
a
r
a
m
e
t
e
r
v
a
l
u
es. Th
i
s
mig
h
t
b
e
insin
u
a
ting
t
h
at th
e ho
listic
mo
d
e
l i
s
o
v
e
restim
at
in
g th
e th
erm
a
l n
o
ise o
f
th
e
d
e
v
i
ce.
ACKNOWLE
DGE
M
ENTS
Th
is
work was co
m
p
letely su
p
ported
b
y
Un
i
v
ersiti
Sains M
a
laysia u
n
d
e
r
Research Un
iversity Gran
t
N
o
. 1
001
/PELECT/8
142
49
.
REFERE
NC
ES
[1]
W
.
L
i
u
,
X
.
J
.
,
J
.
C
h
e
n
,
M
-
C
.
J
e
n
g
,
Z
.
L
i
u
,
Y
.
C
h
e
n
g
,
K
.
C
h
e
n
,
M
.
C
h
a
n
,
K
.
H
u
i
,
J
.
H
u
a
n
g
,
R
.
T
u
,
P
.
K
.
K
o
a
n
d
Chenming Hu, B
S
IM4v4.7 MOSFET Model -User'
s Manu
al
, E.E.a.C.S. Team, Ed
ito
r. 2011: Berkeley
,CA.
[2]
Bhuiy
a
n, A., An
aly
s
is and design of low po
wer
CMOS u
ltra wideband receiver. 2009, Un
iversity
of Nevada Las
Ve
ga
s: La
s Ve
ga
s.
[3]
Z. A
.
Djenn
a
t
i
,
K.G.,
Nois
e
Charac
teri
za
tion
in In
AlAs/InG
aAs/InP pHEMTs fo
r Low
Nois
e Appli
cat
io
ns
.
International Jo
urnal of
Electrical
and Computer Engin
eering
(
I
JECE)
, 2017.
7
(1
): p. 176-183.
[4]
Ibrahim A.
B,
H
.
M.
N.
,
Othman
A.
R,
Johal.
M.
S, Low No
ise Am
plifier a
t
5.8G
Hz with Cascod
e and C
a
scade
d
Techn
i
ques Using T-Matching
Netw
ork for
Wireless Applications.
International Journal of Electrica
l
and
Computer Engin
eering (
I
JEC
E
)
,
2011. 1(1): 1-8
.
[5]
Asmaa Nur Aqi
l
ah Zainal Badri, N.M.N., Shukr
i bin Ko
rakkottil Kunhi Mohd, Asruln
izam Abd Manaf, Arjun
a
Marzuki, Mohd
Tafir Mustaff
a
,
Lay
out Eff
e
cts on Hi
gh Frequency
and Noise Pa
r
a
meters in MOSFETs.
Indonesia
n
Journal of Electrical
Engineerin
g and Computer
Scien
c
e (
I
JEECS
)
, 2017. 6(1)
: 88
-96.
[6]
Lu, D
.
D., Compact Models for
Future
Gen
e
ration
CMOS. 2011, U
n
iversity
of
C
a
lifornia B
e
rkeley
:
Berkeley
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
502
-47
52
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
,
Vol
.
1
0
,
N
o
.
3,
Ju
ne
20
1
8
:
x
x
–
xx
93
2
[7]
S. Khandelwal,
Y.S.
C., S. Venu
gopalan
,
M. A.
Ul Karim, A. B. Sachid
, B. Y.
N
g
u
y
en
, O. Rozeau, O. Fay
n
o
t
, Ali
M.
Niknejad,
C.
C.
Hu,
BSIM
-IMG: A Co
mp
act Mode
l for
Ultrathin
-
Bod
y
SOI MOSFETs W
ith Back-Gat
e
Control.
IEEE T
r
ansactions
on E
l
ec
tr
on Devi
ces
,
2012. 59(8): p. 2
019-2026.
[8]
Y.
S.
Chauhan,
S.
V.
,
M.
A.
Chalkiadaki,
M
.
A.
Ul Karim,
H.
A
g
arwal, S.
Kh
an
delwal
, N. P
a
yd
avos
i, J
.
P
.
Du
ar
te,
C. C. Enz, Ali M. Niknejad,
C. Hu, BSIM6:
Analog and RF Co
mpact Model for Bulk MOSFET.
IEEE
Transactions on
Electron Devices
, 2014. 61(2): p
.
234-244
.
[9]
Y. Sahu, P.K.,
A. Dasgupta, C. Hu,
and Y. S. Chauhan, Comp
act Modeling of Drain Current
Thermal Noise in
FDSOI
MO
SFE
T
s
Inc
l
uding Bac
k
-Bia
s E
ffec
t
.
IEEE Transactio
ns on Microwave Theory and Techniqu
es,
2017.
65(8): p. 2261-2
270.
[10]
Shimomura, H., A stud
y
on
High-Frequency Performan
ce
in MOSFETs Scaling. 2011
, Tok
y
o Institute
of
Techno
log
y
.
[11]
Dunleav
y
,
L., Understanding
Noise Parameter M
eas
urement. Microwave Jour
nal,
2009. 52: p. 92-
100.
[12]
T. Ytterd
al, Y.C
.
a.T.
F., Device
Modeling for
An
alog
and RF CM
OS
Circuit Press. 2003: John Wiley
and
Sons.
[13]
Lee, T.H., The Design
of
CMOS
Radi
o-Frequen
c
y
Integrated C
i
r
c
uits.
2004: Cambridge Univ
ersity
Pr
ess.
[14]
Friss, H.T. Noise Figures of
Rad
i
o Re
ceiv
e
rs.
in
Proceedings of
I
R
E. 1944
.
[15]
F. Eshghabadi,
H.A.E., N. M.
N
oh, M. T. Mustaffa , A.
A
.
Manaf and O. Sidek
.
A low Pow
e
r High-Gain 2.45-GHz
CMOS Dual-Stage LNA with
Linearity
Enhancement
.
in IE
EE I
n
terna
tiona
l Con
f
erenc
e
on C
i
rc
uits and S
y
s
t
em
s
(ICCAS 2012).
2012. Kuala
Lu
mput, Malay
s
ia.
[16]
F. Eshghabadi,
F.B., N. M. Noh, M. T.
Mustaffa and A. A. Ma
naf, Post-Process Die-leve
l Electroma
gnetic Field
Anal
y
s
is on Mi
crowave CMOS Low-Noise Amplif
ie
r for First-
Pass Silicon Fa
brica
tion Succ
es
.
Integration, th
e
VLSI Journal, 2
015.
52: p. 1-11.
[17]
Eshghabadi, F.,
Design of Integr
ated R
econfigu
r
rable RF
CMOS Low-Noise Amplifiers
for Cellular and WIreless
S
y
stems. 2016,
University
Sains Malay
s
ia.
BIOGRAP
HI
ES
OF AUTH
ORS
Asmaa Nur Aqilah
Z
a
inal Badri
graduated with B.Eng
.
(Ele
ctronic Eng
i
neering)(Honours)
from
Universiti Sains Mala
y
s
i
a
a
nd currentl
y
pur
su
ing MSc. with the sam
e
universit
y. Her field
of resear
ch is
in dev
i
ce
the
r
m
a
l noise m
odelling
.
She
ca
n be con
t
a
c
ted
b
y
em
ail
a
t
anazb15_
eee043
@student.usm.my
A
s
s
o
c. Prof
. I
r
.
D
r
. N
o
r
l
ail
i
Mo
h
d
N
o
h
graduated with
B.Eng.
Ele
c
tri
cal
Eng
i
n
eering
(Honours) from Universiti Tekno
logi
Malay
s
ia,
and both MS
c. in
Electrical
and
Electron
i
c
Eng.
and Ph.D
in Integrated
Circu
i
t Design from Univ
ersiti
Sains Mal
a
ysia
. She
is
curr
entl
y
an
As
s
o
ciate P
r
ofes
s
o
r with th
e S
c
h
ool of
El
ectr
i
ca
l
and E
l
ec
troni
c
E
ngineer
ing,
Univ
ers
iti
S
a
ins
M
a
la
y
s
ia
. Her
s
p
eci
ali
zat
ion
is
in
Analog RF
IC
D
e
sign. She is
als
o
a pro
f
essional
engineer
regis
t
er
ed wit
h
t
h
e Board
of
Eng
i
neers
M
a
la
ys
i
a
and a
Char
ter
e
d
Engine
er r
e
gis
t
e
r
ed with
UK
Engineering Cou
n
cil. She can
be
contac
ted
b
y
telephone at
+60459
96023 or email
at
eel
ail
i
@us
m
.m
y
Shu
kr
i B. K
o
r
a
kkottil K
unhi M
o
hd
graduated
with B
.
Eng (M
echatronic)
(Hon
ours) and M.
Sc. Degr
ees fro
m
Universiti Sa
i
n
s Mala
ysia
(USM
), and
curr
entl
y
pursuing Ph.D
degree
with
the s
a
m
e
univers
it
y.
He
is
curr
ent
l
y
a
s
t
aff
at
Col
l
a
borat
ive M
i
cro
e
le
ctroni
c Des
i
g
n
Exc
e
ll
enc
e
Centre (CEDEC
) USM. For more informati
on, h
e
can b
e
cont
a
c
t
e
d b
y
em
ail
a
t
shukri.mohd@usm.my
.
Assoc.
Prof.
Dr. Asrulni
z
am Ab
d M
a
naf
gradu
a
ted with B
.
Eng
and M.
Eng. Sc.
Degrees from
To
y
o
h
a
shi Univ
ersity
of
Techno
log
y
, Jap
a
n
and
Eng.D deg
r
ee
fr
om
Keio Univer
s
i
t
y
,J
apan
. He
is
curren
t
l
y
an
As
s
o
ciate
P
r
ofes
s
o
r with Co
llabor
ativ
e M
i
cro
e
l
ect
ronic Des
i
gn
Ex
cel
lenc
e
Centre (CEDEC
) USM. For more informati
on, h
e
can b
e
contacted b
y
phon
e
at +6045996013
or em
ail
a
t
eeas
r
u
lniz
am
@us
m
.
m
y
Evaluation Warning : The document was created with Spire.PDF for Python.
In
d
onesi
a
n
J
E
l
ec En
g &
C
o
m
p
Sci
ISS
N
:
2
5
0
2
-
47
52
Developme
nt
of Accur
a
te B
S
IM4 N
o
ise P
a
r
a
meters
for CM
OS … (Asmaa
Nur A
q
ilah Zai
nal
Badri)
93
3
Assoc
.
P
r
of. Ir
. Dr
.
Ar
juna Mar
z
uki
graduated with B.Eng.
in Electronic En
gineer
ing from
Universit
y
of S
h
effie
l
d, MSc. from
Univer
siti Sains Mala
y
s
i
a
and PhD from
Universiti
Mala
y
s
ia Pe
rlis.
He is curr
entl
y
an Associat
e
Professor with the Schoo
l of
Ele
c
tr
ica
l
an
d
Ele
c
troni
c Eng
i
n
eering
,
Univers
i
t
i
S
a
ins
M
a
l
a
y
s
i
a
an s
p
ec
ial
i
s
e
d i
n
analog
IC des
i
gn. He is
als
o
a profes
s
i
onal e
ngineer reg
i
s
t
er
ed with the
Board of Engineer
s
M
a
la
y
s
ia and
a Chartered
Engineer reg
i
stered with th
e
UK Engineer
in
g
Council. For
more information, h
e
can be
contacted
b
y
ph
one at
+6045996
021
or email
at ee
marzuki@usm.my
.
Moh
d
Tafir Mu
s
t
affa
graduated with B.Eng. in
Electronic Eng
i
neering
from
Universiti Sains
Malay
s
ia, M. En
g. Sc. and PhD
degrees from Vict
oria University, Melbourne. He is currently
a
senior lec
t
urer
with the Schoo
l of Elec
tri
cal
and Ele
c
troni
c
Engine
ering, U
n
iversiti Sa
ins
M
a
la
y
s
ia and hi
s
area of res
earc
h
is
RF
IC,
An
alog Design and
RF MEMS. Dr
Tafir is also a
Senior Member IEEE. For more information,
h
e
can be
contacted
b
y
phone
at
+6
045996029 or
em
ail at
taf
i
r@u
s
m
.
m
y
.
Moh
a
med
Fauz
i Pack
ee
r Moh
a
med
receiv
e
d t
h
e B.Eng. degr
e
e
in ele
c
tri
cal
a
nd elec
tronics
engine
ering (wit
h distinct
ion) fr
om
the Univ
ersiti T
e
nag
a
Nasi
onal (UNITEN)
Mala
ysia
in
2002, the M.Sc. degree in
elect
r
onics s
y
stem
d
e
sign engineerin
g from
the Universiti Sains
Malay
s
ia (USM), in 2010, and Ph.D. degree in
electr
i
cal and el
ectronics engin
eer
ing from The
University
of Manchester (UoM) in 2015. In
2015, he joined
the School of
Electrical and
Ele
c
troni
cs Engi
neering
,
Universiti Sains Mala
y
s
i
a
(USM), as a
Senior Le
cturer
. He has 7 y
e
ars
industrial exp
e
r
i
ences back fro
m 2002 to 20
09
in semicon
ductor waf
e
r f
a
brication
an
d
packag
ing prior
joining th
e univers
it
y as
l
e
c
t
urer. His
curr
e
n
t res
ear
ch int
e
res
t
s
include
simulation, d
e
sign, fabrication
and characterization of high RF
an
d high power devices based
on
compound semi
conductor mater
i
als.
For more information, he
can be con
t
acted b
y
phone at
+6045996097 or
email at f
a
uzi.p
ackeer@usm.my
.
Evaluation Warning : The document was created with Spire.PDF for Python.