TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 10, Octobe
r 20
14, pp. 7233
~ 724
1
DOI: 10.115
9
1
/telkomni
ka.
v
12i8.533
9
7233
Re
cei
v
ed
De
cem
ber 1
1
, 2013; Re
vi
sed
Jul
y
5, 2014;
Acce
pted Jul
y
29, 201
4
Main Pump Seal’s Characteristics Affected by Cone
Angle and Clearance
Wang Hes
h
u
n
1
, Zhu
w
e
ibi
n
g
1
, Huang Z
e
pei
2
, Zhang
Chening
2
1
School of Mec
han
ical En
gi
ne
erin
g and A
u
to
mation,
Xih
ua
Univers
i
t
y
,
Che
ngd
u, Sich
uan Prov
inc
e
, 610
03
9, P. R.
Chin
a
2
Sichua
n Nikki
Seal C
o
. Ltd.,
Che
ngd
u, Sich
uan 6
1
0
046, C
h
in
a
Corresp
on
din
g
author, e-mai
l
: 1723
05
705
6
@
qq.com, 90
7
075
43
5@q
q
.co
m
A
b
st
r
a
ct
Aimed
at th
e f
a
ce fi
lm ch
ara
c
teristics of M
a
in
Pu
mp
Se
al
(MPS), relat
e
d the
o
retic
a
l c
a
lcul
atio
n
form
ulas wer
e
deduced based on the
Rey
n
olds equation. A
case
with a
certain
NPPS
is carried out, it is
take the leak
a
ge as the b
a
si
c constraint co
nditi
ons,
the calcul
atio
n focu
sing o
n
leak
ag
e, stiffness an
d
ope
nin
g
force,
the en
d co
ne
a
ngl
e a
nd cl
ear
ance c
h
a
nge
b
een th
e
ma
in c
han
ge
d par
a
m
eters. T
he res
u
lts
show
that: (1) Leak
ag
e is d
i
rect ratio w
i
th
clear
anc
e
of
three p
o
w
e
rs;(2) Overal
l a
m
ount of l
eak
ag
e
incre
a
ses w
i
th the end co
ne
angl
e synchr
ono
usly, an
d
i
n
the small
e
r cone a
n
g
l
e ch
ang
es sig
n
ifica
n
tl
y
while lar
ger slightly; (3) film
s
t
iffness increas
ed wi
th clearance (cone angle)
first and then decreased, and
the maxi
mu
m
valu
e is obta
i
n
ed in a c
e
rtain
cleara
n
ce
(co
ne an
gl
e). F
i
nally, the pref
er
red cle
a
ranc
e
is
prefera
b
ly i
n
the rang
e of 6~
7
µ
m,
a
nd the c
one a
n
g
l
e pr
eferab
ly valu
e is
0.4~
2.5'
. It is
provi
de a re
lia
b
l
e
theoretic
al
sup
port for MPS
d
e
sig
n
a
n
d
key
para
m
eter
opti
m
i
z
at
io
n, a
nd c
ond
ucive
to
an
y rese
arch
rel
a
te
d
to experi
m
ent and a
p
p
licati
o
n
.
Ke
y
w
ords
: seal, m
e
chanical seal
, mai
n
pu
mp seal, le
ak
age, film
stiffness
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
Nu
clea
r rea
c
tor cool
ant
p
u
m
p
(m
ain pu
mp)
i
s
an im
p
o
rtant e
quip
m
ent of n
u
cl
e
a
r p
o
wer
plants, h
a
s
b
een h
a
iled a
s
the h
eart o
f
the re
a
c
tor
cool
ant sy
ste
m
, mainly co
mposed by t
he
motor, pum
p, seal (me
c
ha
nical
seal
) an
d other
com
p
onent
s, whe
r
ein the seal i
s
a cru
c
ial b
u
t
vulnera
b
le pa
rts, the main
shaft seal is
mainly
used for lea
k
a
ge co
ntrol of re
act
o
r coola
n
t alo
n
g
the axis, its quality will directly
affect the normal operation of t
he pump. Based on
the survey of
the main pum
p’s fault, abo
ut 70% from the sh
a
ft seal,
espe
cially th
e first-cla
ss
sealing
[1].
There’s som
e
rese
archers
study on M
PS
for higher stability and life. Müller based on
the lamin
a
r fl
ow the
o
ry, consi
deri
ng th
e effect of
in
ertia, stu
d
ied
the
pe
rform
ance of external
pre
s
sured se
al [1]. Koga and Fujita
po
inted out the
impact of e
n
e
rgy lo
ss
at inlet and o
u
tlet
boun
dary of seals
[2]. Tou
r
nerie ta
ke tra
cki
ng research on t
he flow
cha
r
a
c
teri
stics of hydro
s
tat
i
c
seal fa
ce, the
chan
ge of su
rface flo
w
fro
m
laminar
to t
u
rbul
ent is th
eoreti
c
ally an
alyzed, thro
u
g
h
an influe
nce
coeffici
ent m
a
trix to co
nsi
der the
effe
ct of
thermal def
ormatio
n
,
it is pointing
out that
the film flow in laminar o
r
approximate turbul
ent state
according to
the different temperature
of
inlet [3-9].
Salant studi
e
d
the mathem
atical mo
del
of t
he non-co
ntacting hyd
r
ostatic
seal
b
y
solving
the face
fluid
film Reynold
s
equatio
n to
obtain t
he se
al
face
bala
n
c
e clea
ran
c
e
value,
pressu
re
and medi
um
visco
sity influence on the
balan
ce
cl
ea
rance value, theoretic de
si
gn metho
d
s
of
seal
stru
cture
is analyze
d
, and the meth
od is appli
ed
to water me
di
um seal d
e
si
gn
[10, 11]. Lee
cal
c
ulate
d
th
e therm
a
l
stress
of the
SiC/Si
C com
posite
und
er different te
mperature
a
nd
pre
s
sure, an
d the
extrem
e si
ze
an
d p
o
s
ition
of t
he t
herm
a
l
stre
ss is
anal
y
z
ed
emphati
c
ally [12].
Kim studie
d
the pe
rform
a
n
c
e of the
se
al
ring
(Si
3
N
4
)
with the mediu
m
of 300
℃
water, pointe
d
out
the adjustment of sintering cry
s
tallization phase
ca
n
effectively improve th
e corrosi
on
resistance
[13]. Zhan
g X
i
nmin
solved
the si
mplified
Reyn
ol
d
s
e
q
uation,
cal
c
ul
ated dyn
a
mic ch
ara
c
te
risti
cs
of partial tap
e
r hydrostati
c seal a
nd giv
en the ca
lcul
ation formul
a
of force
coef
ficient, com
p
ared
the dynami
c
cha
r
a
c
teri
stics of fu
ll tape
r, partial tap
e
r an
d no
n taper, p
o
inted
out that partial
taper st
ru
cture is more rea
s
on
able st
ru
cture ty
pe [14]. Hong Zhen
min analysi
s
the relation
sh
ip
betwe
en the 1st stag
e se
al leaka
ge a
nd the temp
er
atu
r
e of injected water,
in the shaft seal
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 723
3
– 7241
7234
water te
mpe
r
ature
rang
e
allowed, by redu
cing
1
s
t stage se
al
in
jected wate
r temperature to
redu
ce th
e le
aka
ge. And i
n
pra
c
tice, by using
tem
p
e
r
ature co
ntrol
method to a
v
oid the nucl
ear
main pum
p h
i
gh-hi
gh
stop
s du
e on the
1
st
stage
se
al leakage [1
5]. Dai Veiqi
use
s
n
u
meri
cal
method to ca
lculate hyd
r
o
s
tatic
seal flo
w
field an
d a
nalyze the
ch
ara
c
teri
stics
of face pressure
[16, 17]. Mu
Don
gbo
deve
l
oped
a the
o
retical a
nalysi
s
mo
del fo
r t
he statio
na
ry ring i
n
se
co
nd
stage seal
of
main pump seal
s
in nuclear station
by ANSYS,
obtai
ned the deformation
condition
of stationary ring by cal
c
ula
t
ion. The mod
e
l of li
quid film betwee
n
the seal g
ap was built by usi
n
g
the soft
ware
Fluent, an
d the p
r
e
s
sure
distrib
u
ti
on,
speed
dist
ribut
ion, lifting force a
nd l
e
a
k
a
g
e
were obtai
ne
d. The p
r
ocess of the face
dist
o
r
tio
n
of seal
ri
ng and th
e
pro
c
e
ss
of the
transfo
rmatio
n of mechani
cal se
al from
contact
styl
e to non-con
t
act style we
re simul
a
ted
by
comp
uters
[18].
In sum
m
ary, t
o
imp
r
ove the
stability an
d
serv
i
c
e life
of
the main
pum
p seal, requi
res t
w
o
seal fa
ce
s in
any situatio
n of relative rotation,
ca
n re
a
lize the
non
-contact o
peration with
a sm
all
spa
c
e
state.
Curre
n
tly, there a
r
e two
practical
way
s
to impleme
n
t the non
-conta
c
t ope
ration:
(1)
Hydro
s
tatic
p
r
essu
re m
e
th
od(hyd
r
o
s
tati
c seal),
the f
i
rst
stage
se
al with
stand
s most p
r
e
s
su
re
drop, the
ope
ning force
an
d film stiffness mainly
fo
rm
ed by hydrost
a
tic p
r
essu
re,
in additio
n
th
e
openi
ng force and film stiffness is not sensitive to
the rotating speed of main pump’s
shaft, so it
can effectivel
y avoid seal face
s dire
ct contac
t wh
en
the main pu
mp startu
p and stop, but film
stiffness of hydrostati
c
seal is
relatively
small,
whi
c
h weakens the capab
ility of
anti-interference
in large
exte
nt, so
that i
t
s sta
b
ility d
e
crea
s
ed,
an
d the
po
ssi
b
ility of the a
cci
dent fail
ure
increa
sed.
(2
)
Dynami
c
p
r
essure m
e
th
od
(dynami
c
pre
s
sure seal
),
ge
nerally
three
stage
s sea
l
bear th
e
sam
e
pre
s
su
re d
r
op, face
main
ly by fl
uid-dynamic
pressu
re to form op
ening fo
rce a
n
d
the film stiffness, the o
p
e
n
ing fo
rc
e an
d film stiffness of thi
s
seal
structure i
s
relatively large,
esp
e
ci
ally in the smalle
r g
ap co
ndition,
redu
cin
g
the possibility of end face dire
ct conta
c
t, so
it
has
stron
g
ab
ility of resista
n
ce
to interfe
r
ence and hi
g
h
stability.
In this pape
r, combine
d
with the seal
practi
cal sit
uation
s
of domestic n
u
cl
e
a
r po
wer
reac
tor main s
haft,
selec
t
hydros
tatic
seal
as
s
t
udy
objec
t. Take
s
eal fac
e
pres
sure,
opening
force, le
akag
e as the m
a
in test indi
ca
tors,
comput
ational an
alysis of e
nd cone an
gle a
nd
clea
ran
c
e effect
on
ea
ch index
a
r
e carried out,
it is provid
ed the
theoret
ical b
a
si
s
for high
er
stability hydrostatic seal design.
2. Rese
arch
Metho
d
2.1. Ph
y
s
ical Models and
Parameters
Acco
rdi
ng th
e first
stag
e
seal
of the
m
a
in
pu
mp se
al
speci
m
en
made by
Sichuan Ni
kki
Seal Co., Ltd
,
the mo
del i
s
sh
own in
Fig
u
re
1, Of
whi
c
h:
o
r
is the
out
er
radi
us of t
he
seal
faces,
i
r
is the inner
radiu
s
of the seal face,
b
r
is the station
a
ry ring si
de con
e
portion a
n
d
the portion
of the bo
und
ary bet
wee
n
the ra
diu
s
of
the toru
s,
call
ed turning
ra
dius,
is th
e
con
e
an
gle
o
f
stationa
ry rin
g
,
h
is the face
clearan
ce.
Figure 1. Sch
e
matic dia
g
ra
m of sealing
surfa
c
e m
ode
l
The prim
ary
obje
c
tives of the re
sea
r
ch a
r
e:
(1) Seal fa
ce
pre
s
sure distribution;
(2) Stiffness
and lea
k
a
ge
cha
nge
s with
end face co
n
e
angle a
nd cleara
n
ce.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Main Pum
p
Seal’
s
Chara
c
teristi
cs Affect
ed by
Con
e
Angle an
d Cle
a
ran
c
e
(Wan
g He
shu
n
)
7235
2.2. Contr
o
l Equation an
d Simplif
y
The
sealin
g
medium
of the main
pu
mp se
al is
water, it
can
be rega
rde
d
as
an
incom
p
ressibl
e
fluid, and t
he ba
si
c eq
u
a
tion is flui
d
flow Reynold
s
eq
uation. A
c
cordi
ng to t
h
e
cha
r
a
c
t
e
ri
st
ic
s of
t
he phy
si
cal mod
e
l,
ca
n ma
ke the fo
llowing
assu
mptions o
r
ap
proximate:
(1) Me
dium fl
ow bet
wee
n
the se
al face
s is a contin
uo
us lamin
a
r flo
w
;
(2) T
he seal rings a
r
e ri
gid
body;
(3) Ign
o
rin
g
the effect of fluid inertia fo
rce;
(4) Me
dium (water) is in
co
mpre
ssible;
(5) Ign
o
rin
g
the variety of fluid velocity a
nd gra
d
ient in
the film thickness directio
n;
(6) Me
dium i
s
Newto
n
ian fl
uid;
(7) T
he flow p
r
ocess is in th
e steady stat
e;
(8) Flo
w
is i
s
otherm
a
l flow.
Based o
n
the
above assu
mptions, the
Reynol
ds e
q
u
a
tion ca
n be
simplified a
s
follow:
33
1
12
12
2
rh
p
h
p
r
U
h
rr
r
(1)
Formul
a (1
) is the ba
sic e
quation
s
of the hydro
s
tatic
main pum
p seal.
In formula (1):
p
--me
d
ium
p
r
e
s
s
u
re (Pa);
r
--the
radiu
s
o
f
seal su
rfa
c
e
at any position (m);
--seal fa
ce ci
rcumfe
rential
angle (ra
d
);
h
--seal fa
ce ba
lance cle
a
ra
n
c
e (m
);
-
-
d
ynamic
visc
os
ity (
P
a.s
)
.
2.3. Contr
o
l Equation Sol
u
tion
(1) Pa
rallel F
a
ce State
Whe
n
the
se
aling
su
rfa
c
e
is in th
e p
a
rallel fa
ce
stat
e, the
cle
a
ra
nce
h
is a co
nstant
value, an
d th
en the
radiu
s
r
is th
e
only i
n
tegral
vari
a
b
le in
form
ul
a (1). A
s
sum
e
that the
se
a
l
surfa
c
e
of inn
e
r, oute
r
radi
us
re
spe
c
tivel
y
are:
i
r
,
o
r
, the in
ner
and
outer pre
s
sure of t
he me
dium
are:
i
p
,
o
p
, integrate of formula (1), get the followin
g
co
nclu
sion:
(1) Pr
es
su
re
distrib
u
tion:
11
ln
ln
oi
oi
pp
r
pr
c
rr
(2)
(2) O
peni
ng force:
11
o
Fp
r
r
d
r
d
(3)
(3) L
e
a
k
ag
e:
3
1
6l
n
oi
oi
hp
p
Q
rr
(4)
(2) T
aped F
a
ce State
Whe
n
o
ne
of the
seal
face is coni
cal
surface, the
cl
eara
n
ce
h
is a va
r
i
a
b
l
e
,
th
en
th
e
integral
of formula
(1)
will
with the vari
ables of
radi
us
r
an
d
c
l
ea
r
anc
e
h
at the
s
a
me time.
Now
the clea
ran
c
e
of
h
is:
ta
n(
)
ii
hh
r
r
(5)
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 723
3
– 7241
7236
Suppo
se:
ta
n
ii
kh
r
The form
ula (5) su
bstituted
in equation (1) and the int
egral of it:
(1) Pr
es
su
re
distrib
u
tion:
2
2
2
32
11
1
ln
ta
n
t
a
n
2t
a
n
r
Pr
a
c
kk
r
k
k
r
kk
r
(6)
In the ab
ove
formula
s
:
a
,
1
c
,
2
c
resp
ectively a
r
e the
integ
r
ation con
s
tan
t
s a
s
sociat
ed
with
i
p
,
o
p
,
i
r
,
o
r
,
,
k
.
(2) Op
enin
g
forc
e:
22
o
Fp
r
r
d
r
d
(7)
(3) L
e
a
k
ag
e:
2
6
Qa
(
8
)
(3) A
c
tual Mo
del Solution
s
Actual m
odel
area
si
ze
p
a
ram
e
ters: i
nner
radiu
s
,
turnin
g
radi
us, o
u
ter ra
dius are
r
e
spec
tively t
a
k
e
as
:
i
r
,
d
r
,
o
r
, the
correspon
din
g
pre
s
sure re
spe
c
tively are:
i
p
,
d
p
,
o
p
, among
them
d
p
is an
unkno
wn p
a
rameter. In
ne
r face
clea
ra
nce
and
cl
ea
ran
c
e
at co
ni
cal
su
rface
starting p
o
siti
on is:
i
h
, the outer face
clea
ra
nce i
s
:
o
h
, cone
angle i
s
.
(1) O
b
taine
d
d
p
by the formula (4) a
nd (8
):
By the formul
a (8
)
cal
c
ulati
ng the
lea
k
a
ge of ta
pered
face
of
2
Q
, by the formula
(4
) to
give the leakage of paralle
l face of
1
Q
, finally obtained
d
p
by
12
QQ
.
(2) S
u
bs
tituted
d
p
in e
quatio
n (2
) a
nd
(6) to give the
pre
s
sure di
stribution
of in
ne
r
parall
e
l face
1
p
r
, and the pressure di
strib
u
tio
n
of outer tap
e
red fa
ce
2
p
r
.
(3) By the formula (3
) and
(7) a
r
e
solved
and add, obt
ained a total
openi
ng force
:
12
oo
o
F
FF
(9)
(4) Obtained film s
t
iffness
K
by
o
F
the
h
derivati
on:
o
F
K
h
(10)
(5) O
b
taine
d
the lea
k
ag
e
Q
by the formula (4) or the fo
rm
ula (8
):
1
6
od
pp
Qc
(1
1)
Or:
3
6l
n
di
di
hp
p
Q
rr
(12)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Main Pum
p
Seal’
s
Chara
c
teristi
cs Affect
ed by
Con
e
Angle an
d Cle
a
ran
c
e
(Wan
g He
shu
n
)
7237
(6) By the formula (1
0), (1
1), (12
)
to give stiffness an
d leakage ratio
K
Q
S
:
KQ
K
S
Q
(13)
3. Results a
nd Analy
s
is
3.1. Specimen Calcula
t
ion Paramete
r
s
Takin
g
th
e first sta
g
e
seal
test
pi
eces
of the m
a
in
pump
seal m
ade i
n
Si
chu
an Nikki
Seal Co., Ltd
as the refere
nce. Ba
sic pa
ramete
rs a
r
e
as follo
ws:
0.
55
Mpa
i
p
,
15.5
M
pa
o
p
,
152
.5
m
m
o
r
,
10
8.
5
m
m
i
r
,
121
.5
m
m
d
r
,
0
20.2
t
,
1.
0
3
Pa.
s
e
.
Focu
sin
g
o
n
the
en
d cone
angle and cle
a
ran
c
e
chang
e, spe
c
ifically
study
the effects of
con
e
angl
e o
n
pre
s
sure di
stributio
n, op
eni
ng force, film stiffness a
nd lea
k
ag
e.
Seal ope
ratin
g
para
m
eters are as follo
ws:
Medium: water;
Pressu
re of High-p
r
e
s
sure side (oute
r
si
de):
15
.5
M
p
a
o
p
;
Pressu
re of L
o
w pressu
re
side (i
nne
r si
de):
0.55
M
p
a
i
p
;
Tempe
r
atu
r
e:
15~55(
℃
)
Lea
kag
e
:
3
0.6
8
~
1
.
2
m
h
Q
Shaft speed:
1485
r
m
in
n
.
3.2. Results and An
aly
s
is
(
1
)
Le
ak
a
ge
Figure 1(a)
shows the
rel
a
ti
on cu
rve
s
of leaka
ge a
nd end fa
ce
clea
ran
c
e, th
e taper
angle
of the
end fa
ce
was take
n from
1
'
to 8
'
; figure
2(b
)
with the
taper an
gle
o
f
the e
nd fa
ce
wa
s ta
ken
from 10
' to
80'
; Figure 3
sh
ows the
re
lation
curve
s
of lea
k
ag
e a
n
d
end
face ta
per
angle, an
d the clea
ran
c
e o
f
the end face
was ta
ken from 6-8
μ
m.
(a)
(b)
Figure 2. Lea
kag
e
Ch
ang
e
s
with Cl
eara
n
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 723
3
– 7241
7238
Figure 3. Lea
kag
e
Ch
ang
e
s
with End Cone Angle
From Fi
gure
2-3, ob
se
rvi
ng the all
o
wable
rang
e o
f
clearan
ce
unde
r differe
nt con
e
angle
s
, while
the amount of
leaka
ge withi
n
the allowabl
e rang
e:
a)
Overall
amo
unt of le
aka
ge in
crea
se
s
with th
e e
n
d
cone
angl
e in
cre
a
sed,
the
variation can
be rou
ghly differentiated tw
o area
s: the small cone a
ngle ra
nge (l
ess
than ab
out 2
-
4'), the
amo
u
n
t of lea
k
ag
e
red
u
ced
rapi
dly with the
end
con
e
a
n
g
le
decrea
s
e
s
, a
nd the
amo
u
n
t of lea
k
a
g
e
de
cre
a
se te
nded
to in
cre
a
se
with
the
con
e
angle
red
u
ce
d; the larg
e
cone a
ngle
ra
nge (m
ore th
an ab
out 2-4'
), the amo
unt
o
f
leakage
raised slo
w
ly wi
th the end cone
an
gle in
cre
a
ses, a
n
d
the amount
of
leakage in
crease tende
d
to decrea
s
e
with
the co
ne angl
e rai
s
ed. As
sho
w
n in
Fig.3, take t
he e
nd
cle
a
rance of
6 m
i
cr
o
n
s,
wh
en
the e
nd fa
ce cone
an
gl
e is
greate
r
than
4', the amoun
t of leakage o
n
ly slight
ly incre
a
sed.
b)
The o
p
timal
cle
a
ra
nce v
a
lue i
s
a
bou
t 6~7
μ
m. Under
the co
ndition of
de
sign
leakage is
3
0.
68
1.
2
m
h
Q
, the possibl
e cl
eara
n
ce valu
e is about 6
~
10
μ
m (only if
the cle
a
ra
nce
is in thi
s
ran
ge, it may sa
tisfy the leakage
3
0.
68
1.
2
m
h
Q
), and i
n
particula
r wh
en the end
cl
eara
n
ce of about 6~7
μ
m, the different end co
ne a
ngle
state, the
am
ount of
lea
k
a
ge i
s
in
a
giv
en
ran
ge
wit
h
in the
de
sig
n
value
while
the
con
e
angl
e in a larg
e scope of variati
on,
sele
cting
the clea
ran
c
e as the de
sign
value, ca
n effectively prevent the
cone
angle
ch
ang
e
s
o
r
defo
r
mat
i
on o
r
ma
chin
ing
error effe
ct the leakage
sig
n
ificantly.
(2) Film Stiffnes
s
Figure 4
sh
o
w
s the
relatio
n
curve
s
of th
e en
d fa
ce flu
i
d film stiffne
s
s a
nd
end
cle
a
ran
c
e,
in which the
cone
angle
of t
he e
nd fa
ce
were ta
ken
from 1'
to 8'
an
d 0.1' to
0.8'
, Figu
re
5
sho
w
s
the film stiffness und
er
the
end cle
a
ra
nce were 6~10
μ
m.
(a)
(b)
Figure 4. Film Stiffness (co
ne angl
e from
1 to 8 'and 0.1 to 0.8')
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Main Pum
p
Seal’
s
Chara
c
teristi
cs Affect
ed by
Con
e
Angle an
d Cle
a
ran
c
e
(Wan
g He
shu
n
)
7239
Figure 5. Film Stiffness (cl
e
aran
ce from 6~1
0
μ
m)
From Fig
u
re
4-5:
a)
While the e
n
d
con
e
angl
e
is given, film
stiffness i
n
creased with
cl
eara
n
ce first
and
then de
crea
sed. and
the
maximum val
ue obtai
ned
in a
certai
n
cl
eara
n
ce valu
e. As
s
h
ow
n
in
F
i
gu
r
e
4
(
a)
,
w
h
en
2'
, film stiffne
s
s carve
obta
i
ned m
a
ximu
m value in
about
6
μ
m
h
. in the
rang
e of:
6
μ
m
h
, th
e film stiffness ra
pidly rai
s
ed with the e
nd
con
e
a
ngle
i
n
crea
se
s, in
the range
of:
6
μ
m
h
, film s
t
iffnes
s pres
ent the trend
decrea
s
e
s
wi
th the end
co
ne an
gle in
creases
, in
whi
c
h the
cle
a
ra
nce
at the ne
ar
vicinity of extreme, stiffne
s
s de
crea
se
d
greatly, while
away from th
e extreme
zo
ne,
the stiffness decrea
s
e
d
gradually st
a
b
le
, and finally close to zero .
b)
While the e
n
d
clea
ran
c
e i
s
given, film
stiffness increased with
cone an
gle first and
then de
crea
sed. As
sh
own
in Fig
u
re
5,
whe
n
7
μ
m
h
, film stiffness
carve
s
obtaine
d
maximum val
ue in ab
out
0.4
'
. in the ra
nge
of
0.
4
'
, the film stiffness
rapi
dl
y
raised
with the en
d cone
angl
e i
n
crea
se
s, in the range
of
0.4
'
, film s
t
iffness
pre
s
ent the trend de
crea
se
s with the e
n
d
co
n
e
an
gle
increa
se
s, in which the co
ne
angle at the
near vici
nity of extreme, sti
ffness de
cre
a
se
d gre
a
tly, while a
w
ay from
the extrem
e
zon
e
, the
stif
fness d
e
cre
a
s
ed
g
r
adu
all
y
stable,
and
finally cl
ose
to
zer
o
.
c)
Stiffness valu
e is extremel
y sensitive to
con
e
angle
chang
es ne
ar i
t
s extreme value
area.
In
thi
s
area, a
very small co
ne
a
ngle cha
nge can ca
use
d
r
amatic ch
ang
es
in
stiffness, e
s
p
e
cially i
n
the
rang
e le
ss th
an the
extre
m
e
cone
an
gl
e, the influ
e
n
c
e i
s
more
rema
rkable. Sele
cting slig
htly large
r
than
co
ne angl
e
at extreme val
u
e
while de
sign,
ca
n
redu
ce
t
he
en
d con
e
angle ch
ang
e
s
cau
s
e
d
by different
fa
cto
r
s
influen
ce on t
he stiffness value.
Theo
retical p
e
rfect
co
ne
a
ngle valu
e i
s
about
0.4
~
2.
5'. acco
rdin
g
to amou
nt of
leakage
value, the
rea
s
on
able
cle
a
rance is ab
out
6~7
μ
m, with
this
clea
ran
c
e from
Figu
re
5, film stiffne
s
s
carve o
b
taine
d
maximum value in abo
ut
0.4
'
, further in
cre
a
se the rang
e
of the end face cone
angle, fou
nd
face
con
e
an
gle of g
r
eate
r
than
abo
ut
2.
5
'
, its stiffness decrea
s
e
d
o
ne o
r
de
r of
magnitud
e
from 10
4
do
wn to
10
3
, the end face cone a
ngle of gre
a
ter than ab
out
20', its stiffness
decrea
s
e a
n
orde
r of mag
n
itude from 1
0
3
down to 10
2
.
(3) O
peni
ng
Force
Figure 6
sh
ows the
rel
a
tion curve
s
of t
he e
nd f
a
ce
film op
e
n
ing fo
rce a
nd e
nd
clea
ran
c
e,
wi
th the con
e
a
ngle of the e
nd face we
re
taken from 1'
to 8', fig.7 sh
ows the relati
on
curve
s
of the
opening fo
rce and c
one a
ngle, with the
clearan
ce
h
of the end face wa
s take
n
from 1~8
μ
m.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 10, Octobe
r 2014: 723
3
– 7241
7240
Figure 6. Ope
n
ing Fo
rce Chang
es
with
Clea
ran
c
e
(th
e
con
e
angl
e from 1-8')
Figure 7. Ope
n
ing Fo
rce Chang
es
with Con
e
Angle (
18
μ
m
h
)
a)
While th
e e
n
d
cone
angl
e
is given, film
openi
ng fo
rce
de
cre
a
ses with the cl
ea
ra
nce
increa
se
s, as sho
w
n in Fi
g
u
re 7, in the
rang
e of
0.
2
m
m
h
, the film openin
g
force
rapidly re
du
ced with the cleara
n
ce increases, in the
range of
0.
2
m
m
h
, t
he fil
m
openi
ng force re
du
ces slowly with t
he cl
earan
ce increa
se
s,
and eve
n
tu
ally
approa
che
s
a
con
s
tant value.
b)
While th
e cle
a
ran
c
e i
s
giv
en, film
openi
ng force in
cre
a
se
s
with the
end cone
an
gle
increa
se
s, as sho
w
n i
n
Fi
g.7, in the range
of
2~
4
'
, the film openi
n
g
force
rapidly
rises
with the
end
con
e
a
ngle i
n
cre
a
ses, i
n
th
e ra
nge
of
2~
4
'
, the film
openi
ng force rise
s sl
owl
y
with the end
co
ne an
g
l
e increa
se
s, and eventu
a
lly
approa
che
s
a
con
s
tant value.
4. Conclusio
n
Main pu
mp h
y
drostati
c me
cha
n
ical se
al
theoreti
c
al
calcul
ation formulas
we
re d
edu
ced
based o
n
th
e Reyn
old
s
equatio
n sim
p
lified, it is
take th
e lea
k
age a
s
the
basi
c
con
s
traint
con
d
ition
s
, th
e calculation
focu
sing
on
l
eakage,
stiffness a
n
d
ope
n
i
ng fo
rce, the
end
co
ne
ang
le
and cl
earan
ce cha
nge b
e
e
n
the main ch
ange
d param
eters. Th
e re
sults
sho
w
th
at:
a)
The
cle
a
ra
nce ha
s greate
r
influ
e
n
c
e
o
n
the
amo
u
n
t
of lea
k
a
g
e
than
the
co
ne
angle.
Whe
n
the lea
k
a
g
e
value i
s
giv
en, it ca
n ob
tain a
certai
n
clea
ra
nce ra
nge
make
the le
a
k
ag
e not
out
of the limits
wh
ile th
e
con
e
angl
e
chan
ges to
any va
lue.
In the case
of this p
ape
r, the optimal
clea
ran
c
e
value is abo
ut
6~1
0
μ
m with
the
desi
gn lea
k
a
ge is
3
0.
68
1.
2
m
h
Q
.
b)
Overall am
ou
nt of leakag
e increa
se
s
wit
h
the end co
ne angl
e up. the variation
can
be roughly
differentiated
two area
s: the
sm
all
con
e
a
ngle
rang
e (l
ess than
abo
ut 2-
4'), the am
ou
nt of leaka
ge
rapidly redu
ced with the e
nd co
ne a
ngl
e decre
ases,
and
the amo
unt o
f
leakage
de
crea
se te
nde
d
to
incre
a
se with
the co
ne
angle
redu
ced;
the large
con
e
angle rang
e (more than
about
2-4'
), the amount o
f
leakag
e rai
s
ed
slo
w
ly with
t
he e
n
d
co
ne
angl
e in
crea
se
s, an
d th
e
amo
unt of
l
eakage
in
cre
a
se
tended to de
cre
a
se with the co
ne angl
e raised. as
sho
w
n in Fig
u
re 3, the e
n
d
clea
ran
c
e ta
ke 6 micron
s,
when th
e e
nd face
co
ne
angle i
s
gre
a
ter than
4', the
amount of lea
k
ag
e only increa
sed
slightl
y
.
c)
Rea
s
o
nable
clea
ran
c
e
val
ue of a
bout
6
~
7
μ
m.
Und
e
r the am
ount
of lea
k
age
in
the
sy
st
em de
sig
n
is:
3
0.68
1
.
2
m
h
Q
, the po
ssible val
ue of
clea
ran
c
e
is:
6~7
μ
m, and
in
p
a
r
tic
u
lar
l
y w
h
en
th
e
c
l
ea
r
a
nc
e
is
ab
ou
t 6
~
7
μ
m, u
n
der diffe
rent
end
con
e
an
gle
state, the
a
m
ount
of lea
k
ag
e i
s
in
a
gi
ven
ran
g
e
within
the
d
e
sig
n
. Ta
ke
the
clea
ran
c
e
a
s
the de
sig
n
va
lue, can
effe
ctively
prevent
the co
ne an
gle cha
nge
s or
deform
a
tion o
r
machinin
g e
rro
r effect the
leaka
ge si
gni
ficantly.
d)
Theo
retical p
e
rfect
co
ne
a
ngle valu
e i
s
0.4~
2.5'.
At this
co
ndition,
the film
stiffness
of ha
s
a la
rg
e value
an
d
relatively sm
all
ch
ang
es am
plitude, o
n
th
e othe
r
han
d
it is
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Main Pum
p
Seal’
s
Chara
c
teristi
cs Affect
ed by
Con
e
Angle an
d Cle
a
ran
c
e
(Wan
g He
shu
n
)
7241
prefe
r
ably fitted with fa
ce
clea
ran
c
e from 6~7
μ
m, so that lea
k
age is
expe
cted
within the con
t
rol ran
ge.
In this pape
r, the calculati
on method i
s
base
d
on th
e basi
c
theo
ry of fluid, accordin
g to
the se
al stru
cture
and th
e
cha
r
a
c
teri
sti
cs
of t
he flow field obtain
e
d
, can
de
scri
be the e
nd fa
ce
fluid film pro
pertie
s
better. It is provide
a
reliable th
eoreti
c
al sup
port for MPS desig
n and
key
para
m
eter o
p
t
imization, an
d con
d
u
c
ive to any resea
r
ch related to e
x
perime
n
t an
d appli
c
ation.
Ackn
o
w
l
e
dg
ements
This
wo
rk i
s
suppo
rt by the
Nation
al Natural S
c
ien
c
e
Fund P
r
oje
c
t
of Chin
a (510
0518
8),
Natural Scie
n
c
e Fun
d
Proj
ect of Sichua
n Educ
atio
n Dep
a
rtme
nt (11ZA28
5
), an
d Key Labora
t
ory
University Academi
c
A
c
hi
evements Cu
ltivation Pr
oj
ect of Xih
u
a
Unive
r
sity
(SBZDPY-11
-21).
Many inte
re
sting an
d u
s
e
f
ul discu
s
sio
n
s
of ga
s
rotor flo
w
met
e
r
with
colle
ague
s
at Xi
hua
University are
gratefully ackno
w
le
dged.
Referen
ces
[1] Müller
H.
Exte
rnally
pressur
i
sed barr
i
er sh
aft seals
.
4th Internati
o
n
a
l C
onfere
n
ce o
n
F
l
uid Se
ali
n
g
.
196
9; 361-
371.
[2]
Koga T
,
T
F
u
jita.
T
he h
y
dr
os
tatic nonco
n
ta
ct seal incl
udi
ng flui
d inerti
a
effect
.
ASLE transactions
.
198
6; 29(1): 35
-42.
[3]
Bruneti
e
re N.
A modifie
d
turb
ule
n
ce mo
del f
o
r lo
w
R
e
yno
l
d
s
numbers: Ap
plicati
on to h
y
d
r
ostatic seals
.
Journ
a
l of tribo
l
ogy
. 20
05; 12
7(1): 130-
14
0.
[4]
Bruneti
è
re
N,
E Gale
nn
e, B
T
ournerie, I P
i
erre-D
a
nos. M
ode
lli
ng
of
non
-lamin
ar
phe
no
mena
in
h
i
g
h
re
l
i
a
b
i
l
i
t
y
hy
drosta
ti
c se
al
s ope
ra
ti
ng
in
ex
treme
con
d
i
tio
n
s
.
T
r
ibol
ogy
Inter
natio
nal
.
20
08;
41(
4): 21
1-
220.
[5]
Bruneti
è
re N, B
T
ourneri
e
. F
i
nite el
ement
soluti
o
n
of the ener
g
y
eq
u
a
tion i
n
lubr
ic
ated contacts:
app
licati
on to
mecha
n
ica
l
face seals
.
Rev
u
e
Europé
en
ne d
e
s Elé
m
e
n
ts
. 2005; 14(
2-3): 2
13-2
35.
[6]
Bruneti
è
re
N,
B T
ournerie,
T
he effect of inertia
on
rad
i
al flo
w
s:
Ap
pli
c
ation
to h
y
d
r
ostatic se
als
.
Journ
a
l of tribo
l
ogy
, 20
06; 12
8(3): 566-
57
4.
[7] Galenne
E.
Modé
lisati
on the
r
mo-
é
last
o-hyd
r
o-dy
n
a
m
iq
ue
d'
un jo
int de
po
mp
e pri
m
a
i
r
e
.
Actes du
7è
me co
llo
qu
e natio
nal
en cal
c
ul des structur
es
. 2005; 2
85-
290.
[8]
Galen
ne E, I Pierre-D
an
os. T
hermo-elasto-
h
y
dro-
d
y
nam
ic
model
ing
of h
y
drostatic s
e
als in re
actor
cool
ant pum
ps
.
T
r
ibolo
g
y T
r
an
sactions
, 20
07;
50(4): 466-
47
6.
[9]
T
ournerie B, J F
r
êne. Influe
nc
e of F
l
uid F
l
o
w
Regi
m
e
o
n
Per
f
ormances
of N
on-C
ontactin
g
Liq
u
id F
a
c
e
Seals
.
20
02.
[10]
Sala
nt R, W
Ke
y
.
I
m
prov
ed
mec
h
a
n
ica
l
se
al d
e
sig
n
throu
gh
math
e
m
atic
al
mod
e
l
i
ng
.
P
r
ocee
din
g
s o
f
the First International Pump Sym
p
osium
. 1
9
8
4
; 37-46.
[11] Hao
X.
Seal
. B
e
iji
ng: Metal
l
ur
gical In
dustr
y
Press. 1999.
[12] Lee JK, M NAGANUMA, J Park, A KOHYAMA.
Investigati
on on F
abric
ati
on
of SiC/SiC
Co
mp
osite as
a Can
d
id
ate M
a
teria
l
of fuel S
ub-Asse
mbly
. Procee
din
g
s of
GLOBAL. 200
5.
[13]
Kim W
J
, HS
H
w
an
g, JY P
a
rk, W
S
R
y
u.
Corro
s
i
on
b
e
havi
o
rs of si
nt
ered
an
d ch
e
m
icall
y
vap
o
r
dep
osite
d
silic
on carbi
de cer
a
mics in
w
a
ter
at 360 C
.
Jour
nal of materia
l
s
science letters
. 2003; 22(8):
581-
584.
[14]
Xi
nmin
Z
,
X
Y
anq
iu, Z
Qin
g
, F
Xi
n. Ana
l
ysis
fo
r Rotor
d
yn
a
m
ic Co
efficient
s of Partia
ll
y T
aper
ed S
hort
Annu
lar Se
als
.
Lubr
icatio
n En
gin
eeri
n
g
, 20
0
4
; 163(3): 7
1
-7
5.
[15]
Z
henmi
n
H, W
Qinh
u, C Z
h
i
pen
g, H Y
e
. T
heor
y
Res
earc
h
a
nd A
p
p
licat
ion
of Us
ing
T
e
mper
atur
e
Contro
l Metho
d
to Avoid the
Nucle
a
r Mai
n
Pump Hi
gh Sto
p
s Due o
n
the
1st Shaft Seal High
Leak
ag
e
.
Pump T
e
chn
o
l
ogy
. 200
8. 200
8; (6): 7-13.
[16]
Lua
n Z
,
M Kh
onsar
i. Numeri
cal simul
a
tio
n
s
of
the flo
w
fie
l
d aro
und th
e rings of mech
anic
a
l sea
l
s
.
Journ
a
l of tribo
l
ogy
, 20
06; 12
8(3): 559-
56
5.
[17]
W
e
iqi D, C Jin
i
ng, Z
Qiuxi
a
n
g
, L Shuan
g
x
i.
Nu
merica
l Si
mulati
on of F
l
o
w
i
n
Conv
erg
e
n
t W
edgel
ike
Gap H
y
drostati
c Mechan
ical S
eal
.
Lu
bricati
o
n
Engin
eeri
n
g
. 2
008; 33(
6): 31-
34.
[18]
Don
gbo
M, C
Jinin
g
, Z
Qiu
x
i
ang,
L Sh
ua
ng
xi. St
u
d
y
o
n
th
e Se
al Pro
pert
y
of the S
e
co
nd S
eals
o
f
R
e
a
c
to
r
C
o
ol
an
t Pu
mp
in
Nu
cl
ea
r Sta
t
i
on fro
m
Contact
i
ng to
Non-c
o
ntacting M
e
ch
anic
a
l Se
al
.
Lubr
icatio
n En
gin
eeri
n
g
. 20
0
9
; 34(7): 33-3
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.