TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 9, September
2014, pp. 65
1
9
~ 652
5
DOI: 10.115
9
1
/telkomni
ka.
v
12i9.615
5
6519
Re
cei
v
ed Ap
ril 28, 2014; Revi
sed
Jun
e
28, 2014; Accepted July 2
0
,
2014
STATCOM Model for Integration of Wind Turbine to
Grid
Rajib Bar
a
n
Roy
*
, Md. Rokonu
zz
am
a
n
Universti
y
of Information T
e
chnol
og
y T
e
chnol
og
y an
d Scie
n
c
es
Jamal
pur T
o
w
e
r, Baridh
ara V
i
e
w
, GA-37/1, Progoti Sar
ani,
Baridh
ara J-Bl
ock, Dhaka –
1
212, Ban
g
l
ade
sh
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: rajib.b
aran
@
u
its.edu.b
d
A
b
st
r
a
ct
The system st
abil
i
ty is gre
a
tl
y ha
mper
ed w
hen gr
ee
n el
e
c
tricity is feed
into the co
nv
entio
nal
electricity
netw
o
rk d
u
e
to
inter
m
ittent
nat
ure
of ren
e
w
abl
e s
ources. T
h
e
el
ectricity g
e
n
e
ra
tion fro
m
w
i
nd
s
o
far pred
o
m
in
ates than th
at of other
re
ne
w
able so
urces
.
In order to
ma
inta
in syste
m
stab
ility of
th
e
electricity n
e
tw
ork, IEC-61400 (Intern
a
tion
al Electr
o-tec
h
nical
Co
mmis
sion) stan
dar
d
has defi
n
e
d
fo
r
perfor
m
a
n
ce
a
nd
pow
er
qua
li
ty of w
i
nd tur
b
i
ne. T
h
e
p
o
w
e
r qu
ality
issues
like
freq
ue
ncy, voltge
sag
a
n
d
sw
ell, active
a
nd r
eactive
p
o
w
er, flicker a
n
d
har
monics
ar
e
ne
ed
ed to
b
e
consi
dere
d
in c
a
se
of i
n
tegrati
o
n
of green
electricity to grid. Var
i
ous FACTS (F
lexibl
e
AC transm
i
ss
ion system
)
devic
es ar
e used for system
restoratio
n. In this pap
er, a ST
AT
COM (static comp
ens
ator
) mod
e
l is pro
pose
d
for impr
ovin
g the pow
er
qua
lity in c
a
se
of feedi
ng
ge
nerate
d
el
ectri
c
ity from th
e
w
i
nd turbi
ne i
n
to the gr
id. T
he ST
AT
COM is
connected at a point in
between doubly fed induction g
ener
ator based wind turbine and grid with a storage
optio
n.T
he ST
AT
COM mod
e
l
is desi
g
n
ed
and si
mulat
e
d
by MAT
L
AB Simuli
nk. T
he simulati
on res
u
lts
indic
a
te that th
e bus vo
ltag
e i
n
tially starts to
decre
as
e fro
m
the rated v
a
lu
e
of 1 pu a
nd l
a
ter it stabil
i
z
e
s to
1 pu due to addition of STAC
OM in the designed system
.
Ke
y
w
ords
: po
w
e
r quality, rea
c
tive pow
er, F
A
CT
S, ST
AT
C
O
M
Copy
right
©
2014 In
stitu
t
e o
f
Ad
van
ced
En
g
i
n
eerin
g and
Scien
ce. All
rig
h
t
s reser
ve
d
.
1. Introduc
tion
The elect
r
icit
y
gene
ration
greatly
d
epe
nds
on
the
convention
a
l e
nergy
so
urce
s
whi
c
h
become
s
the major emitte
r of green hou
se ga
se
s in the enviro
n
me
nt [1].
In orde
r to redu
ce th
e
gree
n ho
use
gas
emissio
n
and d
epen
d
ency o
n
conv
entional e
n
e
r
gy sou
r
ces, t
he utilization o
f
rene
wa
ble
e
nergy
so
urce
s for ele
c
tri
c
ity generat
io
n is i
n
crea
si
ng day
by d
a
y. Due to
the
intermittent n
a
ture of ele
c
tricity gene
ra
tion from
ren
e
wa
ble sources, t
he integ
r
ation of gre
e
n
electri
c
ity to the grid
cau
s
es in
stability in ov
erall po
wer syste
m
[2]. Among different re
ne
wab
l
e
techn
o
logie
s
,
the wind te
chnolo
g
y is consi
dered
to
be the p
r
ove
n
tech
nology
for larg
e scale
electri
c
ity ge
neratio
n. The
American
Wind En
ergy
Asso
ciatio
n (AWEA) le
d the effort in the
United States for adoption
of the gr
id co
de for the interconn
ectio
n
of the wind plants to the utility
system [2, 3]. The United
State wind e
nergy ind
u
st
ry took a stan
d in
developi
ng its own grid
cod
e
for cont
ributing
to a stable grid o
peratio
n [3]. The pe
rforma
nce
and p
o
wer qu
ality of wind
turbine i
s
d
e
termin
ed by I
E
C-6
140
0-2
1
(Intern
a
tiona
l Electro
-
tech
nical
Com
m
issi
on)
stan
da
rd
whi
c
h cl
early
empha
si
ze
s on syste
m
st
ability in case
of feeding el
ectri
c
ity to the grid [4]. Wh
en
wind
po
we
r i
s
fed
into th
e
grid,
vario
u
s unb
alan
ce
s l
i
ke volta
ge
sag, voltage
swell, flicke
r a
n
d
harm
oni
cs
ca
use vari
ation
of system voltage,
frequ
en
cy, real and re
active po
wer
[3, 4].
The compensation of
reactive
power
for sy
stem stability
is the major
concern for
compl
e
x po
wer
system
n
e
twork [4].
Gene
rally
se
ries an
d
shu
n
t com
pen
sa
tion is u
s
ed
for
rea
c
tive power compe
n
sa
tion. In rece
nt years, the
STATCOM i
s
used for i
m
provin
g po
wer
system
stabili
ty and pe
rf
ormance [6]. Th
e appli
c
atio
n
of VSCs
(v
olt
age sou
r
ce converte
rs)
in
t
he
transmissio
n system b
e
ca
me the su
bje
c
t of con
s
ide
r
able re
se
arch effort in the late 1980
s a
nd
through the 1990s [6]. Th
e VSC based FACTS dev
ices incl
ude S
T
ATCOM, SSSC (series st
atic
synchro
nou
s com
pen
sato
r), UP
FC
(un
i
fied po
wer flow
cont
rolle
r), and IPF
C
(interli
ne p
o
w
er
flow controlle
r) [4, 6]. In t
he pa
st ten y
ears,
pilot
in
stallations of STATCOM, UPFC,
a
nd
I
P
FC
have bee
n b
u
ilt and com
m
issi
one
d. Howeve
r, the
consi
derable p
r
ice
of all VSC ba
sed FA
CTS
device i
s
m
a
in impe
dime
nt to their
wi
despre
ad
use [6, 8]. The
STATCOM
has
mu
ch b
e
tter
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
19 – 652
5
6520
transi
ent respon
se a
nd p
e
rform
a
n
c
e i
n
ca
se
of
tra
n
sie
n
t distu
r
b
ances
as
co
mpared to th
at of
s
t
atic
var
c
o
mpens
a
tor [6, 7].
2. Wind Turb
i
ne and Electricit
y
Generation
Wind tu
rbin
e
gene
rato
rs
may be cate
gori
z
ed i
n
to two maj
o
r typ
e
s (i
)
con
s
ta
nt spe
ed
units, and (ii)
variable spee
d units [2]. Consta
nt
spee
d wind turbin
e generators whi
c
h are
sin
g
ly
fed essentiall
y run at a rel
a
tively fixed
mech
ani
cal speed [1].
Th
ese u
n
its are
most typically
indu
ction ma
chin
es i.e. hi
gh ef
ficie
n
cy
indu
ct
ion mot
o
rs
ru
nning
a
t
supe
r syn
c
hron
ou
s spe
ed
[2].
The major adva
n
tage
s
of the varia
b
l
e
sp
eed
de
si
gns
are that t
hey
have
a hi
gher ef
ficie
n
cy
and b
e
tter p
o
we
r qu
ality
.
In addition,
variabl
e
sp
eed u
n
its
wh
ich a
r
e
doub
ly-fed indu
cti
o
n
machi
n
e
s
ca
n gene
rate a
nd ab
sorb re
active po
wer and thus re
gulate their
appa
rent po
we
r
factor [2, 3].
In contra
st, the standa
rd in
ductio
n
gene
rator desi
g
n
s
con
s
um
e rea
c
tive powe
r
and
thus typically employ sh
unt
compe
n
satio
n
both
at the
locatio
n
of the wind turbi
n
e and po
ssibly
at the sub
s
tation co
nne
ctin
g the wi
nd farm to the s
y
s
t
em [3, 4].
The mo
st co
mmon type
of variable
-
speed
wi
nd
g
eneration i
s
the use of d
oubly-fed
indu
ction ge
nerato
r
s (DFI
G) which is
sho
w
n in
th
e
Figure 1. This de
sig
n
e
m
ploys a
se
ries
voltage-sou
r
ce converte
r t
o
feed th
e
wound
roto
r of
the ma
chi
n
e
[2]. By operating the
rot
o
r
circuit
at a va
riable
fre
que
ncy it i
s
p
o
ssi
b
le to
co
ntrol
the m
e
chani
cal
sp
eed
of t
he m
a
chi
n
e
[1].
In this de
sig
n
the net outp
u
t power of t
he ma
chin
e i
s
a
combi
nati
on of the p
o
w
er
co
ming o
u
t o
f
the machi
ne’
s stato
r
and t
hat from the rotor
and th
ro
ugh the conv
erter into the
system [2].
Figure 1. Block
Diag
ram o
f
Doubly Fed
Inductio
n
Ge
nerato
r
The ele
c
tri
c
ity generation
is more st
able
by u
s
in
g DFIG g
e
n
e
rato
r than
that of
conve
n
tional
synchrono
us g
ene
rato
r [3].
Th
e
elect
r
icity gene
ration by
conve
n
tional
synchro
nou
s
gene
rato
r (S
G) an
d DFIG
are
sho
w
n i
n
Figu
re 2 a
nd 3 respe
c
tively
. It can b
e
observed fro
m
the figure
s
that t
he gene
rated voltage
is more stabl
e with DFIG t
han that of SG.
Figure 2. Electri
c
ity Generation by SG
Fi
gure 3. Electri
c
ity Generation by DFI
G
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
STATCOM M
odel for Integ
r
ation of Win
d
Turbi
ne to Grid (Raji
b
Baran
Ro
y)
6521
3. Problems in Integratin
g Wind Turbi
ne to Grid
The voltage
dips i
s
o
ne o
f
the most
common
co
nseque
nce whi
c
h m
a
y ca
use due to
integratio
n of green el
ect
r
i
c
ity as well a
s
variati
on of
system loa
d
[5]. Many electrical ma
chi
n
es
can e
a
sily ri
d
e
throu
gh sh
ort term volta
ge dip
s
(whi
ch can
be a
si
ngle o
r
thre
e pha
se dip,
si
ngle
pha
se bein
g
the most co
mmon) [9]. The voltage di
p cau
s
e
s
wid
e
sp
rea
d
failu
re of equipm
ents
with shorte
ne
d lifetime. Mo
reove
r
the lo
ng term vo
lta
ge dip
s
may t
r
ip o
r
shutdo
wn g
ene
rato
rs in
power statio
n
[5, 6]. According to the National
Electri
c
Machine
s
Associ
ation (NEMA) MG1-1
993
stand
ard
the
voltage imbal
ance for i
ndu
ction m
a
chin
es
sho
u
ld b
e
kept le
ss tha
n
1% in
USA
[4].
Ho
wever d
u
e
to voltage variation in the
electri
c
al n
e
twork may ca
use 3% un
bal
ance in indu
ction
machi
n
e
s
[4, 6]. Harmo
n
ics in the po
we
r system
a
r
i
s
e due to the pre
s
en
ce of
non-li
nea
r loa
d
s
whi
c
h can
produ
ce signifi
cant
3
rd
, 5
th
, 7
th
, and 11
th
ha
rmoni
cs [8, 1
1
]. The d
e
let
e
riou
s
effects of
harm
oni
cs on
the p
o
wer
sy
stem a
r
e
sy
stem capa
ci
to
rs d
r
a
w
ex
ce
ssive
curre
n
ts
that ca
n le
ad
to
damag
e, system re
son
a
n
c
e may o
ccur which ca
n re
sult in
over voltage
and fre
que
ncy,
exce
ssive l
o
sse
s
o
c
cur in t
r
an
sform
e
rs,
comm
utation
failure
of SCR b
a
se
d
con
v
erters a
nd l
o
w
system
po
we
r fa
ctor [
5
, 8]. The
variatio
n
of sy
st
em l
o
ad al
so
cau
s
es
ch
ang
es i
n
sy
stem volt
age,
freque
ncy
an
d po
we
r fa
ctor from the
rated valu
es
at the
con
s
u
m
er
end
[10]. The
poo
r p
o
w
e
r
factor means very poor ut
ilizat
ion of the power
net
work infras
tructure [5].
However by
using
suitabl
e FA
CTS devices f
o
r
rea
c
tive p
o
we
r
com
p
e
n
satio
n
can
control th
e v
a
riation
of
sy
stem
voltage within
the permissi
b
le limit [3]. T
h
is al
so
elimi
nates the eff
e
ct of harm
o
nics due to rapid
swit
chin
g of conne
cted lo
a
d
and ge
nera
t
ors [3, 4].
A STATCOM
is a
shu
n
t device
whi
c
h
is u
s
ed to
compen
sate t
he re
active p
o
we
r i
n
power
syste
m
and the
r
eb
y stabilize
s
t
he syst
e
m
voltage [6]. The STATCOM
gene
rally use
s
a
voltage sou
r
ce converte
r
(VSC) inte
rfa
c
ed in
sh
unt
to
a tra
n
smi
s
si
on line
[7]. In most
ca
se
s t
h
e
DC voltag
e suppo
rt for the VSC
is provided by the DC
cap
a
cit
o
r of relativel
y
small ene
rgy
stora
ge capa
bility [8]. In s
t
eady state operatio
n,
the active powe
r
excha
nge
d with the line i
s
maintaine
d
to zero
whi
c
h is sho
w
n in the
Figure 4.
Figure 4. Basic Block Dia
g
ram of ST
A
T
COM
The STAT
COM is in
contradi
ction
to the m
o
re t
r
adition
al SVC
(Static VAR
Comp
en
sato
r), not d
epe
nd
ing on
the
ap
plied voltag
e
for inje
cting
or a
b
sorbi
ng
the dem
and
e
d
reactive power. Thi
s
abilit
y makes the
STATCO
M advantageous for regulation of the syst
em
voltage at th
e point
of co
mmon
co
upli
ng (P
CC) [6,
7]. The
r
e a
r
e two type
s
of STATCO
M
,
the
curre
n
t-sou
r
ce converte
r
based
(CS
C
) and
the
vol
t
age sou
r
ce conve
r
ter
(V
SC) or
volta
g
e
sou
r
ce inve
rter (VSI)
ba
sed [10]. The
VSC-b
ased
STATCOM
comp
romi
se
s a PWM
(Pu
l
se
Width
Mod
u
lation) controll
ed IGBT
(In
s
ulated
Gate
Bipolar Tran
sistor) b
a
sed i
n
verter with
a
DC
bus capac
i
tor [6]. In contradic
t
ion to the traditi
o
nal re
active com
p
e
n
sato
rs,
such
as con
den
ser
banks,
where the ca
paci
tor si
ze i
s
di
rectly related
to the com
pensati
ng
capability, the DC
cap
a
cito
rs of
the STATCOM a
r
e of n
o
direct
con
n
e
ction to
the
rea
c
tive po
wer supply
whose
purp
o
se is to
maintain a
st
eady DC bu
s
volt
age [7, 9].The STATCO
M has
much
better tra
n
si
e
n
t
perfo
rman
ce
as
com
p
a
r
ed
to the traditi
onal
rea
c
tive
po
wer comp
ensator
and
i
s
far supe
rio
r
in
terms of cost,
weight and
si
ze [5]. STATCOM
s
do not
have the harmonic p
r
o
b
le
ms like SVC
and
offer very fast
re
spon
se to
tran
sient di
stu
r
ban
ce
s o
n
n
e
twork [6, 1
1
]. A commo
nly use
d
mod
e
l
of
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
19 – 652
5
6522
DFIG with ST
ATCOM which is use
d
for wind turbine
for feedin
g
ele
c
tri
c
ity into th
e grid is sho
w
n
in the figure
5.The stato
r
of the woun
d
rotor
ind
u
cti
on machine i
s
co
nne
cted t
o
the low voltage
side
wh
ere
a
s the roto
r i
s
f
ed via the
ba
ck-to-ba
ck I
G
BT voltage
source i
n
verte
r
s with
a
com
m
on
DC bu
s [3, 6]
. The
network
side
inve
rte
r
cont
rols the
po
we
r flo
w
betwe
en
the
DC
bu
s
an
d
the
AC sid
e
an
d
allows the
system to be
operat
ed
in sub
-
syn
c
h
r
o
n
ous and sup
e
r-syn
c
hrono
us
spe
ed [5, 6].
The prope
r ro
tor excitation
is provid
ed b
y
the machin
e side inve
rte
r
.
Figure 5. Model of DFIG
Wind
T
u
rbine
4. Simulated Model of DFIG
w
i
th STATCOM
Figure 6. Simulated Mod
e
l of DFIG Win
d
Turbin
e with
STATCOM
9
M
W
W
i
nd F
a
r
m
Q
------>
P
<
----
--
P
h
as
or
s
po
w
e
r
g
u
i
m
A
B
C
W
i
n
d
F
a
r
m
ha
v
i
ng
W
i
nd
T
r
u
b
i
n
e of
D
o
ub
l
y
F
e
d
I
n
d
u
c
t
i
o
n
G
e
n
e
ra
t
o
r
P
1_3 (
M
W
)
Q1_3 (
M
v
a
r)
w
r
1_3 (pu)
w
i
nd1_3 (
m
/
s
)
pit
c
h1_
3 (deg)
W
i
nd
F
a
r
m
1 &
2
D
a
t
a
a
c
q
u
i
s
it
io
n
1
Tr
ip
St
atc
o
m
V
m
(pu)
Q (
M
v
a
r)
ST
A
T
C
O
M
D
a
t
a
a
c
q
u
is
it
io
n
Tr
i
p
m
A
B
C
ST
AT
C
O
M
ST
AT
C
O
M
(P
h
a
s
o
r T
y
p
e
)
0
No
t
r
i
p
Ma
n
u
a
l S
w
it
c
h
A
B
C
N
a
b
c
G
r
ou
nd
i
n
g
Tr
a
n
s
f
o
r
m
e
r
X
0
=4
.7
Oh
m
s
m
s
ta
tc
o
m
m
V
abc
_B
25
P_
B
2
5
Q_B
2
5
V
1_B
25
I
1_B
25
B2
5_W
F
Bus
D
a
t
a
a
c
q
u
is
it
io
n
B2
5
Bu
s
A
B
C
a
b
c
B2
5
(2
5
k
V
)
3.
3oh
m
s
A
B
C
A
B
C
25
00
M
V
A
X0/
X
1
=
3
A
B
C
A
B
C
25 k
m
l
i
ne
A
B
C
a
b
c
1
2
0
kV
/
2
5
kV
47
M
V
A
N
A
B
C
12
0 k
V
W
i
nd
T
u
r
b
i
n
es
V
abc
_B
25 (
pu)
P
_
B
25 (
M
W
)
Q_B
2
5
(M
v
a
r
)
V
_
B
25 pos
.
s
eq.
(pu)
I
_
B
25 pos
.
s
eq.
(
pu/
10 M
V
A
)
V
m
(pu)
Generat
ed Q
(M
v
a
r
)
P
1_3 (M
W
)
Q1_3 (M
v
a
r)
w
r
1_3 (pu)
w
i
nd1_3 (m
/
s
)
pit
c
h1_3 (
deg)
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
STATCOM M
odel for Integ
r
ation of Win
d
Turbi
ne to Grid (Raji
b
Baran
Ro
y)
6523
In the simulat
ed model, a
wind farm is con
s
id
ere
d
of six 1.5MW wind turbin
es
whi
c
h are
con
n
e
c
ted to
a 25
kV dist
ri
bution
syste
m
export
s
po
wer to
a 12
0
k
V gri
d
thro
u
gh a 2
5
km
2
5
kV
feeder. T
he 9
M
W wi
nd farm is comp
rised of thre
e
1.
5MW
wind
-tu
r
bine
s. In the
simulate
d mo
del,
the win
d
turbi
nes
use squirrel-ca
ge ind
u
c
tion g
ene
r
a
to
r
s
(
I
G)
. T
h
e s
t
a
t
o
r
w
i
n
d
i
ng
is
c
o
nn
ec
ted
dire
ctly to the 60Hz grid a
n
d
the rotor i
s
driven
by a variabl
e-pitch
wind turbine.
The pitch a
n
g
l
e
is cont
rolle
d in orde
r to limit the generat
or output
po
wer at its nominal value for wind
s exce
ed
ing
the nominal
spe
ed (9
m/s). For elect
r
ici
t
y generat
ion
,
the speed
of IGs is mai
n
tained
slight
ly
above the
sy
nch
r
on
ou
s sp
eed. Spee
d v
a
rie
s
ap
prox
imately betwe
en 1p
u (per
u
n
it) at no l
oad
to
1.005p
u at fu
ll load. Ea
ch
wind
turbi
ne
has a
pr
otecti
on
system
which
monito
rs voltage,
cu
rrent
and
ma
chi
ne spe
ed.The re
active
po
we
r absorb
ed
by
t
he IGs i
s
p
a
rt
ly compe
n
sated by capa
citor
ban
ks
con
n
e
c
ted at lo
w voltage bu
s. T
he ca
pa
citor
ban
k is of 40
0 kvar fo
r ea
ch pai
r of 1.5
M
W
turbine
s
. In orde
r to maintain the 25kV
bus volt
age
clo
s
e to 1pu,
the rest re
active po
wer is
provide
d
by a 3 Mvar ST
ATCOM
with
a 3% dr
oo
p
setting. The
mech
ani
cal p
o
we
r of the
wind
turbine
is a f
unctio
n
of tu
rbine
spe
ed
rangin
g
from
4m/s to
10m/
s
. The
no
min
a
l win
d
spe
e
d
yielding the
nominal
me
chani
cal po
we
r of 1pu
(3
MW) i
s
9
m
/s. The win
d
turbin
e an
d the
STATCOM
m
odel
are
p
h
a
s
or mo
del
s t
hat allo
w t
r
an
sient
stability
analy
s
is with
sim
u
lation
time
duratio
n of 2
0
s. The
wind
spe
ed of thre
e wind tu
rb
in
es is va
ried from the win
d
farm blo
c
k. T
h
e
simulate
d mo
del is sho
w
n i
n
Figure 6.
4.1. Simulation Res
u
lts a
nd Impacts
of STAT
CO
M
Figure 7. Improveme
n
t of Powe
r of the Electri
c
Net
w
ork
with STATCOM
Gene
rated R
eal Power
Gene
rated R
eactive Pow
e
r
Gene
rator Sp
eed
Wind Speed
Pitch Angle
Time
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 9, September 20
14: 65
19 – 652
5
6524
Figure 8. Dro
p
in System Voltage after
Removal of S
T
ATCOM fro
m
the Netwo
r
k
The Figu
re 7
sho
w
s the
si
mulated waveform
s of the generated a
c
tive power,
rea
c
tive
power, ge
ne
rator spee
d, wind
sp
eed
and pit
c
h a
n
g
le of ea
ch
wind tu
rbin
e
with re
sp
ect
to
cha
nge
in
wi
nd
spe
ed. T
h
e ge
nerated
electri
c
ity fro
m
wi
nd tu
rbin
e g
r
eatly d
e
p
end
s o
n
the
wind
spe
ed
whi
c
h
can
be i
den
tified from th
e wavefo
rm
s of Figu
re
7. For
ea
ch
pa
ir of turbine,
the
gene
rated a
c
tive power st
arts in
cre
a
si
n
g
smoothly a
nd rea
c
h
e
s to its rated value of 3MW in
approximatel
y 8s. The tu
rbine
spe
ed i
n
crea
se
s
fro
m
1.0028
pu
to 1.0047
pu
within that ti
me.
Initially, the p
i
tch a
ngle
of
the turbine
bl
ade
s
i
s
ze
ro degree. Whe
n
t
he output
power exce
e
d
s
Bu
s Vo
la
g
e
S
y
ste
m
Real Powe
r
S
y
ste
m
Reactive Powe
r
Bu
s Vo
la
g
e
Bu
s Curren
t
Tim
e
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
STATCOM M
odel for Integ
r
ation of Win
d
Turbi
ne to Grid (Raji
b
Baran
Ro
y)
6525
3MW, th
e pit
c
h
angl
e i
s
in
cre
a
sed
from
0de
g to
8de
g in
order to
bring
outp
u
t
power
ba
ck t
o
its
nominal
valu
e. It is to
b
e
me
ntioned
that the
ab
sorbed
rea
c
tive po
wer in
cre
a
ses a
s
t
h
e
gene
rated
a
c
tive po
wer
increa
se
s. At nominal
po
wer,
ea
ch p
a
ir of
wind t
u
rbin
e ab
so
rbs
1.47Mvar. Fo
r a wi
nd
spe
ed of 11m/
s
, the tota
l exported
po
wer measured at
the bus B
2
5
is
9MW
and
th
e STATCOM
maintain
s vo
ltage at 0.9
8
4pu
by gen
erating 1.6
2
MV
ar. Th
e effe
ct of
usin
g STATCOM in the
system can b
e
observ
ed
by discon
ne
cting the STATCOM blo
ck
an
d
immediately the bu
s B25 voltage drop
s to 0.91pu
a
n
d
therefore low voltage initiates an ove
r
loa
d
of the IG
of
wind
turbi
ne
1. The
Figu
re
8
sho
w
s the
wavefo
rm
s o
f
voltage, re
al
po
wer,
re
acti
ve
power a
nd current of bu
s B25 whe
n
STATCOM
i
s
disconn
ecte
d from the
system. The
bus
voltage sta
r
ts to drop
while
the current i
n
crea
se
s
a
n
d
the real p
o
wer a
nd la
ggin
g
re
active
po
we
r
also in
crea
se
. The wind turbine 1 is trip
p
ed at
t=13.43
s due to overcurre
n
t prote
c
tion. Wh
en the
STATCOM
bl
ock is
co
nne
cted to the
system ag
ain t
hen the
bu
s
B25 voltage i
n
crea
se
s to
1pu
and sy
stem stability is maintained by pr
oviding re
acti
ve powe
r
of 1.65MVar.
4. Conclusio
n
The sy
stem stability is the main concern of
the modern elect
r
ical
power sy
stem
network
whe
r
e ele
c
tri
c
ity generation co
mes from both
co
nventional a
nd ren
e
wabl
e sou
r
ces.
The
STATCOM p
r
ovide
s
bette
r voltage reg
u
lation than
the co
nventio
nal static var compn
e
sato
r in
ca
se of
syst
em imbal
an
ce. From th
e
simula
te
d
model it is
observed th
a
t
the STATCO
M
stabili
ze
s the
system volta
ge ne
ar to th
e rated
value
(1pu
) whe
n
gene
rated el
ectri
c
ity
from wind
turbine i
s
fe
eded into th
e system. M
o
reove
r
the
STATCOM
resp
ond
s to system imbala
n
ce
within
sho
r
t time an
d sta
b
il
ize
s
the
syst
em voltage t
o
rate
d value
.
Therefore
it can
be
a b
e
tter
option for the
rea
c
tive power co
mpe
n
sation than
the convention
a
l static var com
pen
sator.
Referen
ces
[1]
Koessl
er RJ, Pillutl
a S,
T
r
inha
nd LH. Dickma
nder D
L
.
Integration of of Lar
ge
Wind Far
m
s into Utility
Grids (Part 1-Mode
lin
g DF
IG)
. Submitted for presentati
on
at
IEEE General Meeti
ng. 20
03.
[2]
Seman
S, Ni
ira
nen
J, Virtan
en
R, Matsin
en
J
P
.
Low
volta
g
e
ride-t
h
rou
gh
a
nalysis
of
2 M
W
DF
IG w
i
nd
turbin
e - grid c
ode co
mpli
anc
e vali
datio
ns
. Procee
din
g
s of
the 2008 IEE
E
Po
w
e
r an
d Energ
y
Soc
i
et
y
Genera
l
Me
eti
ng -
Co
nvers
i
o
n
a
n
d
De
liver
y of El
ectr
ical
E
nerg
y
in
the
2
1
st Ce
ntur
y
.
Pi
ttsburgh, PA
,
USA. 2008.
[3]
Z
hou F
,
Joos
G, Abhe
y C.
V
o
ltag
e stab
ility
in w
eak c
o
n
n
e
c
tion w
i
n
d
far
m
. IEEE PES
Gen. Meeting,
200
5; 2: 1483
–
148
8.
[4]
Billi
nton R, Ga
o Y. Multistage
w
i
nd En
erg
y
c
onvers
i
on s
y
st
em models for
adeq
uac
y
ass
e
sssment of
gen
eratin
g s
y
st
ems inc
o
rpor
ating
w
i
n
d
e
nerg
y
.
IEEE Transaction on Energy Conv
ersion.
200
8; 23(
1)
:
163-
169.
[5]
Mohod SW, Aw
are MV.
Pow
e
r qua
lity issu
e
s
and its
miti
g
a
tion tec
hni
qu
e in w
i
nd
ener
gy conv
ersio
n
.
IEEE Int. Conf. Qualit
y
P
o
w
e
r
and H
a
rmo
n
i
c.Wollon
g
o
ng, A
u
strali
a. 200
8.
[6]
Han C, Hu
an
g AQ, Baran M, Bhattachar
ya S,
Litze
n
b
e
rger W
.
ST
AT
COM impact stud
y
o
n
th
e
integr
ation
of a larg
e
w
i
n
d
farm into a
w
eak lo
op p
o
w
e
r s
y
stem.
IEEE Transaction on Ener
gy
Conv
ersio
n
. 20
08; 23(1): 2
26–
232.
[7]
Bhattachar
ya
S, Xi Z
,
Park
hi
deh B.
I
m
pr
oving
distribution system
perfo
r
m
ance with
int
egrated statcom
and su
per ca
p
a
citor en
ergy s
t
orage syste
m
.
IEEE Pow
e
r E
l
ectronics Spec
ialists Conference. 2008.
[8]
Hossain A. Electrical Po
w
e
r Sy
st
ems. Fifth Editio
n. Ne
w
D
e
l
h
i. C
BS Pub
lis
hers an
d Distri
butors. 20
07
:
347-
352, 6
33-6
78.
[9
]
R
a
sh
id
MH
. Pow
e
r Ele
c
tro
n
i
cs C
i
r
cui
t
s, D
e
vi
ce
s a
n
d
App
l
i
c
ati
o
n
.
San
D
i
e
g
o
.
A H
a
rco
u
r
t
Sci
e
n
c
e
and
T
e
chnolog
y C
o
mpan
y. 20
01:
784-
910.
[10] Schau
der
C,
Gernhar
dt
M, Stace
y
E, Lem
ak T
,
Gyug
yi
L
,
C
ease T
,
Edris A. Devel
o
p
m
ent of a 1
0
0
MVAr Static C
ond
ens
er for
Voltag
e
C
ontr
o
l
of T
r
ansmission
S
y
stems.
IEEE Transact
i
on on Power
Deliv
ery
. 199
5; 10(3): 148
6–
1
496.
[11] Mark S, Phinit S,
Ram P, Lia
ngzh
o
n
g
Y.
T
he contro
l of a s
t
atcom w
i
th
su
perca
pactor
en
ergy stor
a
g
e
for impr
ove
d
p
o
w
e
r qual
ity
. CIRED Semin
a
r Smart Grids for Distributi
on. 2
008.
Evaluation Warning : The document was created with Spire.PDF for Python.