TELKOM
NIKA Indonesia
n
Journal of
Electrical En
gineering
Vol. 12, No. 11, Novembe
r
2014, pp. 75
7
8
~ 758
4
DOI: 10.115
9
1
/telkomni
ka.
v
12i11.66
59
7578
Re
cei
v
ed
Jul
y
21, 201
4; Revi
sed Septe
m
ber
10, 201
4; Acce
pted
Octob
e
r 1, 20
14
Study on T
e
mperature Rise of Dry-T
y
pe T
r
ansformer
in Different Cooling Conditions with FEM
Liu Chao*
1
, Ruan Jia
ngjun
1
, Li Ling
y
a
n
1
, Wang Shansh
an
2
1
School of Elec
trical Eng
i
ne
eri
ng, W
uhan U
n
i
v
ersit
y
, W
u
h
a
n
,
China
2
State Grid Electric Po
w
e
r Re
search Institue,
W
uhan, Chi
n
a
*Corres
p
o
ndi
n
g
author, e-ma
i
l
: lcnha
lcnh
a@
163.com
A
b
st
r
a
ct
T
o
study the te
mp
eratur
e rise
of
dry-type tran
sformer
in
diffe
rent coo
lin
g co
nditi
ons, finit
e
ele
m
en
t
meth
od is
use
d
in this
pap
er
to calcul
ate te
mp
eratur
e
distr
i
buti
on i
n
the transfor
m
er. Firstly, therm
a
l-fluid
coup
led
mode
l
of a transfomer is bui
lt up
,
and the
equ
iva
l
ent he
at gen
er
ation
of this
mode
l is figur
ed
out
accord
ing t
o
the res
u
lts of d
e
livery t
e
st. T
hen, ther
ma
l-flui
d
cou
p
le
d mo
del is
si
mu
late
d
in both natu
r
a
l
cooli
ng co
nd
iti
on an
d forced
cooli
ng co
ndit
i
on, an
d
te
mp
erature d
i
strib
u
tions i
n
the i
r
on an
d w
i
ndi
ng
s
und
er thes
e tw
o con
d
iti
ons
ar
e obt
ain
ed. F
i
n
a
lly, te
mp
eratu
r
e rises
in t
hes
e tw
o con
d
itio
n
s
are c
o
mpar
e
d
to figure out th
e influ
enc
e of cooli
ng co
nd
it
io
n on transfor
m
er temperatur
e
rise.
Ke
y
w
ords
: transformer, cool
i
ng, ther
mal-fl
ui
d coup
le
d method, te
mper
atu
r
e rise, finite el
ement
Copy
right
©
201
4 In
stitu
t
e
o
f
Ad
van
ced
En
g
i
n
eerin
g an
d
Scien
ce. All righ
ts reser
ved
.
1. Introduc
tion
Powe
r tran
sforme
rs h
a
ve been
widely applie
d
in tra
n
smi
ssi
on an
d distrib
u
tion
system,
esp
e
ci
ally the
low-voltage
distrib
u
tion t
r
ansfo
rme
r
, pl
ays a
majoy
part in
the
da
ily power
su
p
p
ly
for resi
dent
s [1]. Posse
ssing such ad
vantage
s
as
fireproofing, explosi
on-pro
o
fing and be
ing
environ
menta
lly green, d
r
y-type tran
sforme
rs
hav
e
played a
n
i
n
crea
singly i
m
porta
nt rol
e
in
power
systems.
Nevertheless, the power loss
of
transformer in o
peration will
cause
the
temperature ri
se. If the temp
erature
ri
ses over the insulation limit,
it will
speed
up the agei
ng
of insulating
material a
nd
sho
r
ten
the transfo
rme
r
’s
workin
g life,
or even Lea
d
to
seri
ou
s ac
cid
ent
s.
An air
co
olin
g sy
stem
can
stre
ngthe
n t
he inte
rnal
ventilation of t
r
an
sform
e
r to
co
ol the
trans
former,
but
the cooli
ng effect
is
la
cki
ng of qu
a
n
ti
tative
analysis [5]. It’s of great value
to
study the temperatu
r
e ri
se
of transfo
rme
r
based on
two different co
oling conditio
n
s a
s
natural ai
r
cooli
ng
and
forced
air cool
ing. In thi
s
p
a
per t
he finite
element
sim
u
lation meth
od
of the
r
mal
-
fluid
cou
p
led field
is use
d
to calcul
ate tran
sformer
tem
p
e
r
ature ri
se in
different co
o
ling co
ndition
s,
thus q
uantit
atively analyzing th
e inf
l
uen
ce of
cooling
co
ndi
tions o
n
th
e tran
sform
e
r’s
temperature rise.
2. Calculatio
n Principle
2.1. Mass Co
nserv
a
tion Equation
Mass co
nservation equati
on is one of the basi
c
eq
uation
s
whi
c
h must be sa
tisfied by
any fluid flowing problem
s.
The
ma
ss conservation e
quation with
ve
ctor
symbo
l
can b
e
writt
e
n
as
the following form:
()
0
u
t
(1)
Whe
r
e
ρ
is
the dens
i
ty (k
g/
m3); t is
the time (s
);u re
prese
n
ts the ve
ctor
sum of velocity
comp
one
nts i
n
the x, y, z directio
n divide
d by u
、、
vw
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on Te
m
perature
Ri
se of Dry-T
y
p
e
Tran
sfo
r
m
e
r in Differe
nt Cooli
ng… (Li
u
Cha
o
)
7579
2.2. Momentum Conse
r
v
a
tion Equa
tion
In the sol
u
tio
n
of fluid flowing
in tran
sfo
r
mer, visco
s
ity coeffici
ent
can be
co
nsi
d
ered
a
s
a con
s
tant, n
o
t varying with coo
r
din
a
te positio
n.
It c
an be written in vec
t
or form as
follows
:
2
()
()
3
uu
Fp
u
u
u
t
(
2
)
Where F is
mass
forc
e (N)
;;
P is
pres
sure(N)
u
is
visc
os
ity c
oeffic
i
ent.
2.3. Turbule
n
ce k-
ε
Ma
th
ematical Mo
del
Applying the
most wi
dely
use
d
stan
dard k-
ε
two
eq
uation mo
de,
the gene
ral
governi
ng
equatio
n is
gi
ven by the fo
llowing
in the
ca
se that
th
e fluid is i
n
co
mpre
ssible
a
nd in a
stea
dy
flowing state:
()
()
(
)
div
V
div
g
rad
S
t
(
3
)
Whe
r
e
φ
is universal variable,
Г
is diffusion co
efficient
, S is source i
t
em.
3. Transform
e
r Hea
t
-flo
w
Coupling Mo
del
The
dry type
tran
sformer
i
s
a
three-ph
ase
pl
ana
r transfo
rme
r
,
with high
volta
ge
side
usin
g flat cop
per imp
r
eg
na
ted windin
g
a
nd low vo
ltag
e side u
s
ing
the copp
er fo
il winding. It’s
cap
a
city is
4
920
kVA, the rated voltag
e
of HV
si
de i
s
66
00V, the
rated voltag
e of LV si
de
is
1540V, the in
sulatio
n
temp
eratu
r
e ri
se le
vel is H.
In the case o
f
the
three-p
h
a
se d
r
y type transfo
rme
r
, it’s high an
d low voltage
coil have
rathe
r
com
p
l
e
x windin
g
a
s
well a
s
large numb
e
rs
of turns. It will need too m
u
ch
comp
utation
that using 3
D
solid mo
deli
ng
to cal
c
ulat
e fluid-the
r
m
a
l cou
p
led fie
l
d. The coil’
s
power lo
ss
a
n
d
iron lo
ss di
stribution of e
a
c
h p
h
a
s
e i
s
almost th
e same, a
s
well
as the th
re
e-pha
se ventila
tion
circuit. Additionally, therm
a
l radiatio
n betwe
en pha
se
s ca
n be largely ign
o
re
d due to sm
all
temperature
differen
c
e. T
herefo
r
e, ju
st
one of
th
e three
pha
se
s
is supp
osed
to be an
alyzed.
Since th
e
structure of
one
pha
se
is axi
s
ymmetri
c
, it
s fluid
-
the
r
ma
l field
can
be
analy
z
ed
wit
h
a
two-di
men
s
io
nal axisymme
tric mod
e
l.
As sho
w
n in
Figure 1, the
transfo
rme
r
model i
s
e
s
ta
blish
ed
on
ba
sis of its
actu
al
size, of
whi
c
h th
e u
p
per
bou
nda
ry
is
2.25 tim
e
s the
hei
ght
of the t
r
an
sformer bo
dy, and
the
rig
h
t
boun
dary is
2
.
43 times the
radiu
s
of the
transfo
rm
e
r
b
ody. Therefo
r
e the cal
c
ulat
ion re
sults
ca
n
rea
c
h
the req
u
irem
ents of
accuracy.
Th
e
two-di
me
n
s
ional tra
n
sfo
r
mer mo
del fo
r calcul
ation i
s
s
h
ow
n
in
F
i
gu
r
e
1
.
The ov
erall mo
del is sho
w
n in Fig
u
re 2.
Figure 1. Two
-
dime
nsi
onal
Fluid-th
erm
a
l Field Mod
e
l o
f
Transfo
rme
r
The tra
n
sfo
r
mer m
odel i
s
mainly co
mprised
of iron
core, hig
h
voltage
windi
ng (modele
d
per
turn), lo
w voltage win
d
i
ng (mo
dele
d
per
turn,
the uppe
r in
clud
e
s
51 tu
rn
s,
the lowe
r
in
clud
es
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
78 – 758
4
7580
30 turns), an
insul
a
ting
cy
linder bet
wee
n
high
an
d l
o
w voltag
e
winding
a
nd
en
d insulation
o
f
high-volta
ge
windi
ng. A
s
f
o
r th
e
inlet
an
d
outlet
boun
dary i
n
Fig
u
re 2,
th
e right and upp
er
ou
tlet
all load the
b
ound
ary
co
nd
ition of pre
ssure
= 0, the
lowe
r en
d lo
ads th
e valu
e of the
inlet
air
velocity (Wh
en the t
r
an
sf
orme
r tem
p
e
r
ature di
strib
u
tion is calculated u
nde
r natural
cool
ing
condition, the lower inl
e
t ai
r veloc
i
ty is
set to 0).
Figure 2. The
Model’s L
o
a
d
ing State of Outer Bou
n
d
a
ry
Thro
ugh the
prod
uct facto
r
y report an
d para
m
et
ers o
f
the transformer itself, the
powe
r
loss of the co
re and
coil ca
n be cal
c
ul
ated. The re
sult
s are
sho
w
n i
n
Table 1.
Table 1. The
Powe
r Lo
ss o
f
Transfo
rme
r
Core a
nd coi
l
(75
Ԩ
)
Loss Classif
i
cati
on
P1
(
W
)
high-voltage coil
8874.33346
The uppe
r lo
w
-
v
o
ltage coil
4210.53113
The lo
w
e
r lo
w-vo
ltage coil
5154.99467
core 4058.3772
4. Simulation under Different
Coolin
g Condition
s
4.1. Natural Air Cooling
In co
nsi
d
e
r
at
ion of
the
h
eat
prod
uctivi
ty and
bou
nd
ary
loadin
g
condition
s
me
ntioned
above, the
inlet
air velocit
y
is set to
0. Then
fluid-therm
a
l co
u
p
led field in natural co
ol
ing
con
d
ition
s
ca
n be
sim
u
lat
ed.
Tran
sformer te
mpe
r
a
t
ure di
stri
buti
on of
ea
ch
part i
s
sho
w
n in
Figure 3.
Seen from th
e cal
c
ul
ation
results, in n
a
t
ural
ai
r cooli
ng conditio
n
, the hot spot
of dry-
type tran
sformer i
s
lo
cate
d at the
upp
er
pa
rt
of lo
w-voltage
coil,
ca
used by t
he po
or co
oli
ng
effect of
the
inne
r lo
w-v
o
ltage
wi
ndin
g
s. Th
e hot
-spot tem
perature i
s
1
6
6
.
821
Ԩ
,while the
temperature rise
is 121.8
2
1
Ԩ
; For tran
sform
e
r
co
re
s, the maxim
u
m tempe
r
at
ure i
s
117.8
2
8
Ԩ
,
locate
d at the
uppe
r
part of
core, and th
e tempe
r
ature rise re
ache
s 72.8
2
8
Ԩ
; F
o
r the lo
we
r
part
of low-voltag
e windi
ng
s, the maximum
temperatu
r
e
is 107.82
7
Ԩ
, located at the upp
er
pa
rt
of
middle win
d
i
ngs; The
ma
ximum
temp
e
r
atur
e of
high
-voltage
wi
ndi
ngs is 14
2.9
3
5
Ԩ
, loc
a
ted at
the top of high-voltage
win
d
ing
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on Te
m
perature
Ri
se of Dry-T
y
p
e
Tran
sfo
r
m
e
r in Differe
nt Cooli
ng… (Li
u
Cha
o
)
7581
Figure 3. Tra
n
sformer T
e
mperatur
e
Di
stributio
n of each Pa
rt in Natural Coolin
g Con
d
ition
s
(a) High
-volta
ge
win
d
ing
s
(b) T
he lower low-voltag
e windi
ng
s
(c) The u
ppe
r low-voltag
e windi
ng
s
Figure 4. Tra
n
sformer T
e
mperat
ure of
each Part at Variou
s Heig
ht in Natural
Cooli
ng
Conditions
In ord
e
r to
analyze tem
peratu
r
e
at
different h
e
ig
ht of the
wi
nding
and
core, the
observation
points a
r
e
re
spe
c
tively se
t at differe
nt po
sition
s. Curves
of
tem
peratu
r
e
varyi
ng
with heig
h
t
o
f
these p
a
rts are sh
own
i
n
Figu
re
4. It appea
rs
that tempe
r
a
t
ure in th
e
low-
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
78 – 758
4
7582
voltage
win
d
ings a
nd
co
res
cha
nge
s more
smo
o
thly, contra
stly there i
s
a p
r
ocess of
temperature
drop
in the
m
i
ddle of
hig
h
-voltage
wi
ndi
ngs. T
h
is is
becau
se
at th
e
positio
n
wh
ere
the wi
dth of
a
i
r ga
p b
e
twe
e
n
turns
i
s
la
rg
er,
conve
c
tive he
at tran
sf
er effe
ct i
s
be
tter,
which le
ads
to the temperature falling.
4.2. Natural Air Cooling
Since th
e
tra
n
sformer coo
ling fan
give
s the
ventilation per ho
ur fro
m
thre
e-p
h
a
s
e
fan,
whi
c
h is 4
200
m
3, it’s necessary to be
co
nverted into the inlet air ve
locity.
Sv
t
M
(4)
22
21
()
Sr
r
(5)
Whe
r
e
S
stan
ds for the inle
t section
a
l area
(
m
2
)
,
v
re
pre
s
ent
s the inlet air velocit
y
(
m/s
)
,
t
is
the time
(
s
)
,
M
indicate
s the ventilation
per hou
r
(
m
3
)
,
r
2
、
r
1
respe
c
tively represent the outer
and inn
e
r dia
m
eter of the inlet air ci
rcu
m
ferential.
By the above formula
s
, the inlet air veloci
ty can be obt
ained a
s
bel
o
w
:
22
21
1.224
/
()
M
vm
s
rr
t
(6)
Con
s
id
erin
g t
he a
c
tual
efficien
cy of the
inle
t
air velo
ci
ty can’t rea
c
h
100%, the
effective
air velocity sh
ould be 8
0
%, in this ca
se, 0
.
98
m/s
.
Figure 5. Tra
n
sformer T
e
mperat
ure
Di
stributio
n of each Pa
rt in Forced Coolin
g Con
d
ition
s
Seen from the calculation
results, in forced ai
r cooli
n
g conditio
n
, the cooli
ng effect of the
inner lo
w-voltage
wi
nding
s
is improved.
Ho
wever, for
the rea
s
on th
at the end insulation of hig
h
-
voltage
win
d
ing
blo
c
ks th
e ventilation
at the top
of the coil,
the hot
spot
is lo
cated
at the
uppe
r
pa
rt of
high
-voltage
coil. T
he
ho
t-spot
tempe
r
ature i
s
140.
866
Ԩ
, while
the
tempe
r
at
ure
rise i
s
95.8
6
6
Ԩ
; For tra
n
s
form
er
core
s, the maxim
u
m tempe
r
at
ure i
s
90.06
1
Ԩ
, located at
th
e
uppe
r
pa
rt of
co
re,
and
t
he. temp
erat
ure
ri
se
re
aches 45.0
6
1
Ԩ
; For the l
o
wer p
a
rt
of l
o
w-
voltage win
d
i
ngs, the maxi
mum tempe
r
ature i
s
82.0
3
1
Ԩ
, located
at the uppe
r
part of win
d
in
gs;
The maxim
u
m tempe
r
ature of the
upp
er p
a
rt of l
o
w-voltag
e
wi
nding
s i
s
1
1
6
.
459
Ԩ
, lo
cat
ed at
the top of win
d
ing
s
.
The comp
ari
s
on
betwee
n
tran
sform
e
r hot-sp
o
t tempe
r
ature
rise i
n
two
cooli
ng
con
d
ition
s
is
sho
w
n in T
a
b
l
e 2. Re
sults
indicate
that adoptin
g the force
d
air
co
oling metho
d
for
transfo
rme
r
p
a
rts expe
ct for high
-voltage
windin
g
can
redu
ce the te
mperature
rise by about 40
%
Evaluation Warning : The document was created with Spire.PDF for Python.
TELKOM
NIKA
ISSN:
2302-4
046
Study on Te
m
perature
Ri
se of Dry-T
y
p
e
Tran
sfo
r
m
e
r in Differe
nt Cooli
ng… (Li
u
Cha
o
)
7583
effectively. T
o
further re
du
ce the hot sp
ot tem
peratu
r
e rise of high
-vol
tage windi
ng, the stru
cture
of end insulat
i
on sh
ould b
e
improved.
Table 2. Co
m
pari
s
on b
e
tween Tran
sformer Hot-
spot Tempe
r
atu
r
e Rise
in
Two Cooli
ng
Conditions
original ventilatio
n
structure
Natural cooling
temperatu
r
e rise
(℃
)
Forced cooling
temperatu
r
e rise
(℃
)
rate of
temperatu
r
e rise
change
(
%
)
core 72.828
45.061
38
The uppe
r lo
w
-
v
o
ltage coil
121.821
71.459
41
The lo
w
e
r lo
w-vo
ltage coil
62.847
37.031
41
low
-
voltage coil
97.935
95.866
2
5. Conclusio
n
This
pape
r
mainly focu
ses o
n
si
mul
a
tion of the
r
mal-fluid
co
u
p
led field i
n
different
cooli
ng condi
tions an
d an
alysis of the
temperat
ure
rise, by build
ing the mode
l of a dry type
trans
former. Finally s
o
me c
o
nc
lu
sio
n
s
can be mad
e
a
s
follows:
1. In natu
r
al
air
cooli
ng
co
ndition, the
o
v
era
ll h
o
t
sp
ot of tra
n
sfo
r
mer i
s
l
o
cate
d at the
uppe
r pa
rt of low-volta
ge winding. The m
a
ximum temp
eratu
r
e ri
se reache
s 121.8
2
1
Ԩ
.
2.
In
forced
air cooli
ng condition,
th
e overa
ll
hot
spot of tra
n
sfo
r
mer is lo
cat
ed at th
e
uppe
r pa
rt of
high-volta
g
e
windi
ng
clo
s
e to the
en
d
insul
a
tion. Th
e maximum t
e
mpe
r
ature ri
se
rea
c
he
s 95.8
6
6
Ԩ
.
3. Usin
g the
force
d
air
co
oling metho
d
for par
t
s
of tran
sform
e
r e
x
pect for hig
h
-voltage
windi
ng, ca
n redu
ce the te
mperature
rise by about 40
%, with an ideal effect.
Referen
ces
[1]
F
Marign
etti et
al. Des
i
g
n
of
a
x
i
a
l fl
u
x
PM s
y
nchro
nous
ma
chin
es thro
ug
h
3-d c
o
u
p
le
d
el
ectromag
neti
c
thermal a
nd flu
i
d-d
y
n
a
mic
a
l fi
nite-e
leme
nt anal
ysis.
IEEE Trans. Ind. Electron.,
2008; 5
5
: 359
1–
360
1.
[2]
SL H
o
et
al. A
3-D stu
d
y
of
edd
y
curre
nt fi
eld
an
d tem
p
e
r
ature ris
e
s i
n
a com
pact b
u
s
duct s
y
stem.
IEEE Trans. Magn.,
20
06; 42:
987–
99
0.
[3]
SL Ho et al. C
a
lcul
atio
ns of e
d
d
y
curre
nt, fluid,
and th
ermal
fields i
n
an a
i
r
insul
a
ted b
u
s
duct s
y
stem
.
IEEE Trans. Magn.,
20
07; 43:
143
3–
143
6.
[4]
YJ Z
hang, JJ Rua
n
, et al. Ca
lculati
on of T
e
mper
atur
e Ris
e in Air-co
o
le
d
Inductio
n
Moto
rs
T
h
rough
3-D
Cou
p
le
d El
ectromag
netic F
l
ui
d-D
y
n
a
mica
l
a
nd T
hermal F
i
nite-El
e
ment A
nal
ysis.
IEEE Trans.,
Magn.
,
201
2; 48: 104
7
-
105
0.
[5]
HM Ahn, BJ Lee, SC Ha
h
n
.
An efficient
investig
ation
of c
ouple
d
e
l
ectro
m
a
gnetic
-thermal-flu
i
d
nu
meric
a
l
mo
d
e
l for temperat
ure rise pr
edict
ion of pow
er transfor
m
er.
ICE
M
S. 2011; 1-4.
[6]
J Smoka, AJ
No
w
a
k. E
x
p
e
riment
al v
a
li
datio
n of
the
cou
p
le
d fl
ui
d flo
w
,
he
at
transfer
an
d
electrom
agn
eti
c
numer
ical m
ode
l of the m
e
di
um-p
o
w
e
r
dr
y-t
y
pe
el
ectric
al transform
er.
Internatio
na
l
Journ
a
l of T
her
ma
l Scie
nce
. 2
008; 47; 1
393-
141
0.
[7]
BG Park,
T
S
Kim, KJ Lee, RY Kim, DS
H
y
un.
Mag
neti
c
-F
ield An
al
ysi
s
on W
i
ndin
g
Dispos
itio
n o
f
T
r
ansformer for Distri
bute
d
High-S
p
e
e
d
T
r
ain
Ap
plic
ation
s
. IEEE Trans
. Magnetics
. 2
010;
46(
6)
:
176
6–
176
9.
[8]
D Li
n, P Z
h
ou,
W
N
F
u
, Z
J
C
end
es. A
D
y
na
mic Cor
e
Los
s Mod
e
l for
So
ft F
e
rromagn
etic a
nd P
o
w
e
r
F
e
rrite Materia
l
s in T
r
ansient F
i
nite Elem
ent Anal
ys
is.
IEEE Trans. Magn
., 200
4; 40: 131
8
-
132
1.
[9]
G Bertotti,
F
F
i
orill
o, GP Soard
o
. Depe
n
denc
e of Po
w
e
r Losses on
Peak Magn
e
t
ization a
n
d
Magn
etizatio
n
F
r
eque
nc
y
in Grain-or
i
ente
d
an No
n-ori
ente
d
3% SiF
e
.
IEEE Trans. Magnetics.
19
87
;
23(5): 35
20-
35
22.
[10]
G Bertotti. Gener
al Pr
opert
i
es of P
o
w
e
r
Loss
e
s i
n
S
o
ft F
e
rromag
n
e
tic Materi
als.
IEEE Trans.
Magn
etics
. 198
8; 24: 621-
630.
[11]
Z
X
Z
h
u, et
al
. Comp
utat
io
n
of 3-
D Ma
gn
etic L
eaka
g
e
F
i
eld
an
d Str
a
y L
o
sses
in
Larg
e
.
IEEE
T
r
ans.Magn.,
2
012; 48: 7
39-9
42.
[12]
JD Anders
on, Comp
utation
a
l
Fluid D
y
n
a
mic
s
.
T
he Basics w
i
t
h
App
licati
o
ns, McGra
w
–
H
ill, Ne
w
Y
o
rk.
199
5.
[13]
F
r
ank M W
h
ite. F
l
uid Mech
ani
cs. McGra
w
-Hi
l
l
, Ne
w
Y
o
rk, 20
07.
[14]
Lan J
i
an Y
u
.
F
i
nite El
eme
n
t Anal
ys
is of
a Co
ntactles
s Po
w
e
r T
r
an
sformer
w
i
th
Metamateri
al.
TELKOMNIKA.
2014; 1
2
: 678-
684.
Evaluation Warning : The document was created with Spire.PDF for Python.
ISSN: 23
02-4
046
TELKOM
NI
KA
Vol. 12, No. 11, Novem
ber 20
14: 75
78 – 758
4
7584
[15]
Raje
ndr
a R
A
, Ved
VD.
D
e
sig
n
a
n
d
Si
mulati
on
Lo
w Volta
g
e
Sin
g
le-P
hase
T
r
ansformer
l
es
s
Photovo
l
taic In
verter.
T
E
LKOMNIKA Indon
e
s
ian J
ourn
a
l
of Electrica
l
Eng
i
neer
ing
. 201
4; 12(7):
5
1
6
3
-
517
3.
[16]
F
an Ch
un-
qia
o
,
Z
hang Z
h
ong
-
y
u
an,
L
i
W
en-
bo, et a
l
. Simu
latio
n
a
nd A
nal
ysis
of T
e
mperature F
i
e
l
d
of Dr
y
T
y
pe T
r
ansformer.
Shanxi Electric Power
. 2012; 40
: 76-79.
[17]
W
ang W
en, G
u
Ch
ang
Ch
en
Ru-qi
ng. Ap
pl
i
c
ati
on of
Num
e
rical Simu
lati
on
Meth
ods of
T
e
mperature
F
i
eld to He
at Desig
n
of Dr
y
-
T
y
pe Po
w
e
r T
r
ansformer.
T
r
ansformer
. 199
7; 12: 18-21.
Evaluation Warning : The document was created with Spire.PDF for Python.