I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
p
u
t
er
Science
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
,
p
p
.
742
~
751
I
SS
N:
2502
-
4752
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ee
cs
.
v
9
.
i3
.
p
p
7
4
2
-
751
742
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
ijeec
s
An Ef
ficen
t
Dist
ri
buted
M
e
diu
m
A
ccess
C
o
ntrol
for
V2
I
VANET
Nee
la
m
bi
k
e
S.
1
,
C
ha
nd
ri
k
a
J
2
1
De
p
a
rtme
n
t
o
f
In
f
o
rm
a
ti
o
n
sc
ien
c
e
a
n
d
En
g
in
e
e
ri
n
g
,
V
T
U Da
v
e
n
g
e
re
,
In
d
ia
2
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter sc
ien
c
e
a
n
d
E
n
g
g
in
e
e
rin
g
,
M
a
ln
a
d
Co
l
leg
e
o
f
e
n
g
in
e
e
rin
g
,
V
T
U Ha
ss
a
n
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
2
9
,
2
0
1
7
R
ev
i
s
ed
No
v
1
2
,
2
0
1
7
A
cc
ep
ted
Dec
1
0
,
2
0
1
7
P
r
o
v
isio
n
in
g
sm
a
rt
in
telli
g
e
n
t
t
ra
n
sp
o
rt
f
o
r
v
e
h
icu
lar
a
d
h
o
c
n
e
tw
o
rk
s
(V
A
NET
s)
d
e
p
e
n
d
s
o
n
d
isse
m
in
a
ti
o
n
o
f
sa
f
e
t
y
-
re
l
a
ted
m
e
ss
a
g
e
s.
T
h
e
p
e
rf
o
r
m
a
n
c
e
o
f
V
A
NET
a
r
e
h
ig
h
ly
a
ff
e
c
ted
d
u
e
v
e
h
icle
d
e
n
sity
,
m
o
b
il
i
ty
a
n
d
e
n
v
iro
n
m
e
n
tal
c
o
n
d
it
i
o
n
.
Re
c
e
n
tl
y
se
v
e
ra
l
re
se
a
rc
h
h
a
s
b
e
e
n
u
n
d
e
r
d
e
v
e
lo
p
m
e
n
t,
th
e
d
e
sig
n
o
f
a
ra
p
id
,
f
lex
ib
le,
e
ff
ici
e
n
t
a
n
d
re
li
a
b
le
m
e
d
iu
m
a
c
c
e
s
s
c
o
n
tro
l
(M
A
C)
w
h
ich
a
d
d
re
ss
th
e
p
re
c
ise
c
o
n
stra
in
t
o
f
s
m
a
rt
in
telli
g
e
n
t
tra
n
sp
o
r
t
sy
ste
m
in
th
e
h
ig
h
ly
d
y
n
a
m
ic
V
A
NE
T
e
n
v
iro
n
m
e
n
t.
Ex
ten
siv
e
su
rv
e
y
c
a
rried
o
u
t
i
n
th
is
w
o
rk
sh
o
w
s
T
DM
A
(
T
i
m
e
d
iv
isio
n
m
e
d
iu
m
a
c
c
e
ss
)
b
a
s
e
d
M
A
C
a
p
p
r
o
a
c
h
o
u
tp
e
rf
o
rm
c
a
rri
e
r
se
n
s
e
m
e
d
iu
m
a
c
c
e
s
s/
c
o
ll
isio
n
a
v
o
id
a
n
c
e
CS
M
A
\
C
A
b
a
s
e
d
a
p
p
ro
a
c
h
.
Ho
w
e
v
e
r,
T
DM
A
b
a
se
d
a
p
p
ro
a
c
h
in
c
u
rs
b
a
n
d
w
id
th
w
a
st
a
g
e
s.
T
o
u
ti
li
z
e
b
a
n
d
w
i
d
th
m
o
re
e
ff
ici
e
n
tl
y
c
o
g
n
it
iv
e
ra
d
io
(CR)
tec
h
n
iq
u
e
is
a
d
o
p
ted
f
o
r
d
e
sig
n
in
g
e
ff
icie
n
t
M
A
C.
Ho
w
e
v
e
r,
th
e
e
x
isti
n
g
CR
m
o
d
e
l
in
c
u
rs
c
o
m
p
u
tatio
n
o
v
e
rh
e
a
d
a
n
d
i
s
n
o
t
e
v
a
lu
a
ted
u
n
d
e
r
d
if
f
e
re
n
t
e
n
v
iro
n
m
e
n
tal
c
o
n
d
it
i
o
n
su
c
h
a
s
ru
ra
l
,
h
ig
h
w
a
y
a
n
d
u
rb
a
n
(RHU
).
T
o
o
v
e
rc
o
m
e
re
s
e
a
rc
h
c
h
a
ll
e
n
g
e
s,
th
is
w
o
rk
p
re
se
n
t
e
ff
ici
e
n
t
d
e
c
e
n
tralize
d
d
istri
b
u
ted
M
A
C
(DM
A
C)
th
a
t
m
in
i
m
ize
c
o
ll
isio
n
a
n
d
m
a
x
i
m
iz
e
th
ro
u
g
h
p
u
t.
Ex
p
e
rim
e
n
t
a
r
e
c
o
n
d
u
c
ted
to
e
v
a
lu
a
te
th
e
p
e
rf
o
r
m
a
n
c
e
o
f
DM
A
C
o
v
e
r
sta
te
-
of
-
a
rt
m
o
d
e
l
in
ter
m
s
o
f
th
ro
u
g
h
p
u
t,
su
c
c
e
ss
tran
sm
issio
n
a
n
d
c
o
ll
isio
n
a
c
h
iev
e
d
.
T
h
e
o
u
tco
m
e
sh
o
w
s
sig
n
if
ica
n
t
p
e
rf
o
r
m
a
n
c
e
o
v
e
r
sta
te
-
of
-
m
o
d
e
l.
K
ey
w
o
r
d
s
:
C
o
g
n
iti
v
e
r
ad
io
DSR
C
MA
C
Mu
lti
-
c
h
an
n
el
VA
NE
T
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Nee
la
m
b
i
k
e
S
,
Dep
ar
t
m
en
t o
f
I
n
f
o
r
m
atio
n
s
ci
en
ce
an
d
E
n
g
i
n
ee
r
in
g
,
VT
U
Dav
en
g
er
e,
I
n
d
ia
E
m
ail:
n
ee
lais
v
2
i
@
r
ed
if
f
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
is
s
e
lf
-
o
r
g
an
izin
g
n
etw
o
r
k
th
at
a
im
s
to
en
h
an
ce
th
e
s
af
ety
an
d
ef
f
ici
en
cy
o
f
t
r
an
s
p
o
r
t
ati
o
n
an
d
als
o
p
r
o
v
i
d
e
in
f
o
ta
in
m
en
t
o
n
th
e
g
o
o
v
e
r
v
eh
icl
e
-
to
-
in
f
r
ast
r
u
ctu
r
e
(
)
,
v
eh
icl
e
-
to
-
v
eh
icle
(
)
an
d
co
m
b
in
ati
o
n
o
f
b
o
th
(
)
.
T
h
e
Fe
d
er
al
C
o
m
m
u
n
icatio
n
s
C
o
m
m
is
s
io
n
(
)
al
lo
tte
d
7
5
MH
z
f
r
e
q
u
en
cy
o
f
li
ce
n
s
e
d
b
an
d
in
GH
z
f
o
r
d
e
d
i
ca
t
ed
s
h
o
r
t
r
an
g
e
c
o
m
m
u
n
icati
o
n
(
)
[
1
]
,
u
n
d
e
r
an
d
s
tan
d
a
r
d
s
f
o
r
b
o
th
s
af
ety
a
n
d
n
o
n
-
s
af
e
ty
ap
p
li
ca
ti
o
n
u
n
d
e
r
en
v
ir
o
n
m
en
t.
A
s
a
r
esu
l
t
v
ar
i
o
u
s
a
p
p
li
ca
t
io
n
h
as
b
e
en
p
r
esen
t
ed
in
r
e
ce
n
t
tim
es.
I
n
th
e
p
e
r
i
o
d
o
f
er
a
,
is
b
e
en
u
s
ed
in
I
n
te
r
n
et
o
f
v
eh
i
cles
(
)
t
o
p
r
o
v
is
io
n
u
b
i
q
u
it
o
u
s
s
m
ar
t
in
f
o
t
ain
m
en
t
s
er
v
ic
es
s
u
ch
as
v
e
h
icu
la
r
cy
b
e
r
-
p
h
y
s
ical
s
y
s
tem
[
2
]
,
v
eh
i
cu
la
r
clo
u
d
n
etw
o
r
k
in
g
[
3
]
.
T
o
p
r
o
v
is
i
o
n
th
e
a
b
o
v
e
a
p
p
li
c
ati
o
n
r
e
q
u
ir
em
en
t,
th
e
b
e
ac
o
n
in
g
m
ess
ag
e
s
h
o
u
ld
b
e
t
r
an
s
m
itte
d
o
v
e
r
co
n
t
r
o
l
ch
an
n
e
l
(
)
w
ith
less
l
a
ten
cy
r
eli
ab
ly
s
o
th
at
th
e
ca
n
ass
u
r
e
th
e
h
ig
h
s
p
e
ed
an
d
r
e
a
l
-
ti
m
e
d
at
a
d
el
iv
e
r
y
ap
p
lic
ati
o
n
o
v
e
r
s
e
r
v
ic
e
ch
an
n
el
(
)
.
VA
NE
T
ar
e
p
r
o
n
e
to
h
ig
h
m
o
b
ilit
y
h
en
ce
p
e
r
i
o
d
ic
b
e
ac
o
n
in
g
is
r
e
q
u
ir
ed
in
o
r
d
e
r
to
o
b
ta
in
r
e
al
tim
e
n
etw
o
r
k
r
el
ate
d
in
f
o
r
m
atio
n
in
a
c
o
o
p
e
r
at
i
v
e
m
an
n
er
.
So
it
is
q
u
ite
a
ch
al
len
g
in
g
t
ask
to
d
esig
n
.
A
n
o
th
er
is
s
u
e
is
ch
an
n
el
co
n
g
es
ti
o
n
in
lay
er
d
u
e
t
o
h
ig
h
n
etw
o
r
k
d
en
s
i
ty
.
T
h
e
r
e
a
r
e
v
e
r
y
h
ig
h
d
en
s
ity
o
f
d
ev
i
ce
th
at
tr
an
s
m
it
th
eir
s
ta
tu
s
m
ess
ag
e
in
its
t
r
an
s
m
is
s
io
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
n
E
fficen
t D
is
t
r
ib
u
ted
Med
iu
m
A
cc
ess
co
n
tr
o
l fo
r
V
2
I
V
A
N
E
T
(
N
ee
la
mb
ike
S
.
)
743
r
an
g
e
,
w
h
ich
in
cu
r
s
p
a
ck
et
c
o
llis
i
o
n
o
v
e
r
h
ea
d
an
d
in
c
r
e
ase
p
a
ck
et
d
eliv
er
y
laten
cy
.
A
m
a
x
im
u
m
laten
cy
f
o
r
p
r
o
v
is
i
o
n
in
g
s
af
ety
-
r
elat
e
d
ap
p
li
ca
t
io
n
is
as
s
u
g
g
este
d
in
[
4
]
.
I
n
[
5
]
s
t
ate
d
th
at
th
e
p
a
ck
et
d
e
liv
e
r
y
r
at
io
s
h
o
u
l
d
n
o
t
b
e
less
th
an
9
0
%
an
d
th
e
ex
p
er
im
en
tal
o
u
tco
m
e
p
r
es
en
te
d
in
[
6
]
s
h
o
w
s
th
e
im
p
ac
t
o
f
h
ig
h
d
en
s
ity
o
n
p
a
ck
et
d
eliv
e
r
y
r
ati
o
an
d
l
aten
cy
.
T
h
e
r
ef
o
r
e
,
ca
n
n
o
t
b
e
g
u
a
r
an
t
ee
d
,
if
th
e
d
esi
g
n
is
n
o
t
s
ca
l
ab
le
.
T
o
a
d
d
r
ess
th
e
a
b
o
v
e
r
es
ea
r
c
h
ch
all
en
g
es,
m
an
y
p
r
o
t
o
c
o
l
is
b
e
en
p
r
esen
te
d
.
T
h
e
(
C
a
r
r
ie
r
Sen
s
e
Mu
l
ti
p
le
A
cc
es
s
/C
o
ll
is
i
o
n
A
v
o
i
d
an
ce
)
b
ase
d
[
7
]
h
as
b
e
en
s
tan
d
a
r
d
ize
d
as th
e
s
tan
d
a
r
d
p
r
o
to
c
o
l
f
o
r
v
eh
icu
la
r
co
m
m
u
n
icatio
n
.
H
o
w
ev
er
,
if
tr
af
f
ic
d
en
s
ity
is
h
ig
h
,
i
t
in
d
u
ce
s
h
ig
h
co
l
lis
i
o
n
p
r
o
b
a
b
i
lity
,
s
p
e
cif
ic
ally
f
o
r
b
r
o
a
d
ca
s
tin
g
p
a
ck
ets
[
8
]
.
h
as
th
e
p
r
o
b
lem
p
o
t
en
tia
lly
u
n
b
o
u
n
d
e
d
ch
an
n
el
a
cc
ess
d
elay
[
9
]
.
I
f
t
h
e
d
ev
i
ce
h
as
m
u
ltip
le
p
a
ck
ets,
it
h
as
t
o
co
n
t
en
d
f
o
r
m
u
ltip
le
t
im
es.
Fu
r
th
e
r
,
8
0
2
.
1
1
p
s
u
f
f
er
s
f
r
o
m
in
ter
f
e
r
en
ce
p
r
o
b
l
em
d
u
e
t
o
h
i
d
d
en
te
r
m
in
als.
Sin
c
e
it
ca
n
n
o
t
u
s
e
(
R
e
q
u
est
to
Sen
d
)
/
(
C
l
ea
r
t
o
S
en
d
)
m
ec
h
an
is
m
f
o
r
b
r
o
a
d
ca
s
tin
g
p
ac
k
ets
[
1
0
]
.
C
o
n
s
i
d
e
r
in
g
th
is
s
c
en
ar
io
,
th
e
co
l
lis
i
o
n
o
f
p
ac
k
et
ca
n
n
o
t
ev
en
b
e
i
d
en
tif
i
ed
r
ig
h
t
aw
a
y
.
No
ex
p
o
n
en
ti
al
b
a
ck
-
o
f
f
m
eth
o
d
s
ca
n
b
e
u
s
e
d
f
o
r
b
r
o
ad
ca
s
t
in
g
p
ac
k
et
an
d
th
e
li
k
elih
o
o
d
o
f
p
a
ck
et
c
o
l
lis
i
o
n
is
s
ig
n
if
ican
tly
v
er
y
h
ig
h
[
8
]
.
T
o
o
v
e
r
c
o
m
e
th
e
l
im
itatio
n
o
f
,
[
1
1
]
p
r
es
en
te
d
a
c
lu
s
te
r
e
d
b
as
ed
d
is
tr
ib
u
te
d
m
u
lti
-
ch
an
n
el
an
d
m
o
b
il
ity
aw
ar
e
m
ed
iu
m
a
cc
ess
c
o
n
t
r
o
l
(
)
d
esig
n
,
w
h
ich
p
e
r
m
its
d
ev
ic
e
t
o
tr
an
s
m
it
th
ei
r
n
etw
o
r
k
r
el
a
te
d
in
f
o
r
m
ati
o
n
to
its
c
l
u
s
ter
h
e
ad
ev
e
r
y
.
H
o
w
ev
er
,
th
ey
ar
e
n
o
t
ef
f
ici
en
t
f
o
r
s
a
f
ety
r
el
at
ed
ap
p
li
ca
ti
o
n
[
1
2
]
.
Sin
ce
,
c
o
m
m
u
n
icatio
n
r
an
g
e
is
r
e
d
u
ce
d
t
o
ass
u
r
e
c
o
m
m
u
n
icatio
n
am
o
n
g
clu
s
ter
m
em
b
er
s
.
T
h
e
ex
ten
s
iv
e
s
u
r
v
ey
c
o
n
d
u
c
ted
b
y
[
1
3
]
s
h
o
w
s
th
at
t
h
e
clu
s
te
r
e
d
b
ase
d
p
r
o
t
o
co
l
p
e
r
f
o
r
m
an
ce
ar
e
s
ig
n
if
ican
tly
af
f
ec
t
ed
b
y
m
o
b
il
ity
o
f
d
ev
ic
es.
T
o
im
p
r
o
v
e
p
e
r
f
o
r
m
an
ce
an
d
ad
d
r
ess
th
e
lim
itati
o
n
o
f
clu
s
t
er
ed
n
etw
o
r
k
,
v
a
r
i
o
u
s
s
l
o
tt
e
d
h
as
b
e
en
p
r
es
en
te
d
.
I
n
[
1
4
]
an
d
[
1
5
]
p
r
es
en
te
d
a
b
ase
d
o
n
w
h
er
e
ea
ch
n
o
d
e
o
b
tain
s
t
atu
s
o
f
s
lo
t
r
ese
r
v
e
d
.
A
n
o
th
e
r
w
id
ely
ad
o
p
te
d
s
l
o
tt
ed
is
-
b
ase
d
a
p
p
r
o
a
ch
[
1
6
]
,
w
h
er
e
tim
e
is
d
iv
i
d
ed
in
t
o
f
r
am
es a
n
d
ea
ch
f
r
am
es is
c
o
m
p
o
s
e
d
o
f
f
ix
e
d
n
u
m
b
er
o
f
t
im
e
s
lo
ts
.
E
ac
h
v
eh
ic
le
ac
c
ess
o
n
e
s
lo
t in
ea
ch
f
r
am
e.
I
n
[
1
7
]
p
r
es
en
te
d
u
s
in
g
,
in
w
h
ich
ea
ch
v
eh
icl
e
o
b
tain
o
n
e
s
lo
t
in
a
f
r
am
e
t
o
t
r
an
s
m
it
s
lo
t
all
o
c
ati
o
n
in
f
o
r
m
ati
o
n
ac
k
n
o
w
led
g
em
en
t
an
d
d
at
a
to
its
n
eig
h
b
o
r
.
Ho
w
ev
er
,
th
e
ir
m
o
d
el
in
cu
r
s
c
o
llis
io
n
o
v
e
r
h
ea
d
d
u
e
t
o
h
i
d
d
en
n
o
d
e
p
r
o
b
lem
s
.
T
o
ad
d
r
ess
c
o
ll
is
i
o
n
o
v
e
r
h
ea
d
in
[
1
8
]
p
r
esen
t
e
d
p
r
e
d
ic
ti
o
n
-
b
as
ed
(
)
w
h
ich
is
d
is
t
r
i
b
u
te
d
in
n
at
u
r
e.
I
n
[
1
9
]
p
r
esen
te
d
a
s
e
lf
-
s
o
r
tin
g
w
h
ich
aid
e
d
s
u
p
e
r
i
o
r
p
e
r
f
o
r
m
an
ce
th
an
[
1
8
]
an
d
s
ca
l
ab
le
an
d
c
o
o
p
e
r
ativ
e
M
A
C
lay
er
p
r
o
t
o
co
l
(
)
[
2
0
]
.
T
h
e
m
o
d
e
l
o
v
e
r
c
o
m
es
th
e
b
an
d
w
id
th
in
ef
f
icien
cy
o
f
Sp
ac
e
Div
is
i
o
n
M
u
ltip
le
A
cc
ess
(
SD
MA
)
[
2
1
]
a
n
d
r
ed
u
ce
s
c
o
l
lis
i
o
n
f
o
r
h
ig
h
w
a
y
en
v
ir
o
n
m
en
t.
Ho
w
e
v
er
,
th
ei
r
m
o
d
el
d
id
n
o
t
co
n
s
id
e
r
ed
m
ax
im
izin
g
s
y
s
tem
th
r
o
u
g
h
p
u
t
w
h
ich
is
a
cr
i
tic
a
l
f
ac
t
o
r
f
o
r
p
r
o
v
is
i
o
n
in
g
in
f
o
t
ain
m
en
t
ap
p
l
ica
ti
o
n
.
T
o
p
r
o
v
is
i
o
n
in
f
o
ta
in
m
en
t
ap
p
li
ca
tio
n
[
2
2
]
p
r
esen
t
e
d
a
p
r
o
t
o
c
o
l
a
d
o
p
tin
g
c
o
g
n
itiv
e
r
a
d
i
o
t
ec
h
n
iq
u
e
n
am
ely
,
en
h
an
ce
d
n
o
n
-
c
o
o
p
er
ativ
e
co
g
n
itiv
e
d
iv
is
i
o
n
m
u
ltip
l
e
ac
ce
s
s
(
)
.
T
h
e
a
t
tain
e
d
s
ig
n
if
ican
t
p
e
r
f
o
r
m
an
ce
o
v
er
s
t
ate
-
of
-
ar
t
m
o
d
el
.
Ho
w
ev
er
,
p
e
r
f
o
r
m
an
ce
ev
alu
a
tio
n
u
n
d
er
d
if
f
er
en
t
en
v
i
r
o
n
m
en
t
co
n
d
it
io
n
s
u
ch
as
u
r
b
an
,
r
u
r
al
an
d
h
ig
h
w
ay
is
n
o
t
c
o
n
s
id
er
e
d
.
T
o
a
d
d
r
ess
th
e
r
es
ea
r
ch
ch
all
en
g
es,
th
is
w
o
r
k
p
r
esen
t
a
d
ec
en
t
r
a
liz
e
d
D
is
t
r
i
b
u
te
d
MA
C
(
)
p
r
o
t
o
co
l
th
at
m
in
im
ize
th
e
co
l
lis
i
o
n
an
d
m
ax
i
m
ize
th
e
s
y
s
te
m
th
r
o
u
g
h
p
u
t
u
n
d
e
r
d
if
f
er
en
t
en
v
i
r
o
n
m
en
t
co
n
d
iti
o
n
.
T
h
e
C
o
n
t
r
i
b
u
ti
o
n
o
f
r
ese
ar
ch
w
o
r
k
is
as
f
o
l
lo
w
s
:
1.
T
h
is
w
o
r
k
p
r
es
en
te
d
an
o
p
t
im
al
ac
ce
s
s
m
ec
h
an
is
m
to
co
m
p
u
te
o
p
tim
al
o
b
j
ec
t
iv
e
f
u
n
ctio
n
co
n
s
i
d
e
r
in
g
ar
b
i
tr
ar
y
v
eh
icu
l
a
r
t
r
af
f
ic
m
o
v
em
en
t u
n
d
er
s
in
g
le
.
2.
is
ad
a
p
tiv
e
in
n
atu
r
e
c
o
n
s
i
d
e
r
in
g
v
a
r
ie
d
en
v
ir
o
n
m
en
t
c
o
n
d
i
t
io
n
s
u
ch
r
u
r
al
,
h
ig
h
w
a
y
,
an
d
h
ig
h
w
a
y
.
3.
T
h
e
m
in
i
m
ize
c
o
l
lis
i
o
n
an
d
m
ax
i
m
ize
s
y
s
tem
th
r
o
u
g
h
p
u
t
u
n
d
e
r
d
if
f
er
en
t
en
v
ir
o
n
m
en
t
co
n
d
iti
o
n
[
2
3
]
.
4.
T
h
e
r
es
ea
r
ch
o
u
t
c
o
m
e
s
h
o
w
s
i
s
s
ca
la
b
l
e
i
r
r
es
p
e
ctiv
e
o
f
n
etw
o
r
k
d
en
s
ity
.
T
h
e
r
est
o
f
th
e
p
a
p
er
is
o
r
g
an
i
ze
d
as
f
o
l
lo
w
s
.
E
x
ten
s
iv
e
r
ese
ar
ch
s
u
r
v
ey
is
ca
r
r
ie
d
o
u
t
in
s
e
cti
o
n
I
I
.
I
n
s
ec
ti
o
n
I
I
I
th
e
p
r
o
p
o
s
e
d
d
ec
en
t
r
a
liz
e
d
d
is
t
r
i
b
u
te
d
m
o
d
el
is
p
r
es
en
te
d
.
I
n
p
en
u
l
tim
ate
s
e
cti
o
n
ex
p
e
r
im
en
tal
s
tu
d
y
is
ca
r
r
ie
d
o
u
t.
T
h
e
c
o
n
clu
s
i
o
n
an
d
f
u
tu
r
e
w
o
r
k
is
d
esc
r
i
b
e
d
in
last
s
e
cti
o
n
.
2.
R
E
L
A
T
E
D
W
OR
K
I
n
th
is
s
ec
t
io
n
ex
t
en
s
iv
e
s
u
r
v
ey
is
c
ar
r
i
e
d
o
u
t
o
n
v
a
r
i
o
u
s
pr
o
t
o
c
o
l
d
es
ig
n
ed
t
o
im
p
r
o
v
e
th
e
p
e
r
f
o
r
m
an
ce
o
f
.
I
n
[
2
4
]
s
tu
d
ied
th
e
l
aten
cy
in
cu
r
r
e
d
b
y
b
as
ed
d
u
e
t
o
t
r
af
f
ic
an
d
v
eh
icle
d
en
s
ity
v
a
r
ia
ti
o
n
.
T
o
ad
d
r
ess
[
2
5
]
p
r
esen
t
e
d
a
d
ec
e
n
tr
al
ize
d
c
o
n
g
est
io
n
c
o
n
t
r
o
l
(
)
m
ec
h
an
is
m
.
I
t
o
v
e
r
c
o
m
e
th
e
l
im
itatio
n
o
f
E
n
h
an
ce
d
Dis
tr
ib
u
t
e
d
C
h
an
n
el
A
cc
ess
(
)
b
y
ad
o
p
tin
g
q
u
eu
in
g
m
ec
h
an
is
m
f
o
r
s
af
ety
r
ela
te
d
a
p
p
li
ca
ti
o
n
d
ata
.
E
x
p
er
im
en
t
is
c
o
n
d
u
ct
ed
to
m
in
i
m
ize
th
e
d
e
lay
u
n
d
er
v
ar
i
ed
en
v
ir
o
n
m
en
t
lo
a
d
f
o
r
h
ig
h
w
ay
en
v
ir
o
n
m
en
t.
H
o
w
e
v
er
,
it
a
d
o
p
ts
cr
o
s
s
lay
er
a
r
c
h
itectu
r
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
:
7
4
2
–
7
5
1
744
I
n
[
2
6
]
p
r
esen
te
d
a
c
r
o
s
s
lay
er
b
ase
d
m
o
d
el
t
o
m
in
im
ize
i
n
ter
f
e
r
en
c
e
am
o
n
g
c
o
m
m
u
n
icatin
g
d
ev
i
ce
in
r
o
u
tin
g
an
d
lay
er
.
T
h
ey
d
esig
n
e
d
p
e
r
f
o
r
m
an
ce
m
etr
i
c
t
o
m
in
i
m
ize
s
ig
n
al
t
o
in
t
e
r
f
er
en
ce
r
ati
o
(
)
am
o
n
g
c
o
m
m
u
n
icatio
n
d
ev
i
ce
s
.
E
x
p
er
im
en
tal
o
u
tc
o
m
es
s
h
o
w
g
o
o
d
p
ac
k
et
d
e
liv
e
r
y
r
at
io
an
d
th
r
o
u
g
h
p
u
t
p
e
r
f
o
r
m
an
ce
.
H
o
w
ev
er
,
th
e
ir
m
o
d
e
in
d
u
c
es
h
ig
h
co
l
lis
i
o
n
p
r
o
b
ab
ilit
y
d
u
e
t
o
c
o
m
p
u
tati
o
n
an
d
t
r
an
s
m
is
s
io
n
o
f
ch
an
n
el
s
ta
te
in
f
o
r
m
atio
n
in
co
n
t
r
o
l
ch
an
n
e
l.
T
o
m
in
im
iz
e
c
o
llis
io
n
o
v
e
r
h
ea
d
[
2
7
]
s
h
o
w
ed
n
eig
h
b
o
r
h
o
o
d
k
n
o
w
led
g
e
d
is
c
o
v
er
y
b
en
ef
it
i
n
r
e
d
u
cin
g
co
llis
i
o
n
in
n
etw
o
r
k
.
T
h
e
ir
m
o
d
el
m
in
i
m
ized
d
a
t
a
l
o
s
s
b
y
ad
o
p
tin
g
d
is
t
r
i
b
u
te
d
s
y
n
ch
r
o
n
i
ze
d
b
ea
co
n
in
g
s
ch
e
d
u
lin
g
te
ch
n
iq
u
e
s
.
H
o
w
ev
er
,
w
h
en
tr
af
f
ic
is
v
er
y
th
e
n
etw
o
r
k
u
tili
z
at
i
o
n
is
v
e
r
y
less
.
I
n
[
1
8
]
p
r
esen
t
ed
w
h
ich
aid
in
m
in
i
m
izin
g
co
ll
is
i
o
n
d
u
e
t
o
p
r
esen
ce
o
f
h
i
d
d
en
d
ev
i
ce
i
n
n
etw
o
r
k
u
n
d
er
d
en
s
ity
tr
af
f
ic
.
T
h
ey
p
r
es
en
te
d
a
p
r
ed
ict
io
n
tech
n
i
q
u
e
f
o
r
v
ar
ia
b
l
e
t
r
af
f
i
c
l
o
a
d
o
f
tw
o
w
ay
ar
ch
ite
ctu
r
e.
T
h
ei
r
m
o
d
el
m
in
im
ized
co
llis
i
o
n
f
o
r
v
ar
ie
d
tr
af
f
ic
an
d
n
etw
o
r
k
d
en
s
ity
.
Ho
w
ev
er
,
th
ei
r
m
o
d
el
d
id
n
o
t
c
o
n
s
id
e
r
e
d
m
ax
i
m
izin
g
n
etw
o
r
k
th
r
o
u
g
h
p
u
t
.
I
n
[
2
0
]
p
r
esen
te
d
w
h
ich
a
d
o
p
ts
s
l
o
t
r
ese
r
v
at
io
n
s
tr
a
teg
y
to
h
an
d
le
i
d
l
e
s
l
o
ts
f
o
r
n
ew
l
y
j
o
in
ed
u
s
er
.
I
t
ad
d
r
ess
s
tr
i
ct
d
e
lay
co
n
s
t
r
ain
w
h
en
n
o
d
e
d
en
s
ity
is
less
.
B
e
ac
o
n
in
g
m
ess
ag
e
o
v
e
r
h
e
a
d
is
a
d
d
r
ess
e
d
f
o
r
d
y
n
a
m
ic
v
ar
y
in
g
n
et
w
o
r
k
d
en
s
ity
.
H
o
w
ev
er
,
th
r
o
u
g
h
p
u
t
p
e
r
f
o
r
m
an
ce
an
d
v
ar
ie
d
en
v
ir
o
n
m
en
tal
c
o
n
d
it
io
n
is
n
o
t
c
o
n
s
i
d
e
r
e
d
f
o
r
ex
p
er
im
en
t e
v
alu
at
io
n
.
I
n
[
1
9
]
a
th
r
esh
o
ld
q
u
e
u
in
g
b
ase
d
s
e
lf
-
s
o
r
tin
g
is
p
r
esen
t
ed
w
h
ich
ai
d
e
d
s
u
p
e
r
i
o
r
p
e
r
f
o
r
m
an
ce
th
an
[
1
8
]
an
d
[
2
0
]
th
at
a
d
d
r
ess
ed
b
an
d
w
id
th
in
ef
f
icien
cy
o
f
S
p
a
ce
Div
is
i
o
n
Mu
lti
p
l
e
A
cc
ess
(
SDMA
)
[
2
1
]
an
d
r
e
d
u
ce
s
c
o
l
lis
i
o
n
f
o
r
h
ig
h
w
a
y
en
v
ir
o
n
m
en
t.
H
o
w
ev
er
,
s
elf
-
s
o
r
tin
g
d
i
d
n
o
t
c
o
n
s
id
er
e
d
m
ax
im
izin
g
s
y
s
tem
th
r
o
u
g
h
p
u
t
w
h
ich
is
a
cr
iti
ca
l
f
ac
t
o
r
f
o
r
p
r
o
v
is
i
o
n
in
g
in
f
o
tain
m
en
t
ap
p
li
ca
ti
o
n
.
T
o
p
r
o
v
is
io
n
in
f
o
t
ain
m
en
t
ap
p
li
ca
ti
o
n
[
2
2
]
p
r
esen
te
d
a
p
r
o
t
o
co
l
a
d
o
p
tin
g
c
o
g
n
itiv
e
r
a
d
i
o
t
ec
h
n
i
q
u
e
n
am
ely
,
en
h
an
ce
d
n
o
n
-
co
o
p
e
r
at
iv
e
c
o
g
n
itiv
e
d
iv
is
i
o
n
m
u
lt
ip
le
ac
ce
s
s
(
)
.
T
h
ey
co
m
b
in
e
d
(
f
r
e
q
u
en
cy
d
iv
is
i
o
n
m
u
ltip
l
e
a
cc
ess
)
,
an
d
c
o
g
n
i
tiv
e
r
a
d
i
o
tech
n
i
q
u
e
to
d
esig
n
f
o
r
m
u
lti
-
ch
an
n
el
n
etw
o
r
k
.
T
h
e
att
ain
e
d
s
ig
n
if
ic
an
t
p
e
r
f
o
r
m
an
ce
o
v
er
s
ta
te
-
of
-
ar
t
m
o
d
el
.
Ho
w
ev
er
,
p
er
f
o
r
m
an
ce
ev
alu
a
tio
n
u
n
d
e
r
d
if
f
er
en
t
en
v
ir
o
n
m
en
t
co
n
d
iti
o
n
s
u
ch
as
r
u
r
al
,
h
ig
h
w
a
y
an
d
u
r
b
an
is
n
o
t
c
o
n
s
i
d
e
r
e
d
.
E
x
ten
s
iv
e
s
u
r
v
ey
is
ca
r
r
i
e
d
o
u
t
,
s
h
o
w
s
a
n
ew
s
ch
em
e
is
n
ee
d
e
d
t
o
b
e
d
esig
n
e
d
t
o
m
ax
im
ize
s
y
s
tem
th
r
o
u
g
h
p
u
t,
m
in
im
ize
co
l
lis
i
o
n
,
u
s
e
b
an
d
w
id
th
m
o
r
e
ef
f
ici
en
tly
an
d
als
o
r
a
d
i
o
p
r
o
p
ag
ati
o
n
o
f
d
if
f
e
r
en
t
en
v
ir
o
n
m
en
tal
c
o
n
d
i
ti
o
n
.
T
h
er
ef
o
r
e
,
th
e
f
u
tu
r
e
d
es
ig
n
s
h
o
u
ld
co
n
s
i
d
er
th
ese
r
e
q
u
ir
em
en
t
in
d
esig
n
in
g
an
ef
f
icien
t
f
o
r
.
3.
P
RO
P
O
SE
D
D
E
CE
NT
R
A
L
I
Z
E
D
DIS
T
R
I
B
UT
E
D
M
AC
DE
SI
G
N
F
O
R
V2
I
NE
T
WO
RK
E
NCO
DI
NG
T
h
is
w
o
r
k
p
r
es
en
ts
d
ec
en
tr
ali
z
ed
m
ed
iu
m
ac
c
ess
c
o
n
t
r
o
l
d
esi
g
n
f
o
r
n
etw
o
r
k
w
h
ich
is
d
is
t
r
i
b
u
te
d
in
n
atu
r
e.
L
et
c
o
n
s
i
d
e
r
a
d
esi
g
n
,
w
h
er
e
tim
e
is
s
eg
m
en
ted
i
n
to
id
en
tic
al
s
l
o
t
tim
e
o
f
len
g
t
h
an
d
th
e
r
e
ex
is
t
s
e
am
les
s
s
y
n
ch
r
o
n
iza
ti
o
n
am
o
n
g
Van
et
s
u
b
s
c
r
i
b
e
r
s
/V
eh
icl
es
an
d
th
e
(
R
o
a
d
s
i
d
e
u
n
it)
.
T
h
e
t
o
t
al
am
o
u
n
t o
f
t
im
e
th
e
s
u
b
s
c
r
i
b
e
r
s
tay
s
in
R
SU c
o
v
e
r
ag
e
a
r
ea
ca
n
b
e
r
e
p
r
esen
t
e
d
as
⌊
⁄
⌋
(
1
)
T
h
e
tim
e
s
l
o
t
w
h
en
s
u
b
s
cr
i
b
e
r
is
in
r
an
g
e
o
f
R
SU is
o
b
t
ain
e
d
as f
o
ll
o
w
s
(
)
∑
*
+
(
2
)
w
h
er
e
.
T
h
e
s
et
o
f
tim
e
s
lo
ts
in
w
ith
r
esp
ec
t
to
tim
e
lin
e
r
e
p
r
esen
t
ati
o
n
is
*
(
)
(
)
+
T
h
e
o
p
tim
al
c
o
m
m
u
n
icati
o
n
p
r
o
b
l
em
o
f
a
s
u
b
s
cr
ib
e
r
is
c
o
n
s
id
e
r
e
d
as
a
f
in
ite
-
h
o
r
i
z
o
n
s
eq
u
en
t
ial
q
u
ality
s
p
e
cif
ie
r
(
)
p
r
o
b
lem
.
T
h
e
tim
e/ite
r
a
ti
o
n
o
f
th
e
s
u
b
s
cr
ib
e
r
is
⋃
⋃
*
(
)
(
)
+
(
3
)
w
h
er
e
is
th
e
cu
m
u
lated
c
o
l
le
cti
o
n
o
f
a
ll
tim
e
s
lo
ts
in
c
o
v
e
r
ag
e
r
an
g
e
,
w
h
er
e
th
e
m
o
d
e
,
-
d
e
p
i
cts
th
e
o
u
ts
tan
d
in
g
s
i
ze
(
i
n
b
i
ts
)
o
f
a
p
a
ck
ets
t
o
b
e
s
en
t
.
I
f
w
e
r
e
p
r
esen
t
th
e
n
u
m
b
er
o
f
s
u
b
s
c
r
i
b
e
r
s
in
R
SU c
o
v
e
r
ag
e
r
an
g
e
as
*
+
,
th
en
*
(
)
+
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
n
E
fficen
t D
is
t
r
ib
u
ted
Med
iu
m
A
cc
ess
co
n
tr
o
l fo
r
V
2
I
V
A
N
E
T
(
N
ee
la
mb
ike
S
.
)
745
T
h
e
s
u
b
s
c
r
i
b
e
r
h
as
tw
o
p
o
s
s
i
b
l
e
s
t
ates
a
t
an
y
m
o
d
es
(
)
,
w
h
ich
c
an
b
e
r
ep
r
es
en
te
d
as
*
+
(
4
)
w
h
er
e
s
t
ates
in
f
er
s
th
a
t th
e
s
u
b
s
c
r
i
b
e
r
ag
r
ee
s
t
o
r
e
q
u
es
t t
o
t
r
an
s
m
it,
an
d
s
t
ates
th
e
s
u
b
s
c
r
i
b
er
d
o
es n
o
t
ag
r
e
es t
o
r
e
q
u
est
t
o
t
r
an
s
m
it.
T
h
e
co
s
t
in
cu
r
r
e
d
at
m
o
d
e
(
)
w
it
h
in
s
tan
c
e
at
t
im
e
s
lo
t
in
th
e
co
v
e
r
ag
e
r
an
g
e
is
(
)
(
5
)
On
ce
th
e
s
u
b
s
c
r
i
b
e
r
leav
es
th
e
c
o
v
e
r
ag
e
a
r
ea
at
in
s
tan
ce
(
)
,
th
e
o
v
e
r
h
e
ad
in
cu
r
r
e
d
f
o
r
s
u
b
s
c
r
i
b
e
r
f
o
r
n
o
t
co
m
p
le
tin
g
h
is
p
ac
k
e
t t
r
an
s
m
is
s
io
n
is
co
m
p
u
te
d
as
f
o
ll
o
w
s
̂
(
)
(
)
(
)
(
6
)
w
h
er
e
(
)
is
a
n
o
n
-
d
ec
r
e
asin
g
p
ar
am
eter
o
f
w
ith
(
)
,
w
h
ich
is
ass
o
ci
at
ed
w
ith
q
u
ali
ty
o
f
s
er
v
i
ce
r
e
q
u
i
r
em
en
t
o
f
th
e
a
p
p
lic
ati
o
n
.
T
h
e
r
ef
o
r
e,
th
e
c
o
s
t
o
f
tr
an
s
m
is
s
io
n
in
cu
r
r
e
d
b
y
th
e
s
u
b
s
c
r
i
b
e
r
is
c
o
m
p
o
s
ed
o
f
t
w
o
th
in
g
s
.
Fi
r
s
tly
,
th
e
c
o
m
m
u
n
icati
o
n
co
s
t
in
ea
ch
tim
e
s
l
o
t
in
E
q
u
a
ti
o
n
(
5
)
an
d
th
e
o
v
e
r
h
ea
d
in
cu
r
r
e
d
af
te
r
leav
in
g
th
e
c
o
v
e
r
ag
e
r
an
g
e
in
E
q
u
a
ti
o
n
(
6
)
.
T
h
e
m
o
d
e
t
r
an
s
it
io
n
al
l
ik
elih
o
o
d
.
(
̅
̅
̅
̅
̅
̅
̅
)
|
(
)
/
is
th
e
lik
elih
o
o
d
th
at
n
etw
o
r
k
w
ill
b
e
in
m
o
d
e
(
̅
̅
̅
̅
̅
̅
̅
)
if
s
ta
te
s
is
tak
en
a
t
m
o
d
e
(
)
at
tim
e
s
l
o
t
.
T
h
e
tr
an
s
i
ti
o
n
f
r
o
m
t
o
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
is
n
o
t
a
d
e
t
er
m
in
ed
b
y
b
u
t
d
ete
r
m
in
ed
b
y
tim
e
,
th
u
s
w
e
h
av
e
.
(
̅
̅
̅
̅
̅
̅
̅
)
|
(
)
/
(
(
̅
)
|
(
)
)
(
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
|
)
(
7
)
W
ith
s
ta
te
,
w
e
o
b
t
ain
(
̅
|
(
)
)
{
̅
[
]
̅
(
8
)
w
h
er
e
,
-
*
+
.
T
h
e
c
ase
o
n
e
an
d
tw
o
d
e
p
i
cts
p
o
s
it
iv
e
an
d
n
eg
at
iv
e
d
at
a
tr
an
s
m
is
s
io
n
s
,
r
es
p
e
ctiv
el
y
.
W
ith
s
ta
tes
,
th
u
s
w
e
o
b
t
ain
(
̅
|
(
)
)
{
̅
̅
(
9
)
w
h
er
e
th
e
r
em
ain
in
g
p
ac
k
e
ts
s
i
ze
t
o
b
e
t
r
an
s
m
itte
d
w
ill
n
o
t
ch
an
g
e
.
T
h
e
d
er
iv
ati
o
n
o
f
(
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
̅
|
)
a
r
e
d
is
cu
s
s
ed
in
lat
e
r
s
u
b
s
ec
ti
o
n
o
f
th
is
p
a
p
e
r
.
L
et
b
e
th
e
Q
o
S
s
p
ec
if
ie
r
(
)
th
at
d
ef
in
es
th
e
co
m
m
u
n
icati
o
n
o
p
tim
izati
o
n
o
f
th
e
s
u
b
s
c
r
i
b
e
r
at
m
o
d
e
(
)
at
t
im
e
s
lo
t
in
th
e
r
an
g
e
o
f
c
o
v
e
r
ag
e
.
No
w
w
e
ex
p
r
ess
th
e
o
b
jec
tiv
e
f
u
n
ctio
n
as
c
o
v
e
r
in
g
all
m
o
d
e
s
as
(
(
)
)
.
T
h
e
m
o
d
e
a
t
tim
e
s
lo
t
if
o
b
j
e
ctiv
e
f
u
n
ctio
n
is
u
s
e
d
ca
n
b
e
r
e
p
r
esen
t
e
d
as
(
)
an
d
w
e
co
n
s
i
d
e
r
b
e
th
e
r
e
alis
t
ic
s
et
o
f
.
T
h
e
s
u
b
s
c
r
i
b
e
r
aim
at
m
in
i
m
ize
th
e
c
o
s
t
an
d
s
atis
f
y
in
g
o
b
j
e
ct
iv
e
f
u
n
cti
o
n
as
an
o
p
tim
izati
o
n
p
r
o
b
lem
(
)
[
∑
[
∑
(
)
(
(
)
(
)
(
)
.
(
)
(
)
/
)
]
̂
(
)
(
(
)
(
)
)
]
(
1
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
:
7
4
2
–
7
5
1
746
w
h
er
e
(
)
r
ep
r
esen
t
th
e
p
r
o
b
a
b
ili
t
y
w
ith
r
esp
ec
t
t
o
lik
el
ih
o
o
d
d
is
tr
i
b
u
ti
o
n
b
y
o
b
jectiv
e
f
u
n
cti
o
n
w
ith
an
in
itial
m
o
d
e
(
)
at
t
im
e
s
lo
t
(
)
.
L
et
c
o
n
s
i
d
e
r
th
at
th
e
r
e
ex
is
t
o
n
ly
o
n
e
an
d
p
r
ec
is
e
t
r
af
f
i
c
p
a
tte
r
n
o
f
s
u
b
s
cr
ib
er
is
n
o
t
k
n
o
w
n
an
d
Po
is
s
o
n
p
r
o
ce
s
s
o
f
s
u
b
s
cr
i
b
er
ar
r
iv
al
o
f
is
c
o
n
s
id
er
e
d
.
T
h
e
t
r
an
s
iti
o
n
l
ik
elih
o
o
d
o
f
is
o
b
ta
i
n
ed
as f
o
ll
o
w
s
(
|
)
(
(
̅
)
|
(
)
)
(
̅
|
)
{
(
)
̅
(
̅
)
(
)
̅
(
1
1
)
w
h
er
e
(
)
∑
(
)
is
a
n
o
r
m
aliza
ti
o
n
f
u
n
c
tio
n
.
S
in
ce
is
a
r
ig
o
r
o
u
s
ly
r
e
d
u
cin
g
f
u
n
ctio
n
o
f
,
th
er
e
is
o
n
e
-
to
-
o
n
e
m
ap
p
in
g
a
m
o
n
g
an
d
as
d
e
p
i
cte
d
in
th
e
f
ir
s
t
tw
o
e
q
u
ali
ties
in
E
q
u
at
i
o
n
1
1
an
d
th
e
th
i
r
d
e
q
u
al
iti
es
d
e
p
ic
ts
th
e
lik
e
lih
o
o
d
w
ith
̅
a
r
r
iv
al
d
u
e
t
o
Po
i
s
s
o
n
p
r
o
c
ess
an
d
d
et
e
r
m
in
is
tic
d
is
p
la
ce
m
en
t
a
t
in
s
t
an
ce
.
̅
is
u
p
p
er
b
o
u
n
d
e
d
b
y
an
d
l
o
w
er
b
o
u
n
d
e
d
b
y
w
h
en
th
er
e
i
s
n
o
s
u
b
s
c
r
i
b
e
r
ar
r
iv
al.
T
h
e
p
r
o
b
l
em
o
f
E
q
u
a
ti
o
n
1
0
c
o
n
s
id
e
r
in
g
*
+
ca
n
b
e
s
im
p
lif
ie
d
a
s
f
o
l
lo
w
s
(
)
[
∑
(
.
(
)
/
)
̂
(
)
]
(
1
2
)
L
et
(
)
b
e
th
e
m
in
im
al
p
r
o
ject
ed
to
t
al
co
s
t
th
at
th
e
s
u
b
s
c
r
i
b
e
r
h
as
t
o
p
ay
f
o
r
c
o
n
t
en
ti
o
n
f
r
o
m
tim
e
t
o
t
im
e
w
h
en
it
is
r
an
g
e
o
f
c
o
v
e
r
ag
e
c
o
n
s
i
d
e
r
in
g
n
e
tw
o
r
k
is
in
m
o
d
e
(
)
b
ef
o
r
e
th
e
d
ec
is
io
n
at
tim
e
s
lo
t
.
T
h
e
o
p
tim
izati
o
n
o
f
m
in
i
m
al
p
r
o
ject
ed
t
o
t
al
c
o
s
t
at
d
if
f
er
en
t m
o
d
es f
o
r
is
as f
o
llo
w
s
(
)
*
(
)
+
(
1
3
)
W
h
e
r
e
(
)
(
)
∑
∑
.
(
̅
)
|
(
̅
)
/
(
̅
)
̅
(1
4)
∑
(
|
)
0
.
0
̅
1
/
(
)
(
)
1
(
1
5
)
T
h
e
f
i
r
s
t
t
er
m
in
E
q
u
ati
o
n
1
4
in
d
ic
at
es
th
e
ac
tu
al
c
o
s
t
o
f
s
el
ec
tin
g
f
o
r
th
e
r
em
ain
in
g
t
im
e
s
l
o
ts
in
co
v
e
r
ag
e
r
an
g
e
an
d
th
e
s
ec
o
n
d
t
er
m
in
E
q
u
a
ti
o
n
1
4
in
d
ica
t
es
th
e
f
u
tu
r
e
c
o
s
t
ex
p
ec
t
e
d
f
o
r
s
e
le
ctin
g
f
o
r
th
e
r
em
ain
in
g
t
im
e
s
lo
ts
in
c
o
v
er
a
g
e
r
an
g
e
.
E
q
u
at
io
n
1
5
c
o
m
p
u
tes E
q
u
ati
o
n
1
4
d
i
r
e
ctly
b
y
u
s
i
n
g
E
q
u
ati
o
n
7
,
8
an
d
9
.
F
o
r
in
s
t
an
ce
p
e
r
i
o
d
,
w
e
p
o
s
s
ess
th
a
t
lim
itin
g
f
ac
t
o
r
th
a
t
(
)
̂
(
)
(
)
(
1
6
)
T
h
e
v
a
lu
e
o
f
(
)
,
ca
n
b
e
co
m
p
u
te
d
as f
o
ll
o
w
s
(
)
∑
(
)
(
)
0
.
[
]
(
)
/
(
)
(
(
)
)
1
(
1
7
)
w
h
er
e
(
)
is
th
e
v
eh
icl
e
d
en
s
i
ty
in
co
v
e
r
ag
e
r
an
g
e
o
f
R
SU.
T
h
e
o
u
tc
o
m
e
f
o
l
l
o
w
s
d
ir
ec
t
l
y
b
y
co
m
p
u
tin
g
E
q
u
at
io
n
1
5
u
s
in
g
E
q
u
a
ti
o
n
11
.
I
n
s
tin
c
tiv
ely
,
th
e
m
in
i
m
al
p
r
o
j
e
cte
d
c
o
s
t
(
)
m
u
s
t
b
e
s
m
aller
w
h
en
o
u
ts
tan
d
in
g
p
ac
k
et
s
i
ze
t
o
b
e
s
en
t
is
s
m
alle
r
w
h
ich
ca
n
b
e
ass
u
r
ed
w
h
en
(
)
i
s
a
n
o
n
-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
n
E
fficen
t D
is
t
r
ib
u
ted
Med
iu
m
A
cc
ess
co
n
tr
o
l fo
r
V
2
I
V
A
N
E
T
(
N
ee
la
mb
ike
S
.
)
747
d
e
cr
ea
s
in
g
p
a
r
am
ete
r
in
,
.
T
h
er
ef
o
r
e
,
th
e
o
p
t
im
al
o
b
j
e
ctiv
e
f
u
n
cti
o
n
is
o
b
t
ain
e
d
as
f
o
ll
o
w
s
:
(
(
)
)
(1
8
)
w
h
er
e
(
)
*
(
)
+
(
19
)
T
h
e
o
b
j
e
ctiv
e
p
a
r
am
ete
r
is
an
o
p
tim
al
s
o
lu
ti
o
n
o
f
p
r
o
b
l
em
E
q
.
(
1
2
)
.
I
n
n
ex
t
s
e
cti
o
n
ex
p
e
r
im
en
tal
s
t
u
d
y
is
ca
r
r
i
ed
o
u
t
to
ev
alu
ate
t
h
e
p
e
r
f
o
r
m
an
ce
o
f
p
r
o
p
o
s
ed
m
o
d
el
o
v
e
r
ex
is
tin
g
m
o
d
el.
4.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
A
ND
ANAL
YSI
S
T
h
e
ex
p
e
r
im
en
t
ar
e
c
o
n
d
u
ct
e
d
u
s
in
g
w
in
d
o
w
s
7
o
p
e
r
a
tin
g
s
y
s
te
m
,
in
tel
I
-
5
class
,
6
4
b
it,
q
u
a
d
c
o
r
e
p
r
o
ce
s
s
o
r
,
8
G
B
R
A
M,
4
G
B
d
e
d
ic
at
ed
NV
I
DI
A
C
UDA
g
r
a
p
h
ic
ca
r
d
.
T
h
e
ex
is
t
in
g
[
2
2
]
an
d
p
r
o
p
o
s
e
d
is
im
p
lem
en
ted
u
s
in
g
C
#
p
r
o
g
r
am
m
in
g
lan
g
u
ag
e,
Do
t
n
et
v
is
u
a
l
s
tu
d
i
o
4
.
0
f
r
am
ew
o
r
k
u
s
in
g
s
im
u
lato
r
[
2
2
]
.
T
h
e
ex
p
e
r
im
en
t
a
r
e
c
o
n
d
u
c
te
d
to
ev
a
lu
at
e
t
h
e
p
e
r
f
o
r
m
an
ce
o
f
o
v
e
r
in
ter
m
o
f
co
llis
i
o
n
,
s
u
cc
e
s
s
f
u
l
p
ac
k
et
t
r
an
s
m
is
s
io
n
a
n
d
th
r
o
u
g
h
p
u
t
ac
h
iev
ed
c
o
n
s
id
e
r
in
g
d
if
f
e
r
en
t
en
v
ir
o
n
m
en
tal
c
o
n
d
i
ti
o
n
s
u
c
h
as
r
u
r
al,
h
ig
h
w
a
y
an
d
u
r
b
an
.
T
h
e
r
a
d
i
o
p
r
o
p
ag
ati
o
n
m
o
d
el
f
o
r
d
if
f
er
en
t
en
v
ir
o
n
m
en
t
ar
e
o
b
t
ain
e
d
f
r
o
m
[
2
3
]
w
h
ich
is
in
co
r
p
o
r
ate
d
i
n
t
o
s
im
u
lato
r
.
T
h
e
s
im
u
lati
o
n
p
ar
am
eter
u
s
ed
f
o
r
ex
p
e
r
im
en
tal
s
tu
d
y
a
r
e
s
h
o
w
n
in
T
ab
le
1
.
T
a
b
le
1
.
Sim
u
latio
n
p
a
r
am
eter
co
n
s
i
d
e
r
e
d
N
e
t
w
o
r
k
P
a
r
a
me
t
e
r
V
a
l
u
e
N
e
t
w
o
r
k
S
i
z
e
5
0
m
*
5
0
m
N
u
m
b
e
r
o
f
V
e
h
i
c
l
e
s
2
0
,
3
0
&
4
0
M
o
d
u
l
a
t
i
o
n
s
c
h
e
me
Q
A
M
-
64
N
u
m
b
e
r
o
f
F
r
e
q
u
e
n
c
y
C
h
a
n
n
e
l
s
7
N
u
m
b
e
r
o
f
t
i
me
sl
o
t
s
8
μs
B
a
n
d
w
i
d
t
h
2
7
M
b
p
s
M
o
b
i
l
i
t
y
o
f
d
e
v
i
c
e
s
3
c
y
c
l
e
p
e
r
f
r
a
me
C
o
d
i
n
g
r
a
t
e
0
.
7
5
M
e
s
s
a
g
e
i
n
f
o
r
m
a
t
i
o
n
s
i
z
e
2
7
b
y
t
e
s
E
n
v
i
r
o
n
me
n
t
u
se
d
R
u
r
a
l
,
H
i
g
h
w
a
y
&
U
r
b
a
n
MA
C
u
se
d
&
4
.
1
C
o
l
lis
i
o
n
P
er
f
o
rm
a
nce
E
x
p
e
r
im
en
ts
ar
e
c
o
n
d
u
c
te
d
t
o
ev
alu
at
e
th
e
c
o
ll
is
i
o
n
p
e
r
f
o
r
m
an
ce
o
f
p
r
o
p
o
s
e
d
o
v
e
r
co
n
s
i
d
e
r
in
g
v
a
r
ie
d
v
eh
icl
es.
T
h
e
v
eh
icl
es
is
v
a
r
i
e
d
as
2
0
,
3
0
an
d
4
0
an
d
ea
ch
v
eh
i
cl
e
is
m
o
v
in
g
at
s
p
e
e
d
o
f
3
cy
cle
p
er
f
r
am
e.
T
h
e
Fig
u
r
e
1
,
Fig
u
r
e
2
an
d
Fig
u
r
e
3
s
h
o
w
th
e
c
o
ll
is
i
o
n
p
e
r
f
o
r
m
an
ce
o
f
o
v
er
f
o
r
r
u
r
al
,
h
ig
h
w
a
y
an
d
u
r
b
an
e
n
v
ir
o
n
m
en
t
c
o
n
s
id
er
in
g
v
ar
ie
d
v
eh
icl
es.
T
h
e
o
u
tc
o
m
e
s
h
o
w
s
th
at
w
h
en
v
eh
icle
d
en
s
ity
is
in
cr
ea
s
ed
th
e
p
ac
k
et
c
o
llis
io
n
in
c
r
e
ases
f
o
r
b
o
th
a
n
d
.
Fr
o
m
Fig
u
r
e
1
it
ca
n
b
e
s
e
en
r
e
d
u
ce
s
co
llis
i
o
n
b
y
6
2
.
1
6
%,
3
6
.
7
%
an
d
1
3
.
0
1
%
f
o
r
2
0
,
3
0
an
d
4
0
v
eh
ic
les
r
es
p
ec
tiv
ely
,
o
v
e
r
f
o
r
r
u
r
a
l
en
v
i
r
o
n
m
en
t.
Fr
o
m
F
ig
u
r
e
2
it
c
an
b
e
s
ee
n
r
e
d
u
c
es c
o
l
lis
i
o
n
b
y
4
7
.
6
1
%,
3
8
.
8
%
an
d
1
9
.
3
7
%
f
o
r
2
0
,
3
0
an
d
4
0
v
e
h
icles
r
esp
ec
tiv
ely
,
o
v
e
r
f
o
r
h
ig
h
w
a
y
en
v
ir
o
n
m
en
t.
F
r
o
m
Fig
u
r
e
3
it
ca
n
b
e
s
e
en
r
e
d
u
ce
s
c
o
l
lis
i
o
n
b
y
7
6
.
1
9
%,
3
6
.
7
3
%
an
d
1
1
.
6
7
%
f
o
r
2
0
,
3
0
an
d
4
0
v
e
h
ic
les
r
esp
ec
t
iv
ely
,
o
v
e
r
f
o
r
u
r
b
an
en
v
ir
o
n
m
en
t.
A
n
av
er
ag
e
r
e
d
u
ct
io
n
o
f
3
7
.
2
9
%
,
3
5
.
2
6
%
an
d
4
1
.
5
3
%
is
ac
h
iev
e
d
o
v
er
f
o
r
r
u
r
a
l,
h
ig
h
w
a
y
an
d
u
r
b
an
en
v
ir
o
n
m
en
t r
es
p
e
ctiv
e
ly
.
4
.
2
Su
cc
ess
f
u
l
P
a
ck
et
T
r
a
ns
m
is
s
io
n P
er
f
o
rm
a
nce
E
x
p
e
r
im
en
ts
ar
e
c
o
n
d
u
c
te
d
t
o
ev
a
lu
at
e
th
e
s
u
cc
ess
f
u
l
p
a
ck
e
t
t
r
an
s
m
is
s
io
n
p
er
f
o
r
m
an
ce
o
f
p
r
o
p
o
s
e
d
o
v
e
r
co
n
s
i
d
e
r
in
g
v
ar
i
e
d
v
eh
i
c
les.
T
h
e
v
eh
i
cles
is
v
ar
ie
d
as 2
0
,
3
0
an
d
4
0
an
d
e
ac
h
v
eh
i
cle
is
m
o
v
in
g
at
s
p
e
e
d
o
f
3
cy
cle
p
e
r
f
r
am
e.
T
h
e
Fig
u
r
e
4
,
Fig
u
r
e
5
an
d
Fig
u
r
e
6
s
h
o
w
th
e
s
u
cc
ess
f
u
l
p
ac
k
e
t
tr
an
s
m
is
s
io
n
p
e
r
f
o
r
m
an
ce
o
f
o
v
e
r
f
o
r
r
u
r
al
,
h
ig
h
w
a
y
an
d
u
r
b
an
en
v
ir
o
n
m
en
t
co
n
s
i
d
e
r
i
n
g
v
ar
i
ed
v
eh
icl
es.
T
h
e
o
u
tc
o
m
e
s
h
o
w
s
th
at
w
h
en
v
eh
icle
d
en
s
i
ty
is
in
cr
e
ase
d
th
e
s
u
cc
ess
f
u
l
p
a
ck
et
t
r
an
s
m
is
s
io
n
in
cr
ea
s
es
f
o
r
b
o
th
an
d
.
Fr
o
m
Fig
u
r
e
4
it
c
an
b
e
s
ee
n
im
p
r
o
v
es
s
u
c
ce
s
s
f
u
l
p
a
ck
et
tr
an
s
m
is
s
io
n
b
y
3
4
.
4
1
%
,
2
5
.
9
2
%
an
d
1
3
.
0
1
%
f
o
r
2
0
,
3
0
an
d
4
0
v
eh
i
cles
r
es
p
e
ctiv
ely
,
o
v
e
r
f
o
r
r
u
r
al
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
:
7
4
2
–
7
5
1
748
en
v
ir
o
n
m
en
t.
F
r
o
m
Fig
u
r
e
5
it
c
an
b
e
s
e
en
im
p
r
o
v
es
s
u
cc
ess
f
u
l
p
a
ck
et
t
r
an
s
m
is
s
io
n
b
y
2
3
.
5
2
%
,
3
5
.
4
4
%
an
d
2
7
.
5
2
%
f
o
r
2
0
,
3
0
an
d
4
0
v
eh
icl
es
r
es
p
e
ctiv
e
ly
,
o
v
e
r
f
o
r
h
ig
h
w
a
y
en
v
ir
o
n
m
en
t.
F
r
o
m
Fig
.
6
i
t
ca
n
b
e
s
e
en
im
p
r
o
v
e
s
s
u
cc
ess
f
u
l
p
a
ck
et
t
r
a
n
s
m
is
s
i
o
n
b
y
2
6
.
4
9
%
,
1
7
.
2
8
%
an
d
1
3
.
5
1
%
f
o
r
2
0
,
3
0
an
d
4
0
v
eh
ic
les
r
esp
ec
t
iv
el
y
,
o
v
er
f
o
r
u
r
b
an
en
v
i
r
o
n
m
en
t.
A
n
av
e
r
ag
e
im
p
r
o
v
em
en
t
o
f
2
5
.
2
3
%,
2
8
.
8
3
%
an
d
1
9
.
0
7
%
is
ac
h
iev
e
d
o
v
er
f
o
r
r
u
r
al
,
h
ig
h
w
a
y
an
d
u
r
b
an
en
v
ir
o
n
m
en
t
r
es
p
e
ctiv
e
ly
.
Fig
u
r
e
1
.
C
o
l
lis
i
o
n
p
e
r
f
o
r
m
an
ce
f
o
r
r
u
r
al
en
v
i
r
o
n
m
en
t
co
n
s
i
d
e
r
in
g
v
ar
i
e
d
v
eh
i
cl
e
Fig
u
r
e
2
.
C
o
l
lis
i
o
n
p
e
r
f
o
r
m
an
ce
f
o
r
h
ig
h
w
ay
en
v
ir
o
n
m
en
t c
o
n
s
i
d
e
r
in
g
v
a
r
i
e
d
v
eh
icl
e
Fig
u
r
e
3
.
C
o
l
lis
i
o
n
p
e
r
f
o
r
m
an
ce
f
o
r
u
r
b
an
en
v
ir
o
n
m
en
t c
o
n
s
i
d
e
r
in
g
v
a
r
i
ed
v
eh
i
cle
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
n
E
fficen
t D
is
t
r
ib
u
ted
Med
iu
m
A
cc
ess
co
n
tr
o
l fo
r
V
2
I
V
A
N
E
T
(
N
ee
la
mb
ike
S
.
)
749
Fig
u
r
e
4
.
Su
cc
ess
f
u
l p
ac
k
et
tr
a
n
s
m
is
s
io
n
p
e
r
f
o
r
m
an
ce
f
o
r
r
u
r
al
en
v
i
r
o
n
m
en
t c
o
n
s
i
d
e
r
in
g
v
ar
i
e
d
v
eh
i
cle
Fig
u
r
e
5
.
Su
cc
ess
f
u
l p
ac
k
et
tr
a
n
s
m
is
s
io
n
p
e
r
f
o
r
m
an
ce
f
o
r
h
ig
h
w
a
y
en
v
i
r
o
n
m
en
t c
o
n
s
i
d
e
r
in
g
v
ar
i
ed
v
eh
ic
le
Fig
u
r
e
6
.
Su
cc
ess
f
u
l p
ac
k
et
tr
a
n
s
m
is
s
io
n
p
e
r
f
o
r
m
an
ce
f
o
r
u
r
b
an
en
v
i
r
o
n
m
en
t c
o
n
s
i
d
e
r
in
g
v
a
r
ie
d
v
eh
ic
le
4
.
3
T
h
ro
u
g
hp
u
t
P
er
f
o
rm
a
nce
E
x
p
e
r
im
en
ts
a
r
e
co
n
d
u
ct
ed
to
ev
alu
at
e
th
e
th
r
o
u
g
h
p
u
t
p
e
r
f
o
r
m
an
ce
o
f
p
r
o
p
o
s
e
d
o
v
e
r
c
o
n
s
i
d
e
r
in
g
v
a
r
i
ed
v
eh
i
cles
.
T
h
e
v
e
h
i
cl
es
is
v
a
r
i
ed
as
2
0
,
3
0
an
d
4
0
an
d
ea
ch
v
eh
i
cle
is
m
o
v
in
g
at
s
p
e
ed
o
f
3
cy
cle
p
e
r
f
r
am
e.
T
h
e
Fig
u
r
e
7
,
Fig
u
r
e
8
an
d
Fig
u
r
e
9
s
h
o
w
th
e
th
r
o
u
g
h
p
u
t
p
e
r
f
o
r
m
an
ce
o
f
o
v
e
r
f
o
r
r
u
r
al
,
h
ig
h
w
ay
an
d
u
r
b
an
en
v
ir
o
n
m
en
t
co
n
s
i
d
e
r
in
g
v
ar
ie
d
v
eh
icl
es.
T
h
e
o
u
tc
o
m
e
s
h
o
w
s
th
at
w
h
en
v
eh
icle
d
en
s
ity
is
in
cr
ea
s
e
d
th
e
th
r
o
u
g
h
p
u
t
in
c
r
ea
s
es
f
o
r
b
o
th
an
d
.
Fr
o
m
Fig
u
r
e
7
it
ca
n
b
e
s
e
en
im
p
r
o
v
es
th
r
o
u
g
h
p
u
t
b
y
1
8
.
9
8
%,
3
9
.
0
9
%
an
d
1
6
.
0
6
%
f
o
r
2
0
,
3
0
an
d
4
0
v
eh
icl
es
r
es
p
e
ctiv
e
ly
,
o
v
er
f
o
r
r
u
r
al
en
v
ir
o
n
m
en
t.
Fr
o
m
Fig
u
r
e
8
it
c
an
b
e
s
e
en
im
p
r
o
v
es
th
r
o
u
g
h
p
u
t
b
y
1
4
.
6
4
%
,
2
2
.
1
%
an
d
2
2
.
8
5
%
f
o
r
2
0
,
3
0
an
d
4
0
v
eh
i
cles
r
esp
ec
t
iv
ely
,
o
v
er
fo
r
h
ig
h
w
a
y
en
v
ir
o
n
m
en
t.
Fr
o
m
Fig
u
r
e
9
it
c
an
b
e
s
e
en
im
p
r
o
v
es
th
r
o
u
g
h
p
u
t
b
y
1
6
.
7
9
%
,
1
4
.
2
8
%
an
d
0
8
.
3
9
%
f
o
r
2
0
,
3
0
an
d
4
0
v
eh
i
cles
r
esp
e
ctiv
ely
,
o
v
er
f
o
r
u
r
b
an
en
v
i
r
o
n
m
en
t.
A
n
av
e
r
ag
e
im
p
r
o
v
em
en
t
o
f
2
4
.
7
1
%,
1
9
.
8
7
%
an
d
1
3
.
1
5
%
is
a
ch
iev
e
d
o
v
er
f
o
r
r
u
r
al
,
h
ig
h
w
a
y
an
d
u
r
b
an
en
v
ir
o
n
m
en
t
r
es
p
e
c
tiv
e
ly
.
Fig
u
r
e
7
.
T
h
r
o
u
g
h
p
u
t
p
er
f
o
r
m
an
ce
f
o
r
r
u
r
al
en
v
ir
o
n
m
en
t c
o
n
s
id
e
r
in
g
v
ar
ie
d
v
eh
i
cl
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4752
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci,
Vo
l.
9
,
No
.
3
,
Ma
r
ch
2
0
1
8
:
7
4
2
–
7
5
1
750
Fig
u
r
e
8
.
T
h
r
o
u
g
h
p
u
t
p
er
f
o
r
m
an
ce
f
o
r
h
ig
h
w
a
y
en
v
ir
o
n
m
en
t c
o
n
s
id
e
r
in
g
v
a
r
ie
d
v
eh
ic
le
Fig
u
r
e
9
.
T
h
r
o
u
g
h
p
u
t
p
er
f
o
r
m
an
ce
f
o
r
u
r
b
an
en
v
ir
o
n
m
en
t c
o
n
s
id
e
r
in
g
v
a
r
i
ed
v
eh
i
cle
5.
CO
NCLUS
I
O
N
T
h
is
w
o
r
k
p
r
esen
te
d
an
ef
f
i
cien
t
d
is
t
r
i
b
u
te
MA
C
d
esig
n
to
m
ax
i
m
ize
s
y
s
te
m
th
r
o
u
g
h
p
u
t
an
d
m
in
i
m
ize
co
l
lis
i
o
n
.
T
h
e
ai
m
s
to
r
ed
u
ce
th
e
c
o
s
t
o
f
d
ata
ac
ce
s
s
.
i.
e.
u
tili
zin
g
b
an
d
w
id
th
m
o
r
e
ef
f
icien
tly
)
f
o
r
s
u
b
s
c
r
i
b
e
r
.
Ou
r
m
o
d
el
ac
h
iev
es
an
o
p
tim
al
s
o
lu
tio
n
f
o
r
th
e
r
es
ea
r
ch
o
b
j
e
ctiv
es.
E
x
p
er
im
en
t
ar
e
co
n
d
u
ct
ed
t
o
ev
alu
at
e
p
e
r
f
o
r
m
an
ce
o
v
e
r
in
t
er
m
o
f
co
llis
i
o
n
,
s
u
cc
ess
f
u
l
p
ac
k
et
tr
an
s
m
is
s
io
n
an
d
th
r
o
u
g
h
p
u
t
ac
h
i
ev
e
d
.
T
h
e
o
u
tc
o
m
e
s
h
o
w
s
,
r
e
d
u
c
es
c
o
ll
is
io
n
b
y
3
7
.
2
9
%
,
3
5
.
2
6
%
an
d
4
1
.
5
3
%
f
o
r
r
u
r
al,
h
ig
h
w
ay
an
d
u
r
b
an
en
v
i
r
o
n
m
en
t
r
esp
ec
t
iv
ely
,
o
v
er
.
i
m
p
r
o
v
es
p
a
ck
et
tr
an
s
m
is
s
io
n
b
y
2
5
.
2
3
%,
2
8
.
8
3
%
an
d
1
9
.
0
7
%
f
o
r
r
u
r
al
,
h
ig
h
w
a
y
an
d
u
r
b
an
en
v
ir
o
n
m
en
t
r
es
p
e
ctiv
e
ly
,
o
v
e
r
.
im
p
r
o
v
es
th
r
o
u
g
h
p
u
t
b
y
2
4
.
7
1
%,
1
9
.
8
7
%
an
d
1
3
.
5
%
f
o
r
r
u
r
al,
h
ig
h
w
a
y
an
d
u
r
b
an
en
v
i
r
o
n
m
en
t
r
esp
ec
tiv
ely
,
o
v
e
r
.
T
h
e
o
v
e
r
a
ll
r
esu
lt
ac
h
i
e
v
ed
s
h
o
w
th
at
th
e
p
r
o
p
o
s
e
d
m
o
d
el
is
s
c
al
ab
le
ir
r
esp
ec
t
iv
e
o
f
n
etw
o
r
k
d
en
s
i
ty
an
d
en
v
i
r
o
n
m
e
n
tal
co
n
d
it
io
n
.
T
h
e
f
u
tu
r
e
w
o
r
k
w
o
u
ld
co
n
s
i
d
er
ev
a
lu
ati
o
n
u
n
d
e
r
v
ar
ie
d
m
o
b
ilit
y
s
p
ee
d
an
d
n
etw
o
r
k
s
i
ze
.
RE
F
E
R
E
NC
E
S
[1
]
Ak
ra
m
A
.
A
l
m
o
h
a
m
m
e
d
i,
No
r
K.
No
o
r
d
in
2
,
S
a
b
ri
S
a
e
e
d
3
.
Ev
a
lu
a
t
in
g
th
e
Im
p
a
c
t
o
f
T
ra
n
s
m
is
sio
n
Ra
n
g
e
o
n
t
h
e
P
e
rf
o
rm
a
n
c
e
o
f
V
A
NE
T
.
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
Co
mp
u
ter
En
g
in
e
e
rin
g
(
IJ
ECE
)
.
A
p
ril
2
0
1
6
;
V
o
l
.
6
,
No
.
2
,
p
p
.
8
0
0
~
8
0
9
.
DO
I:
1
0
.
1
1
5
9
1
/
ij
e
c
e
.
v
6
i2
.
9
5
9
3
[2
]
D.
Jia
,
K.
L
u
,
J.
W
a
n
g
,
X
.
Z
h
a
n
g
,
a
n
d
X
.
S
h
e
n
,
“
A
S
u
rv
e
y
o
n
P
lato
o
n
-
Ba
se
d
V
e
h
icu
lar
C
y
b
e
r
-
P
h
y
sic
a
l
S
y
st
e
m
s,”
IEE
E
Co
mm
u
n
.
S
u
r
v
e
y
s T
u
ts.
,
v
o
l.
1
8
,
n
o
.
1
,
p
p
.
2
6
3
–
2
8
4
,
2
0
1
6
.
[3
]
E.
L
e
e
,
E.
-
K.
L
e
e
,
M
.
Ge
rla,
a
n
d
S
.
Y.
Oh
,
“
V
e
h
icu
lar
Clo
u
d
Ne
t
w
o
rk
in
g
:
A
rc
h
it
e
c
tu
re
a
n
d
De
sig
n
P
rin
c
i
p
les
,
”
IEE
E
Co
mm
u
n
.
M
a
g
.
,
v
o
l.
5
2
,
n
o
.
2
,
p
p
.
1
4
8
–
1
5
5
,
F
e
b
.
2
0
1
4
.
[4
]
S
.
G
ra
f
li
n
g
,
P
.
M
ä
h
ö
n
e
n
,
a
n
d
J
.
Rii
h
ij
ä
rv
i,
“
Per
fo
rm
a
n
c
e
e
v
a
lu
a
t
io
n
o
f
IEE
E
1
6
0
9
W
AV
E
a
n
d
IEE
E
8
0
2
.
1
1
p
f
o
r
v
e
h
icu
la
r co
mm
u
n
ica
t
io
n
s
,
”
in
P
r
o
c
.
2
n
d
I
n
t.
Co
n
f
.
Ub
iq
u
it
o
u
s F
u
t
u
re
Ne
tw
.
(ICUFN),
p
p
.
3
4
4
-
3
4
8
,
2
0
1
0
.
[5
]
Aw
s
S
a
a
d
,
A
b
d
a
lraz
a
k
T
a
re
q
R
a
h
e
m
2
,
Am
m
a
r
Ja
m
e
e
l
Hu
ss
e
in
3
,
A
b
d
u
ll
a
h
Am
e
r
M
o
h
a
m
m
e
d
4
.
V
e
h
icu
lar
A
d
Ho
c
Ne
tw
o
rk
s:
G
ro
w
th
a
n
d
S
u
rv
e
y
f
o
r
T
h
re
e
L
a
y
e
rs.
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
ter
En
g
i
n
e
e
rin
g
(
IJ
ECE
)
,
F
e
b
ru
a
ry
2
0
1
7
;
V
o
l
.
7
,
No
.
1
:
p
p
.
2
7
1
~
2
8
4
.
DO
I:
1
0
.
1
1
5
9
1
/i
jec
e
.
v
7
i
1
.
p
p
2
7
1
-
2
8
4
[6
]
K.
A
.
Ha
f
e
e
z
,
L
.
Zh
a
o
,
B.
M
a
,
a
n
d
J.W
.
M
a
r
k
,
`
”
P
e
rf
o
r
m
a
n
c
e
a
n
a
l
y
sis
a
n
d
e
n
h
a
n
c
e
m
e
n
t
o
f
t
h
e
DSRC
f
o
r
V
A
NET'
s sa
f
e
t
y
a
p
p
li
c
a
ti
o
n
s,”
I
E
EE
T
ra
n
s.
Veh
.
T
e
c
h
n
o
l
.
,
v
o
l.
6
2
,
n
o
.
7
,
p
p
.
3
0
6
9
-
3
0
8
3
,
S
e
p
.
2
0
1
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esia
n
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4752
A
n
E
fficen
t D
is
t
r
ib
u
ted
Med
iu
m
A
cc
ess
co
n
tr
o
l fo
r
V
2
I
V
A
N
E
T
(
N
ee
la
mb
ike
S
.
)
751
[7
]
8
0
2
.
1
1
-
2
0
1
2
.
Ie
e
e
sta
n
d
a
rd
f
o
r
in
f
o
rm
a
ti
o
n
tec
h
n
o
lo
g
y
tele
c
o
m
m
u
n
ica
ti
o
n
s
a
n
d
i
n
f
o
r
m
a
ti
o
n
e
x
c
h
a
n
g
e
b
e
twe
e
n
s
y
ste
m
s
lo
c
a
l
a
n
d
m
e
tro
p
o
l
it
a
n
a
re
a
n
e
tw
o
rk
ss
p
e
c
if
ic
re
q
u
ire
m
e
n
t
s
p
a
rt
1
1
:
W
irele
ss
lan
m
e
d
iu
m
a
c
c
e
ss
c
o
n
tro
l
(m
a
c
)
a
n
d
p
h
y
sic
a
l
la
y
e
r
(p
h
y
)
sp
e
c
if
i
c
a
ti
o
n
s.
2
0
1
2
.
[8
]
T
.
V
.
Ng
u
y
e
n
,
F
.
Ba
c
c
e
ll
i,
Ka
i
Z
h
u
,
S
.
S
u
b
ra
m
a
n
ian
,
a
n
d
X
i
n
z
h
o
u
W
u
.
A
p
e
rfo
rm
a
n
c
e
a
n
a
lys
is
o
f
c
sm
a
b
a
se
d
b
ro
a
d
c
a
st
p
ro
t
o
c
o
l
i
n
v
a
n
e
ts
.
I
n
2
0
1
3
P
r
o
c
e
e
d
in
g
s IE
EE
INFOCO
M
,
p
a
g
e
s 2
8
0
5
–
2
8
1
3
,
A
p
ril
2
0
1
3
.
[9
]
M
.
I.
Ha
ss
a
n
,
H
.
L
.
Vu
,
a
n
d
T
.
S
a
k
u
ra
i.
P
e
rf
o
rm
a
n
c
e
a
n
a
l
y
sis
o
f
th
e
iee
e
8
0
2
.
1
1
m
a
c
p
ro
to
c
o
l
f
o
r
d
src
sa
f
e
t
y
a
p
p
li
c
a
ti
o
n
s.
Veh
icu
la
r
T
e
c
h
n
o
lo
g
y
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
,
6
0
:3
8
8
2
–
3
8
9
6
,
Oc
t
2
0
1
1
.
[1
0
]
Qu
in
c
y
T
se
,
W
e
ish
e
n
g
S
i,
a
n
d
J.
T
a
h
e
ri.
Esti
ma
ti
n
g
c
o
n
ten
t
io
n
o
f
iee
e
8
0
2
.
1
1
b
r
o
a
d
c
a
sts
b
a
se
d
o
n
in
ter
-
fra
me
id
le
slo
ts
.
I
n
2
0
1
3
IEE
E
3
8
th
C
o
n
f
e
re
n
c
e
o
n
L
o
c
a
l
Co
m
p
u
ter
Ne
tw
o
rk
s
W
o
rk
sh
o
p
s
(L
CN
W
o
rk
sh
o
p
s),
p
a
g
e
s
120
–
1
2
7
,
Oc
t
2
0
1
3
.
[1
1
]
K.
A
.
Ha
f
e
e
z
,
L
.
Zh
a
o
,
J.W
.
M
a
rk
,
X
.
S
h
e
n
,
a
n
d
Z
.
Niu
,
`
”
Distrib
u
ted
m
u
lt
ich
a
n
n
e
l
a
n
d
m
o
b
il
i
ty
-
a
w
a
r
e
c
lu
ste
r
-
b
a
se
d
M
A
C
p
ro
t
o
c
o
l
f
o
r
v
e
h
icu
l
a
r
a
d
h
o
c
n
e
tw
o
rk
s,”
IEE
E
T
r
a
n
s.
Veh
.
T
e
c
h
n
o
l.
,
v
o
l.
6
2
,
n
o
.
8
,
p
p
.
3
8
8
6
-
3
9
0
2
,
Oc
t.
2
0
1
3
.
[1
2
]
Y.
Ya
o
,
X
.
Z
h
o
u
,
a
n
d
K.
Zh
a
n
g
,
“
De
n
sit
y
-
a
wa
re
ra
te
a
d
a
p
tatio
n
f
o
r
v
e
h
icle
sa
fe
t
y
c
o
m
m
u
n
ica
ti
o
n
s
i
n
th
e
h
ig
h
w
a
y
e
n
v
iro
n
m
e
n
t,
”
IEE
E
Co
mm
u
n
.
L
e
tt
.
,
v
o
l
.
1
8
,
n
o
.
7
,
p
p
.
1
1
6
7
-
1
1
7
0
,
Ju
l.
2
0
1
4
.
[1
3
]
C.
Co
o
p
e
r,
D.
F
ra
n
k
li
n
,
M
.
Ro
s,
F
.
S
a
f
a
e
i,
a
n
d
M
.
A
b
o
lh
a
sa
n
,
“
A
c
o
mp
a
ra
ti
v
e
su
rv
e
y
o
f
v
a
n
e
t
c
lu
ste
rin
g
tec
h
n
iq
u
e
s,
”
IEE
E
C
o
m
m
u
n
.
S
o
c
.
,
p
p
.
6
5
7
-
6
8
1
,
S
e
p
.
2
0
1
6
.
[1
4
]
R.
S
c
o
p
ig
n
o
a
n
d
H.
A
.
Co
z
z
e
tt
i,
``
M
o
b
il
e
slo
tt
e
d
a
lo
h
a
f
o
r
v
a
n
e
ts,
''
in
P
ro
c
.
IEE
E
7
0
t
h
V
e
h
.
T
e
c
h
n
o
l.
Co
n
f
.
F
a
ll
(V
T
C
-
F
a
ll
),
p
p
.
1
-
5
,
2
0
0
9
.
[1
5
]
F
.
Ha
n
,
D.
M
iy
a
m
o
to
,
a
n
d
Y.
W
a
k
a
h
a
ra
,
``
RT
OB:
A
T
DM
A
-
b
a
se
d
M
AC
p
ro
to
c
o
l
to
a
c
h
iev
e
h
ig
h
re
li
a
b
il
it
y
o
f
one
-
h
o
p
b
r
o
a
d
c
a
st
in
VA
NET
,
'
'
in
P
ro
c
.
IEE
E
In
t
.
Co
n
f
.
P
e
rv
a
siv
e
Co
m
p
u
t.
Co
m
m
u
n
.
W
o
rk
sh
o
p
s
(
P
e
rCo
m
W
o
rk
sh
o
p
s),
p
p
.
8
7
-
9
2
,
2
0
1
5.
[1
6
]
M
.
Ha
d
d
e
d
,
P
.
M
u
h
let
h
a
ler,
A
.
L
a
o
u
it
i,
R.
Zag
ro
u
b
a
,
a
n
d
L
.
A.
S
a
id
a
n
e
,
``T
DM
A
-
b
a
se
d
M
AC
p
ro
to
c
o
ls
fo
r
v
e
h
icu
la
r
a
d
h
o
c
n
e
two
rk
s:
A
su
rv
e
y
,
q
u
a
li
t
a
ti
v
e
a
n
a
lys
is,
a
n
d
o
p
e
n
re
se
a
rc
h
issu
e
s,''
I
EE
E
C
o
m
m
u
n
.
S
u
rv
e
y
s
T
u
ts.
,
v
o
l.
1
7
,
n
o
.
4
,
p
p
.
2
4
6
1
-
2
4
9
2
,
4
th
Q
u
a
rt.
,
2
0
1
5
.
[1
7
]
H.
A
.
O
m
a
r,
W
.
Zh
u
a
n
g
,
a
n
d
L
.
L
i,
``
V
e
M
A
C:
A
T
DM
A
-
b
a
se
d
M
A
C
p
ro
to
c
o
l
f
o
r
re
li
a
b
le
b
ro
a
d
c
a
st
in
V
A
NET
s,
'
'
IEE
E
T
ra
n
s.
M
o
b
il
e
C
o
mp
u
t
.
,
v
o
l
.
1
2
,
n
o
.
9
,
p
p
.
1
7
2
4
-
1
7
3
6
,
S
e
p
.
2
0
1
3
.
[1
8
]
X
.
Jia
n
g
a
n
d
D.
H.
Du
,
`
`
P
T
M
AC:
A
p
re
d
ictio
n
-
ba
se
d
T
DMA
M
A
C
p
ro
to
c
o
l
f
o
r
re
d
u
c
in
g
p
a
c
k
e
t
c
o
ll
isio
n
s
i
n
V
A
NET
,
'
'
IEE
E
T
ra
n
s.
Veh
.
T
e
c
h
n
o
l.
,
v
o
l.
6
5
,
n
o
.
1
1
,
p
p
.
9
2
0
9
-
9
2
2
3
,
No
v
.
2
0
1
6
.
[1
9
]
Z.
S
h
e
n
,
X.
Zh
a
n
g
,
M
.
Z
h
a
n
g
,
W
.
L
i
a
n
d
D.
Ya
n
g
,
"
S
e
lf
-
S
o
rtin
g
-
B
a
se
d
M
AC
Pro
to
c
o
l
fo
r
Hig
h
-
De
n
sity
Veh
icu
la
r
Ad
H
o
c
Ne
two
rk
s,
"
in
I
EE
E
A
c
c
e
s
s,
v
o
l.
5
,
n
o
.
,
p
p
.
7
3
5
0
-
7
3
6
1
,
2
0
1
7
.
[2
0
]
Y.Ca
o
,
H.
Zh
a
n
g
,
X
.
Z
h
o
u
a
n
d
D.
Yu
a
n
,
"
A
S
c
a
lab
le
a
n
d
Co
o
p
e
ra
ti
v
e
M
A
C
P
ro
to
c
o
l
f
o
r
Co
n
tro
l
C
h
a
n
n
e
l
A
c
c
e
ss
in
V
A
NETs,
"
in
IEE
E
Ac
c
e
ss
,
v
o
l.
5
,
n
o
.
,
p
p
.
9
6
8
2
-
9
6
9
0
,
2
0
1
7
.
[2
1
]
Z.
Do
u
k
h
a
a
n
d
S
.
M
o
u
ss
a
o
u
i.
A
sd
m
a
-
b
a
s
e
d
m
e
c
h
a
n
is
m
f
o
r
a
c
c
u
ra
te
a
n
d
e
ff
icie
n
t
n
e
ig
h
b
o
r
h
o
o
d
d
i
sc
o
v
e
r
y
li
n
k
la
y
e
r
se
r
v
ice
.
IEE
E
T
ra
n
s
a
c
ti
o
n
s
o
n
Ve
h
icu
l
a
r T
e
c
h
n
o
l
o
g
y
,
P
P
(9
9
)
:1
–
1
1
,
2
0
1
5
.
[2
2
]
M
a
rio
M
a
n
z
a
n
o
,
F
e
li
p
e
Es
p
in
o
sa
;
Nin
g
L
u
;
X
u
e
m
in
S
h
e
n
;
M
a
rk
,
J.W
.
;
F
u
q
ia
n
g
L
iu
,
"
Co
g
n
it
iv
e
S
e
lf
-
S
c
h
e
d
u
led
M
e
c
h
a
n
ism
f
o
r
A
c
c
e
ss
Co
n
tro
l
in
N
o
isy
V
e
h
icu
lar
A
d
Ho
c
Ne
tw
o
rk
s,"
Hin
d
a
wi
P
u
b
l
ish
i
n
g
Co
rp
o
ra
ti
o
n
,
M
a
th
e
ma
ti
c
a
l
Pro
b
lem
s in
E
n
g
in
e
e
rin
g
,
V
o
l
u
m
e
2
0
1
5
,
A
rti
c
le ID
3
5
4
2
9
2
,
2
0
1
5
.
[2
3
]
S
.
Ne
e
lam
b
ik
e
a
n
d
J.
Ch
a
n
d
r
ik
a
,
"
An
e
ff
icie
n
t
e
n
v
i
ro
n
me
n
ta
l
m
o
d
e
l
c
o
n
si
d
e
rin
g
e
n
v
ir
o
n
me
n
t
a
l
f
a
c
to
r
fo
r
V
2
I
a
p
p
li
c
a
ti
o
n
se
rv
ice
s,"
2
0
1
5
IE
EE
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Co
m
p
u
tatio
n
a
l
In
telli
g
e
n
c
e
a
n
d
C
o
m
p
u
ti
n
g
Re
se
a
rc
h
(ICCIC),
M
a
d
u
ra
i,
p
p
.
1
-
6
,
2
0
1
5
.
[2
4
]
A
.
Ka
jac
k
a
s,
A
.
V
in
d
a
siu
s,
a
n
d
S
.
S
tan
a
it
is.
In
te
r
-
V
e
h
icle
Co
m
m
u
n
ica
ti
o
n
:
Em
e
r
g
e
n
c
y
M
e
s
sa
g
e
De
la
y
Distrib
u
ti
o
n
s
.
El
e
c
tro
n
ic an
d
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
.
–
Ka
u
n
a
s:
T
e
c
h
n
o
l
o
g
ij
a
,
8
:
9
6
,
2
0
0
9
.
[2
5
]
A
.
A
lo
n
so
G
ó
m
e
z
a
n
d
C.
F
.
M
e
c
k
len
b
rä
u
k
e
r,
"
De
p
e
n
d
a
b
il
it
y
o
f
De
c
e
n
tralize
d
Co
n
g
e
stio
n
Co
n
tro
l
f
o
r
V
a
ry
in
g
V
A
NET
De
n
sit
y
,
"
in
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
Veh
ic
u
la
r
T
e
c
h
n
o
lo
g
y
,
v
o
l.
6
5
,
n
o
.
1
1
,
p
p
.
9
1
5
3
-
9
1
6
7
,
N
o
v
.
2
0
1
6
.
[2
6
]
P
.
F
a
z
io
,
F
.
De
Ra
n
g
o
a
n
d
C.
S
o
tt
il
e
,
"
A
P
re
d
ictiv
e
Cro
ss
-
La
y
e
r
e
d
In
terf
e
re
n
c
e
M
a
n
a
g
e
m
e
n
t
in
a
M
u
lt
ich
a
n
n
e
l
M
A
C
w
it
h
Re
a
c
ti
v
e
Ro
u
ti
n
g
in
V
A
NET
,
"
in
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
M
o
b
il
e
Co
mp
u
ti
n
g
,
v
o
l
.
1
5
,
n
o
.
8
,
p
p
.
1
8
5
0
-
1
8
6
2
,
A
u
g
.
1
2
0
1
6
.
[2
7
]
Z.
Do
u
k
h
a
a
n
d
S
.
M
o
u
ss
a
o
u
i
,
"
A
n
S
DM
A
-
Ba
s
e
d
M
e
c
h
a
n
ism
f
o
r
A
c
c
u
ra
te
a
n
d
Eff
icie
n
t
Ne
ig
h
b
o
rh
o
o
d
-
Disc
o
v
e
r
y
L
in
k
-
La
y
e
r
S
e
rv
ice
,
"
in
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
Veh
icu
l
a
r
T
e
c
h
n
o
l
o
g
y
,
vo
l.
6
5
,
n
o
.
2
,
p
p
.
6
0
3
-
6
1
3
,
F
e
b
.
2
0
1
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.